October 19, 2009
Project No. 3399.004

City of Malibu
23815 Stuart Ranch Road
Malibu, California 90265

Attention: Mr. Claudio Sanchez

Subject: Annual Report, July 2008 through June 2009, Malibu Road Landslide Assessment District

Dear Mr. Sanchez,

Fugro is pleased to present this annual report for the Malibu Road Landslide Assessment District. This report summarizes the monitoring and maintenance activities completed during the period of July 2008 through June 2009.

Fugro appreciates the opportunity to be of service to the City of Malibu and the District homeowners. Please contact us at (805) 650-7000, if you have any questions regarding this report.

Sincerely,

Alexis M. Spencer
Project Engineer/Project Manager

Christopher Dean, C.E.G.
Senior Engineering Geologist

Lauren J. Doyle, P.E.
Associate Engineer

Copies Submitted: (2) Addressee
(1) City of Malibu - Geology & Soils Staff
CONTENTS

1.0 INTRODUCTION .. 1
 1.1 Authorization ... 1
 1.2 Background ... 1
 1.3 Scope of Work .. 1
 1.4 Report Organization ... 1
 1.5 Report Availability ... 2

2.0 MONITORING .. 2
 2.1 Rainfall Data .. 2
 2.2 Groundwater Monitoring ... 2
 2.2.1 Standpipe Piezometers .. 3
 2.2.2 Pneumatic Piezometers ... 3
 2.2.3 Groundwater Level Discussion .. 3
 2.3 Dewatering Production ... 4
 2.3.1 Dewatering Well Production ... 4
 2.3.2 Hydrauger Production .. 4
 2.3.3 Total Dewatering Production ... 4
 2.4 Slope Inclinometer Measurements ... 4

3.0 FACILITY MAINTENANCE ... 5
 3.1 Facility Maintenance ... 5
 3.2 Capital Improvement Projects .. 6

4.0 SUMMARY AND CONCLUSIONS.. 6
 3.3 Summary ... 6

5.0 REFERENCES ... 7

TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Summary of Average Groundwater Elevations by Area</td>
</tr>
<tr>
<td>2</td>
<td>Maintenance Activities</td>
</tr>
</tbody>
</table>

PLATES

<table>
<thead>
<tr>
<th>Plate</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Location Map</td>
<td>1</td>
</tr>
<tr>
<td>Assessment District Map</td>
<td>2</td>
</tr>
<tr>
<td>Rainfall Graph</td>
<td>3</td>
</tr>
<tr>
<td>Dewatering Graph</td>
<td>4</td>
</tr>
<tr>
<td>Summary Graph: Groundwater Levels, Dewatering, & Rainfall</td>
<td>5</td>
</tr>
</tbody>
</table>
CONTENTS - CONTINUED

APPENDICES

APPENDIX A GROUNDWATER DATA
- Piezometer Information ... Plate A-1
- Summary of Groundwater Data ... Plate A-2
- Groundwater Hydrograph - Malibu Road (West End) Plate A-3
- Groundwater Hydrograph - Malibu Road (East End) Plate A-4
- Groundwater Hydrograph - Bayshore Drive Plate A-5

APPENDIX B DEWATERING DATA
- Dewatering Well / Piezometer Information Plate B-1
- Dewatering Well Graph ... Plate B-2
- Hydrauger Graph ... Plate B-3

APPENDIX C SLOPE INCLINOMETER DATA
- Summary of Slope Inclinometers .. Plate C-1
- Slope Inclinometer Interpretation Summary - SI-1 to SI-6 Plates C-2 to C-6

APPENDIX D REPLACEMENT DEWATERING WELL
- Well Construction Diagram .. Plate D-1
1.0 INTRODUCTION

1.1 AUTHORIZATION

Fugro West, Inc. (Fugro), performed the work summarized in this report in accordance with our contract with the City of Malibu (City) and consistent with the cost estimate document "Exhibit A-FY 2008-2009 Maintenance Cost Estimate" presented in the Annual Assessment Report (Taussig, 2008).

1.2 BACKGROUND

The Malibu Road Landslide Assessment District was established in 1981 by the County of Los Angeles following the activation of a landslide on the west end of Malibu Road in 1978 (Plates 1 and 2). The assessment district provides permanent funding to maintain and monitor dewatering facilities with the purpose of stabilizing the landslide to the extent feasibly using dewatering methods only. The County administered the assessment district until 1991 when the City incorporated. Since then, the City has administered the assessment district, utilizing consultants to maintain and monitor the district facilities.

1.3 SCOPE OF WORK

This annual report summarizes the monitoring and maintenance of the geotechnical instrumentation and dewatering facilities within the Malibu Road Assessment District for the period between July 1, 2008, and June 30, 2009 (hereafter, the "monitoring period").

Routine monitoring data collected during this monitoring period included the following:

- Review of annual rainfall data from a local rain gauge operated by the County of Los Angeles, Department of Public Works - Water Resources Division;
- Monthly groundwater level measurements from nine standpipes and eight pneumatic piezometers;
- Monthly dewatering production readings from nine dewatering wells owned by the Assessment District and three wells owned by a private homeowner on Bayshore Drive;
- Monthly dewatering production readings from 23 horizontal drains (hydraugers);
- Quarterly ground deformation measurements from five slope inclinometers; and
- Periodic maintenance of dewatering and monitoring facilities.

The operating condition of the instrumentation and dewatering facilities was checked during each field monitoring/observation visit and by evaluating preliminary data in the office as it was received. Maintenance was performed as needed based upon the field observations and preliminary data evaluation.

The scope of services includes monitoring and maintenance of the assessment district facilities. The services provided on an annual basis for the assessment district do not include an evaluation of the stability of the landslide.
1.4 REPORT ORGANIZATION

This report summarizes the monitoring data collected during the monitoring period and presents conclusions regarding the annual monitoring results. An outline of the report is presented as the Table of Contents. The location of the assessment district is illustrated on Plate 1 - Site Location Map. Locations of the geotechnical instrumentation are shown on Plate 2 - Assessment District Map. Tabulated and graphic summaries of monitoring data are presented in Appendix A through Appendix C as indicated in the Table of Contents.

1.5 REPORT AVAILABILITY

The annual assessment district reports are available for review in Malibu at City Hall and the Malibu Library. Reports may also be viewed on the City’s website at http://www.ci.malibu.ca.us. Paper copies or electronic versions on CD (pdf format) are also available for purchase from the City and Fugro.

2.0 MONITORING

2.1 RAINFALL DATA

Rainfall totals were tabulated based on recorded values from the Los Angeles County Rainfall Station 1239 - located at Big Rock Mesa. A combination graph of historical and annual cumulative monthly rainfall totals is shown on Plate 3 - Rainfall Graph.

Rainfall data indicate that approximately 11.02 inches of precipitation fell during the monitoring period from July 2008 through June 2009. The average rainfall total from 1968 to 2009 in the Malibu area for the period July through June is approximately 16.02 inches.

Rainfall data is usually analyzed in terms of the annual "rain season" that covers the time period October 1 through September 30. Rainfall for October 1, 2008, through June 30, 2009, was approximately 11.02 inches. This is approximately 69 percent of the average rainfall total of 16.02 inches for the rain seasons of 1968 through 2009.

2.2 GROUNDWATER MONITORING

The groundwater level data collected during this monitoring period are summarized in Appendix A. Groundwater levels fluctuate throughout the year and from year to year in response to natural and man-made influences. The primary natural influence is varying precipitation. Man-made influences include:

- Recharge from septic systems;
- Recharge from irrigation;
- Alterations to surface drainage by grading, landscaping, storm drains, and rain gutters;
- Accidental water discharges from leaking utilities (water, irrigation, sewer, storm drain), and swimming pools; and
- Dewatering activities including pumping dewatering wells and hydraulics.
Typically, groundwater levels rise relatively quickly following significant rainfall and gradually lower after the wet season ends. Groundwater levels measured in standpipe piezometers (wells) and pneumatic piezometers are depicted on Plates A1 through A5 in Appendix A. Groundwater levels at Malibu Road typically peak around late March to mid-April and gradually decline through late September to November.

2.2.1 Standpipe Piezometers

Nine standpipe piezometers (W-2A, W-3A, PZ-A, PZ-B, PZ-C, PZ-D, PZ-E, SI-5 and SI-6) were measured regularly over the monitoring period. Slope inclinometers/piezometers SI-5 and SI-6 were installed in 1998 along Bayshore Drive. Los Angeles County installed the other piezometers at earlier dates. The locations of the standpipe piezometers are depicted on Plate 2 - Assessment District Map, and groundwater hydrographs are presented in Appendix A.

2.2.2 Pneumatic Piezometers

Inclinometers installed within the assessment district after 1997 were typically outfitted with one or two pneumatic piezometer sensors. Nine sensors were measured regularly over the monitoring period; one piezometer was added (SI-1A) in August 2006. Each sensor records groundwater elevations by measuring differential air pressure between the instrument sensor and groundwater surface across a flexible bladder. The locations of the piezometers are depicted in Plate 2, and hydrographs are presented in Appendix A.

2.2.3 Groundwater Level Discussion

The groundwater data were reviewed by evaluating changes that occurred during the current monitoring period as well as changes in groundwater levels over extended periods. To analyze trends in seasonal groundwater fluctuations, the average (mean) annual and highest annual recorded groundwater elevation for each piezometer was calculated (Appendix A, Plate A-2).

Groundwater levels rose significantly following record rainfall in the winter of 2004 to 2005. Since about April 2005, groundwater levels declined and are now lower than average levels for the period 1991 through 2009. The average and highest annual groundwater levels are indicated below:

<table>
<thead>
<tr>
<th>Location</th>
<th>Average Groundwater El. 2008-2009</th>
<th>Change vs. Prior Year Average</th>
<th>Peak Groundwater El. 2008-2009</th>
<th>Change vs. Prior Year Peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malibu Road</td>
<td>6.9</td>
<td>+0.1</td>
<td>7.4</td>
<td>-0.4</td>
</tr>
<tr>
<td>Bay Shore Drive</td>
<td>25.8</td>
<td>-0.6</td>
<td>26.4</td>
<td>-0.3</td>
</tr>
</tbody>
</table>

All units are in feet
2.3 DEWATERING PRODUCTION

2.3.1 Dewatering Well Production

A graph of the production rate for all dewatering wells is presented on Plate 4. Graphs showing production rates of individual wells are provided in Appendix B. Production data for the dewatering wells indicates the following:

- The average total well production rate for this monitoring period was approximately 962 gallons per day (gpd). This represents a decrease of about 16.1 percent from the previous monitoring period of 1,147 gpd.
- A replacement dewatering well, W-14, was installed in the fall of 2008 on Bayshore Drive. Due to the installation of this well, production rates in W-4 and W-10 (located downslope on Malibu Road) have been greatly reduced.

2.3.2 Hydrauger Production

A graph of the production rate for all hydraugers is presented on Plate 4. A graph of production rates for all hydraugers is included in Appendix B. Data for the hydraugers indicates the following:

- The average production rate for all hydraugers over the monitoring period is approximately 333 gpd. This represents an increase of approximately 61 percent from the average production rate of 206 gpd for the previous monitoring period.
- This increase in production is most likely attributed to the hydrauger cleaning performed in June 2008.

2.3.3 Total Dewatering Production

A combined graph of the total dewatering rate for all dewatering wells and hydraugers is presented on Plate 4. Total dewatering production data for the hydraugers and wells indicates the following:

- The average total dewatering rate during the monitoring period was approximately 1,295 gpd. This represents a 4.2 percent decrease in the average rate relative to the 1,353 gpd average recorded during the previous monitoring period.

2.4 SLOPE INCLINOMETER MEASUREMENTS

Fugro monitored four slope inclinometers on a quarterly basis to measure subsurface ground deformation through June 2009. Slope inclinometer measurement plots are presented in Appendix C for each monitored inclinometer installation. Two plots for each slope inclinometer are presented. The first plot has a baseline reading from the final round of monitoring in the 2007 to 2008 monitoring year, showing any ground movement within the 2008 to 2009 monitoring year. The second plot has a baseline reading from January or
February 2005, except for SI-1A. SI-1A was installed in August 2006 and has a baseline reading from September 2006. Only readings with validated checksums\(^1\) are presented.

Interpretation of inclinometer data along Malibu Road for SI-1A and SI-4 shows no significant movement during the 2008-2009 monitoring year. There was difficulty obtaining data below 28 feet in SI-2, indicating that SI-2 was "sheared off" in the winter of 2009. However, less than 0.1 inches was recorded during the monitoring period, which is less than the reliable accuracy of the instrument. Therefore, deformation, which made the SI impassable with the probe can, most likely attributed to previous movement, as summarized on Plate C-1.

Inclinometers SI-5 and SI-6 are located on Bayshore Drive, upslope and outside the defined limit of the most recent 1998 movement. No significant movement was observed during this monitoring year in SI-5 or SI-6.

3.0 DEWATERING FACILITY MAINTENANCE

3.1 FACILITY MAINTENANCE

The operating status of each dewatering well and hydrauger was checked monthly. When necessary, repair work was scheduled and undertaken (typically within a matter of a few hours to a few days of identifying a problem). Generally, repairs and maintenance consisted of well pump and electrical repairs, and cleanout of the hydrauger system. The repairs performed are summarized on the following table:

<table>
<thead>
<tr>
<th>Date</th>
<th>Facility</th>
<th>Work Performed</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 21, 2008</td>
<td>Hydraugers</td>
<td>Flushed out conveyance line, vault and power box maintenance, storm drain clearing</td>
</tr>
<tr>
<td>August 21, 2008</td>
<td>Hydraugers</td>
<td>Flushed out conveyance line</td>
</tr>
<tr>
<td>September 23, 2008</td>
<td>Hydraugers</td>
<td>Flushed out conveyance line; vault and power box maintenance</td>
</tr>
<tr>
<td>October 20, 2008</td>
<td>Hydraugers</td>
<td>Flushed out conveyance line</td>
</tr>
<tr>
<td>October 28, 2008</td>
<td>W-11, W-12</td>
<td>Removed flexible tubing used as conveyance line</td>
</tr>
<tr>
<td>December 23, 2008</td>
<td>Dewatering well</td>
<td>Install caps on posts; vault maintenance</td>
</tr>
<tr>
<td>December 23, 2008</td>
<td>W-3, W-5 and W-6</td>
<td>Rust-proofing, abrasion, primer, finish coat</td>
</tr>
<tr>
<td>March 20, 2009</td>
<td>HD-20</td>
<td>Temporary repair to damaged hydrauger</td>
</tr>
</tbody>
</table>

\(^1\) Checksums are a data validation technique for slope inclinometers where the "0" (downslope) and "180" (upslope) readings are summed and the theoretical result should be zero.
3.2 CAPITAL IMPROVEMENT PROJECTS

One replacement dewatering well, W-14, was installed on Bayshore Drive between existing dewatering wells W-11 and W-12 and was completed in October of 2008. The dewatering well is 80 feet in depth and has produced an average of approximately 54 gpd during the monitoring period. A diagram of the well is shown in Appendix D.

A new slope inclinometer is proposed for the 2010-2011 monitoring period to replace SI-2 and SI-3 because they became impassable due to cumulative deformation in 2009 and 2005 respectively.

4.0 SUMMARY AND CONCLUSIONS

4.1 SUMMARY

The status of the Malibu Road Landslide Assessment District can be summarized as follows:

- The 2008-2009 monitoring year had below average rainfall with 11.02 inches recorded in Malibu. Rainfall during the rainfall season was about two-thirds the historical average.
- Groundwater levels in the assessment district area were below normal levels.
- Readings for the five slope inclinometers show no significant movement during the 2008 to 2009 monitoring year, except for limited movement in SI-2 which resulted in the "shearing off" of the inclinometer. A new inclinometer is proposed for 2010-2011 to replace SI-2 and SI-3 on Malibu Road.
- A replacement dewatering well was installed in October 2008 on Bayshore Drive.
- Water conservation is encouraged throughout the Malibu Road area to reduce future groundwater level increases. Control of groundwater levels within the landslide area is critical to maintaining the stability of the landslides. The following are suggested:
 1. Rain Gutters - Installation and Maintenance.
 2. Limit Irrigation.
 3. Use of low-flow toilet and plumbing fixtures.

- Groundwater production from existing dewatering wells and hydraulgers should be expected to gradually decline over time as the efficiency of the wells and hydraulgers decrease due to mineralization and aging of the facilities.
5.0 REFERENCES

SITE LOCATION MAP
Malibu Road Landslide Assessment District
Malibu, California

PLATE 1
MALIBU AREA - MONTHLY AND ANNUAL RAINFALL
Malibu Road Landslide Assessment District
Malibu, California

Average Annual Rainfall
48 Year Average=16.0 in.
DEWATERING GRAPH
Total Output - all Wells and Hydraugers
Malibu Road Landslide Assessment District
Malibu, California
SUMMARY GRAPH
Groundwater Levels, Dewatering, and Rainfall
Malibu Road Landslide Assessment District
Malibu, California

*Graph shows the average of the highest groundwater elevations recorded in each well/piezometer during the monitoring period
MALIBU ROAD - Standpipe Piezometer Information

<table>
<thead>
<tr>
<th>Well Identification</th>
<th>Previous Reference Elevation (8/91)</th>
<th>Updated Reference Elevation (4/00)</th>
<th>Depth (ft.)*</th>
<th>Perforation Interval</th>
<th>Installed By</th>
</tr>
</thead>
<tbody>
<tr>
<td>W-2A</td>
<td>22.6</td>
<td>20.6</td>
<td>9.0</td>
<td>Unknown</td>
<td>LA COUNTY</td>
</tr>
<tr>
<td>W-3A</td>
<td>22.0</td>
<td>20.5</td>
<td>32.5</td>
<td>Unknown</td>
<td>LA COUNTY</td>
</tr>
<tr>
<td>PZ-A</td>
<td>20.0</td>
<td>19.8</td>
<td>17.2</td>
<td>Unknown</td>
<td>LA COUNTY</td>
</tr>
<tr>
<td>PZ-B</td>
<td>20.0</td>
<td>19.1</td>
<td>27.9</td>
<td>Unknown</td>
<td>LA COUNTY</td>
</tr>
<tr>
<td>PZ-C</td>
<td>20.0</td>
<td>19.4</td>
<td>29.7</td>
<td>Unknown</td>
<td>LA COUNTY</td>
</tr>
<tr>
<td>PZ-D</td>
<td>20.0</td>
<td>19.2</td>
<td>24.7</td>
<td>Unknown</td>
<td>LA COUNTY</td>
</tr>
<tr>
<td>PZ-E</td>
<td>20.0</td>
<td>21.4</td>
<td>15.8</td>
<td>Unknown</td>
<td>LA COUNTY</td>
</tr>
<tr>
<td>SI-5*</td>
<td>59.0</td>
<td>59.3</td>
<td>78.0</td>
<td>-19.0 to -14.0</td>
<td>BYA</td>
</tr>
<tr>
<td>SI-6**</td>
<td>57.0</td>
<td>58.0</td>
<td>78.0</td>
<td>-21.0 to -16.0</td>
<td>BYA</td>
</tr>
</tbody>
</table>

Note: + Formerly designated as MR-5
++ Formerly designated as MR-6

MALIBU ROAD - Pneumatic Piezometer Information

<table>
<thead>
<tr>
<th>Well Identification</th>
<th>Previous Reference Elevation (8/91)</th>
<th>Updated Reference Elevation (4/00)</th>
<th>Tip Depth (ft.)</th>
<th>Tip Elev (ft.)</th>
<th>Installed By</th>
</tr>
</thead>
<tbody>
<tr>
<td>SI-1</td>
<td>20.0</td>
<td>20.1</td>
<td>34.6</td>
<td>-14.6</td>
<td>BYA</td>
</tr>
<tr>
<td>SI-2</td>
<td>20.0</td>
<td>19.7</td>
<td>65.1</td>
<td>-45.1</td>
<td>BYA</td>
</tr>
<tr>
<td>SI-3</td>
<td>20.0</td>
<td>20.3</td>
<td>49.8</td>
<td>-29.8</td>
<td>BYA</td>
</tr>
<tr>
<td>SI-4</td>
<td>22.0</td>
<td>18.9</td>
<td>43.9</td>
<td>-21.9</td>
<td>BYA</td>
</tr>
<tr>
<td>SI-5 Tip 1</td>
<td>59.0</td>
<td>59.3</td>
<td>60</td>
<td>-1</td>
<td>BYA</td>
</tr>
<tr>
<td>SI-5 Tip 2</td>
<td>59.0</td>
<td>59.3</td>
<td>40</td>
<td>19</td>
<td>BYA</td>
</tr>
<tr>
<td>SI-6 Tip 1</td>
<td>57.0</td>
<td>58.0</td>
<td>60</td>
<td>-3</td>
<td>BYA</td>
</tr>
<tr>
<td>SI-6 Tip 2</td>
<td>57.0</td>
<td>58.0</td>
<td>40</td>
<td>17</td>
<td>BYA</td>
</tr>
<tr>
<td>SI-1A</td>
<td>20.0</td>
<td>20.0</td>
<td>50</td>
<td></td>
<td>FUGRO</td>
</tr>
</tbody>
</table>

Note: SI-1 thru SI-4 were previously designated MR98-1 thru MR98-4
SI-5 and SI-6 were previously designated MR-5 and MR-6
MALIBU ROAD - SUMMARY OF GROUNDWATER DATA

MALIBU ROAD - Standpipe Piezometers

<table>
<thead>
<tr>
<th>Piezometer I.D.</th>
<th>Mean El.</th>
<th>Mean El.</th>
<th>Mean El.</th>
</tr>
</thead>
<tbody>
<tr>
<td>91-92</td>
<td>6.3</td>
<td>6.3</td>
<td>6.3</td>
</tr>
<tr>
<td>92-93</td>
<td>6.4</td>
<td>6.4</td>
<td>6.4</td>
</tr>
<tr>
<td>93-94</td>
<td>6.5</td>
<td>6.5</td>
<td>6.5</td>
</tr>
<tr>
<td>94-95</td>
<td>6.6</td>
<td>6.6</td>
<td>6.6</td>
</tr>
<tr>
<td>95-96</td>
<td>6.7</td>
<td>6.7</td>
<td>6.7</td>
</tr>
<tr>
<td>96-97</td>
<td>6.8</td>
<td>6.8</td>
<td>6.8</td>
</tr>
<tr>
<td>97-98</td>
<td>6.9</td>
<td>6.9</td>
<td>6.9</td>
</tr>
<tr>
<td>98-99</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
</tr>
<tr>
<td>99-00</td>
<td>7.1</td>
<td>7.1</td>
<td>7.1</td>
</tr>
<tr>
<td>00-01</td>
<td>7.2</td>
<td>7.2</td>
<td>7.2</td>
</tr>
<tr>
<td>01-02</td>
<td>7.3</td>
<td>7.3</td>
<td>7.3</td>
</tr>
<tr>
<td>02-03</td>
<td>7.4</td>
<td>7.4</td>
<td>7.4</td>
</tr>
<tr>
<td>03-04</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
</tr>
<tr>
<td>04-05</td>
<td>7.6</td>
<td>7.6</td>
<td>7.6</td>
</tr>
<tr>
<td>05-06</td>
<td>7.7</td>
<td>7.7</td>
<td>7.7</td>
</tr>
<tr>
<td>06-07</td>
<td>7.8</td>
<td>7.8</td>
<td>7.8</td>
</tr>
<tr>
<td>07-08</td>
<td>7.9</td>
<td>7.9</td>
<td>7.9</td>
</tr>
<tr>
<td>08-09</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
</tr>
</tbody>
</table>

MALIBU ROAD - Pneumatic Piezometers

<table>
<thead>
<tr>
<th>Piezometer I.D.</th>
<th>Mean El.</th>
<th>Mean El.</th>
<th>Mean El.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SI-1</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
</tr>
<tr>
<td>SI-1A</td>
<td>5.9</td>
<td>5.9</td>
<td>5.9</td>
</tr>
<tr>
<td>SI-2</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td>SI-3</td>
<td>6.1</td>
<td>6.1</td>
<td>6.1</td>
</tr>
<tr>
<td>SI-4</td>
<td>6.2</td>
<td>6.2</td>
<td>6.2</td>
</tr>
<tr>
<td>SI-5</td>
<td>6.3</td>
<td>6.3</td>
<td>6.3</td>
</tr>
<tr>
<td>SI-6</td>
<td>6.4</td>
<td>6.4</td>
<td>6.4</td>
</tr>
</tbody>
</table>

MALIBU ROAD - Bayshore Drive - Standpipe Piezometers

<table>
<thead>
<tr>
<th>Piezometer I.D.</th>
<th>Mean El.</th>
<th>Mean El.</th>
<th>Mean El.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SI-5</td>
<td>35.5</td>
<td>35.5</td>
<td>35.5</td>
</tr>
<tr>
<td>SI-6</td>
<td>37.8</td>
<td>37.8</td>
<td>37.8</td>
</tr>
<tr>
<td>SI-7</td>
<td>39.1</td>
<td>39.1</td>
<td>39.1</td>
</tr>
<tr>
<td>SI-8</td>
<td>40.4</td>
<td>40.4</td>
<td>40.4</td>
</tr>
<tr>
<td>SI-9</td>
<td>41.7</td>
<td>41.7</td>
<td>41.7</td>
</tr>
<tr>
<td>SI-10</td>
<td>43.0</td>
<td>43.0</td>
<td>43.0</td>
</tr>
</tbody>
</table>

MALIBU ROAD - Bayshore Drive - Pneumatic Piezometers

<table>
<thead>
<tr>
<th>Piezometer I.D.</th>
<th>Mean El.</th>
<th>Mean El.</th>
<th>Mean El.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SI-5 Tip 1</td>
<td>34.2</td>
<td>34.2</td>
<td>34.2</td>
</tr>
<tr>
<td>SI-5 Tip 2</td>
<td>35.4</td>
<td>35.4</td>
<td>35.4</td>
</tr>
<tr>
<td>SI-6 Tip 1</td>
<td>37.5</td>
<td>37.5</td>
<td>37.5</td>
</tr>
<tr>
<td>SI-6 Tip 2</td>
<td>45.7</td>
<td>45.7</td>
<td>45.7</td>
</tr>
</tbody>
</table>
Malibu Road Landslide Assessment District, City of Malibu
Project No. 3399.004

PLATE A-3

GROUNDWATER HYDROGRAPH
Malibu Road (West End)

*Note: W-3A uncovered in Jan. '99
GROUNDWATER HYDROGRAPH
Bayshore Drive

Note: SI-5 and SI-6 installed Sept. ’98
APPENDIX B
DEWATERING DATA
MALIBU ROAD - Dewatering Well Information

<table>
<thead>
<tr>
<th>Well ID</th>
<th>Well ID</th>
<th>Vault Elevation (ft.)</th>
<th>Bottom Elevation (ft.)</th>
<th>Pump Elevation (ft.)</th>
<th>Pump Size (hp)</th>
<th>2008-2009 Pumping Rate* (gpd)</th>
<th>% of Total Well Production</th>
<th>Installed By</th>
</tr>
</thead>
<tbody>
<tr>
<td>W-3</td>
<td>19.5</td>
<td>-4.0</td>
<td>Unknown</td>
<td>1/2</td>
<td>263</td>
<td>27%</td>
<td>LA Co.</td>
<td></td>
</tr>
<tr>
<td>W-4</td>
<td>20.0</td>
<td>-9.0</td>
<td>Unknown</td>
<td>1/2</td>
<td>130</td>
<td>13%</td>
<td>LA Co.</td>
<td></td>
</tr>
<tr>
<td>W-5</td>
<td>19.0</td>
<td>-9.5</td>
<td>Unknown</td>
<td>1/2</td>
<td>324</td>
<td>33%</td>
<td>LA Co.</td>
<td></td>
</tr>
<tr>
<td>W-6</td>
<td>20.0</td>
<td>-4.5</td>
<td>Unknown</td>
<td>1/2</td>
<td>79</td>
<td>8%</td>
<td>LA Co.</td>
<td></td>
</tr>
<tr>
<td>W-8</td>
<td>27.5</td>
<td>11.0</td>
<td>Unknown</td>
<td>1/2</td>
<td>15</td>
<td>2%</td>
<td>LA Co.</td>
<td></td>
</tr>
<tr>
<td>W-9</td>
<td>20.0</td>
<td>-40.0</td>
<td>-35.0</td>
<td>1/3</td>
<td>7</td>
<td>1%</td>
<td>LA Co.</td>
<td></td>
</tr>
<tr>
<td>W-10</td>
<td>19.0</td>
<td>-40.0</td>
<td>-35.0</td>
<td>1/3</td>
<td>32</td>
<td>3%</td>
<td>LA Co.</td>
<td></td>
</tr>
<tr>
<td>W-11</td>
<td>61.0</td>
<td>1.0</td>
<td>13.0</td>
<td>1/3</td>
<td>33</td>
<td>3%</td>
<td>BYA</td>
<td></td>
</tr>
<tr>
<td>W-12</td>
<td>58.0</td>
<td>-2.0</td>
<td>8.0</td>
<td>1/3</td>
<td>8</td>
<td>1%</td>
<td>BYA</td>
<td></td>
</tr>
<tr>
<td>W-14</td>
<td>60.0</td>
<td>-20.0</td>
<td>1/3</td>
<td>52</td>
<td>5%</td>
<td>FugroWest</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NW-1</td>
<td>12</td>
<td>1%</td>
<td>Homeowner</td>
<td></td>
<td></td>
<td></td>
<td>Homeowner</td>
<td></td>
</tr>
<tr>
<td>NW-2</td>
<td>20</td>
<td>2%</td>
<td>Homeowner</td>
<td></td>
<td></td>
<td></td>
<td>Homeowner</td>
<td></td>
</tr>
<tr>
<td>NW-3</td>
<td>6</td>
<td>1%</td>
<td>Homeowner</td>
<td></td>
<td></td>
<td></td>
<td>Homeowner</td>
<td></td>
</tr>
</tbody>
</table>

*Note: * Average pumping rate during this monitoring period

MALIBU ROAD - Hydrauger Information

<table>
<thead>
<tr>
<th>Hydrauger ID</th>
<th>Installed Length (ft.)</th>
<th>Bearing</th>
<th>Funtional Length** (ft.)</th>
<th>2008-2009 Flow Rate* (gpd)</th>
<th>% of Total Production</th>
<th>Installed By</th>
</tr>
</thead>
<tbody>
<tr>
<td>HD-1</td>
<td>Unknown</td>
<td>N05E</td>
<td>74</td>
<td>0.0</td>
<td>0%</td>
<td>LA Co.</td>
</tr>
<tr>
<td>HD-2</td>
<td>Unknown</td>
<td>N21E</td>
<td>34</td>
<td>0.0</td>
<td>0%</td>
<td>LA Co.</td>
</tr>
<tr>
<td>HD-3</td>
<td>Unknown</td>
<td>N06E</td>
<td>13</td>
<td>0.0</td>
<td>0%</td>
<td>LA Co.</td>
</tr>
<tr>
<td>HD-4</td>
<td>Unknown</td>
<td>N29E</td>
<td>53</td>
<td>0.0</td>
<td>0%</td>
<td>LA Co.</td>
</tr>
<tr>
<td>HD-5</td>
<td>Unknown</td>
<td>N13E</td>
<td>41</td>
<td>11.6</td>
<td>4%</td>
<td>LA Co.</td>
</tr>
<tr>
<td>HD-6</td>
<td>Unknown</td>
<td>N08W</td>
<td>55</td>
<td>0.0</td>
<td>0%</td>
<td>LA Co.</td>
</tr>
<tr>
<td>HD-7</td>
<td>Unknown</td>
<td>N26E</td>
<td>87</td>
<td>3.1</td>
<td>1%</td>
<td>LA Co.</td>
</tr>
<tr>
<td>HD-8</td>
<td>Unknown</td>
<td>N19E</td>
<td>92</td>
<td>0.0</td>
<td>0%</td>
<td>LA Co.</td>
</tr>
<tr>
<td>HD-9</td>
<td>Unknown</td>
<td>N34E</td>
<td>76</td>
<td>0.0</td>
<td>0%</td>
<td>LA Co.</td>
</tr>
<tr>
<td>HD-10</td>
<td>Unknown</td>
<td>N19E</td>
<td>55</td>
<td>0.0</td>
<td>0%</td>
<td>LA Co.</td>
</tr>
<tr>
<td>HD-11</td>
<td>Unknown</td>
<td>N11E</td>
<td>78</td>
<td>0.7</td>
<td>0%</td>
<td>LA Co.</td>
</tr>
<tr>
<td>HD-12</td>
<td>Unknown</td>
<td>N08E</td>
<td>70</td>
<td>0.0</td>
<td>0%</td>
<td>LA Co.</td>
</tr>
<tr>
<td>HD-13</td>
<td>Unknown</td>
<td>N09E</td>
<td>79</td>
<td>0.0</td>
<td>0%</td>
<td>LA Co.</td>
</tr>
<tr>
<td>HD-14</td>
<td>Unknown</td>
<td>N08E</td>
<td>80</td>
<td>0.0</td>
<td>0%</td>
<td>LA Co.</td>
</tr>
<tr>
<td>HD-15</td>
<td>Unknown</td>
<td>N14E</td>
<td>82</td>
<td>0.0</td>
<td>0%</td>
<td>LA Co.</td>
</tr>
<tr>
<td>HD-16</td>
<td>Unknown</td>
<td>N15E</td>
<td>69</td>
<td>0.0</td>
<td>0%</td>
<td>LA Co.</td>
</tr>
<tr>
<td>HD-17</td>
<td>150</td>
<td>N15E</td>
<td>150</td>
<td>59.4</td>
<td>18%</td>
<td>BYA</td>
</tr>
<tr>
<td>HD-18</td>
<td>150</td>
<td>N18E</td>
<td>150</td>
<td>67.2</td>
<td>21%</td>
<td>BYA</td>
</tr>
<tr>
<td>HD-19</td>
<td>150</td>
<td>N10E</td>
<td>150</td>
<td>0.0</td>
<td>0%</td>
<td>BYA</td>
</tr>
<tr>
<td>HD-20</td>
<td>150</td>
<td>N09W</td>
<td>150</td>
<td>98.2</td>
<td>30%</td>
<td>BYA</td>
</tr>
<tr>
<td>HD-21</td>
<td>150</td>
<td>N22E</td>
<td>150</td>
<td>11.7</td>
<td>4%</td>
<td>BYA</td>
</tr>
<tr>
<td>HD-22</td>
<td>180</td>
<td>N13E</td>
<td>180</td>
<td>0.0</td>
<td>0%</td>
<td>FugroWest</td>
</tr>
<tr>
<td>HD-23</td>
<td>160</td>
<td>N01E</td>
<td>160</td>
<td>74.3</td>
<td>23%</td>
<td>FugroWest</td>
</tr>
</tbody>
</table>

*Note: * Average flow rate during this monitoring period

** Measured on 4/1/98 (except HD-22 and HD-23 installed 1/22/05)
DEWATERING WELL GRAPH
Discharge Rates for Malibu Road Dewatering Wells
(Same Chart at Different Scales)
Dewatering Well Graph

Discharge Rates for Bayshore Drive Dewatering Wells

(Same Chart at Different Scales)
APPENDIX C
SLOPE INCLINOMETER DATA
MALIBU ROAD - Slope Inclinometer Interpretation Summary

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous Ref. Elev. (8/91)</td>
<td>20.0</td>
<td>20.0</td>
<td>20.0</td>
<td>20.0</td>
<td>22.0</td>
<td>59.0</td>
<td>57.0</td>
</tr>
<tr>
<td>Updated Ref. Elev. (4/00)</td>
<td>20.1</td>
<td>20.0</td>
<td>19.7</td>
<td>20.3</td>
<td>18.9</td>
<td>59.3</td>
<td>58.0</td>
</tr>
<tr>
<td>Depth (ft.)</td>
<td>34</td>
<td>50</td>
<td>64</td>
<td>49</td>
<td>43</td>
<td>78</td>
<td>78</td>
</tr>
<tr>
<td>Install Date</td>
<td>Apr-98</td>
<td>Aug-08</td>
<td>Apr-98</td>
<td>Apr-98</td>
<td>Apr-98</td>
<td>Apr-98</td>
<td>Apr-98</td>
</tr>
<tr>
<td>A+ Axis orientation (deg)</td>
<td>184</td>
<td>201</td>
<td>190</td>
<td>204</td>
<td>176</td>
<td>186</td>
<td></td>
</tr>
<tr>
<td>Casing</td>
<td>RST</td>
<td>SI</td>
<td>RST</td>
<td>RST</td>
<td>SI</td>
<td>SI</td>
<td></td>
</tr>
<tr>
<td>Installer</td>
<td>BYA</td>
<td>FWI</td>
<td>BYA</td>
<td>BYA</td>
<td>BYA</td>
<td>BYA</td>
<td></td>
</tr>
<tr>
<td>Interpreted Rupture Depth (ft)</td>
<td>30-32</td>
<td>30-32</td>
<td>28-32</td>
<td>35-38</td>
<td>32-34</td>
<td>unknown</td>
<td>unknown</td>
</tr>
<tr>
<td>Reading Interval</td>
<td>Quarterly</td>
<td>Quarterly</td>
<td>Quarterly</td>
<td>Quarterly</td>
<td>Quarterly</td>
<td>Quarterly</td>
<td>Quarterly</td>
</tr>
</tbody>
</table>

Interpretation Movement (inches)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>--</td>
<td><0.1 *</td>
<td>NR</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2007-2008</td>
<td>NR</td>
<td>--</td>
<td>--</td>
<td>NR</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2006-2007</td>
<td>NR</td>
<td>N/A</td>
<td>--</td>
<td>NR</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2004-2005</td>
<td>0.5 (3)</td>
<td>NA</td>
<td>0.4</td>
<td>>1(3)</td>
<td>0.4 to 0.5</td>
<td>~0.2 *</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2003-2004 (1)</td>
<td>--</td>
<td>NA</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2002-2003</td>
<td>~0.2 *</td>
<td>NA</td>
<td>~0.1 *</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2001-2002</td>
<td>--</td>
<td>NA</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2000-2001</td>
<td>0.5</td>
<td>NA</td>
<td>0.4</td>
<td>0.3</td>
<td>0.6</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>1999-2000</td>
<td>--</td>
<td>NA</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>1998-1999</td>
<td>3.1</td>
<td>N/A</td>
<td>1.5</td>
<td>4.1</td>
<td>1.3 (2)</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

NOTES:

(1) Readings only through March 2004
(2) Readings are through 2000, although majority of movement occurred in 1998
(3) Inclinometer sheared off in January, 2005, no readings below slide plane
(4) Inclinometer sheared off winter of 2009, no readings below slide plane

NR No readings

~ 0.05 * Indicated displacement is less than reliable instrument accuracy. Interpreted movement is theoretical.
LEGEND

Initial 13 Feb 2008*
8 May 2008*
10 Nov 2008*
2 Apr 2009*
22 Jun 2009*

Sets marked * include zero shift and/or rotation corrections.

Depth of Readings = 48
Malibu Road Landslide Assessment District, City of Malibu
Project No. 3399.004

Fugro West, Inc. - Ventura, CA

LEGEND

Initial 5 Sep 2006
27 Nov 2006*
1 Feb 2007*
7 May 2007*
7 Aug 2007*
6 Nov 2007*
13 Feb 2008*
8 May 2008*
10 Nov 2008*
2 Apr 2009*
22 Jun 2009*

Sets marked * include zero shift and/or rotation corrections.

Depth of Readings = 48

Malibu Road Landslide Assessment District, City of Malibu
Project No. 3399.004

PLATE C-2b
MALIBU ROAD, Inclinometer SI-2

Depth of readings = 66 ft

Azimuth = 201

Sets marked * include zero shift and/or rotation corrections.
Malibu Road Landslide Assessment District, City of Malibu
Project No. 3399.004

Fugro West, Inc. - Ventura, CA

Cumulative Deflection
Direction A

Incremental Deflection
Direction A

Malibu Road, Inclinometer SI-2

Depth of readings = 66 ft

Azimuth = 201

Sets marked * include zero shift and/or rotation corrections.

O:\MANAGE~1\3399_M\133E1A1~1\03_DATA\SIDATA~1\MALRD\SI-2.GTL

PLATE C-3b
Malibu Road Landslide Assessment District, City of Malibu
Project No. 3399.004

Fugro West, Inc. - Ventura, CA

LEGEND

Initial 8 May 2008*
10 Nov 2008*
2 Apr 2009*
5 Jun 2009*

Cumulative Deflection
Direction A

Incremental Deflection
Direction A

MALIBU ROAD, Inclinometer SI-4

Depth of readings = 41 ft
Azimuth = 204

Sets marked * include zero shift and/or rotation corrections.
Fugro West, Inc. - Ventura, CA

MALIBU ROAD, Inclinometer SI-4

Depth of readings = 41 ft

Azimuth = 204

Sets marked * include zero shift and/or rotation corrections.
Malibu Road Landslide Assessment District, City of Malibu
Project No. 3399.004

Fugro West, Inc. - Ventura, CA

Ref. Elevation
59.3 ft

Cumulative Deflection
Direction A

Incremental Deflection
Direction A

MALIBU ROAD, Inclinometer SI-5

Depth of readings = 78 ft
Azimuth = 176

Sets marked * include zero shift and/or rotation corrections.
MALIBU ROAD, Inclinometer SI-5

Depth of readings = 78 ft

Azimuth = 176

Sets marked * include zero shift and/or rotation corrections.
Fugro West, Inc. - Ventura, CA

LEGEND

Initial 8 May 2008*
10 Nov 2008*
2 Apr 2009*
5 Jun 2009*

Cumulative Deflection
Direction A

Incremental Deflection
Direction A

MALIBU ROAD, Inclinometer SI-5

Depth of readings = 78 ft

Azimuth = 176

Sets marked * include zero shift and/or rotation corrections.

O:\MANAGE-1\3399_M-1\33E1A1-1\03_DATA\SIDATA-1\MALRD\SI-5.GTL

PLATE C-6a
MALIBU ROAD, Inclinometer SI-5

Depth of readings = 78 ft

Azimuth = 176

Sets marked * include zero shift and/or rotation corrections.
APPENDIX D
REPLACEMENT DEWATERING WELL
Well diagram is schematic only: Not to Scale

WELLHEAD SURFACE COMPLETION:
Material/Type: Christy® traffic-rated vault
Size: 17in x 30in x 18in vault

SURFACE SEAL:
Material: Class I/II Portland Cement with 5% Bentonite

BRIDGE SEAL:
Material: Bentonite Pellets
Length: 2 foot

FILTER PACK:
Material: #3 Monterey Silica Sand
Interval: 10 - 80 feet

WELL CASING:
Material: SCH 80 or SDR 17 PVC
Diameter: 6 inch
Length: 10 feet
Joint: Flush thread

WELL SCREEN:
Material: SCH 80 or SDR 17 PVC
Diameter: 6 inch
Slot Size: 0.040 inch
Length: 70 feet
Joint: Flush thread

BOTTOM CAP:
Type: 6 in. PVC slip - cement weld

BACKFILL:
Material: n.a.
Interval:

DROP PIPE:
Type: 1 in. dia Certalock PVC

PUMP:
Type:
Intake Depth: ft.

AIRLINE:
Type: ¼ in. HPDE Tube
Bottom Depth: 45 ft.