ANNUAL REPORT
JULY 2009 THROUGH JUNE 2010
MALIBU ROAD LANDSLIDE ASSESSMENT DISTRICT
MALIBU, CALIFORNIA

Prepared for:
CITY OF MALIBU

March 2011
Fugro Project No. 04.B3399004
March 11, 2011
Project No. 3399.004

City of Malibu
23815 Stuart Ranch Road
Malibu, California 90265

Attention: Mr. Rob Duboux

Subject: Annual Report, July 2009 through June 2010, Malibu Road Landslide Assessment District

Dear Mr. Duboux,

Fugro is pleased to present this annual report for the Malibu Road Landslide Assessment District. This report summarizes the monitoring and maintenance activities completed during the period of July 2009 through June 2010.

Fugro appreciates the opportunity to be of service to the City of Malibu and the District homeowners. Please contact us at (805) 650-7000, if you have any questions regarding this report.

Sincerely,

FUGRO CONSULTANTS, INC.

Alexis M. Spencer
Project Engineer/Project Manager

Christopher Dean, C.E.G.
Senior Engineering Geologist

Lauren J. Doyel, P.E.
Associate Engineer

Copies Submitted:
(2) Addressee
(1) City of Malibu - Geology & Soils Staff
CONTENTS - CONTINUED

APPENDICES

APPENDIX A GROUNDWATER DATA

Piezometer Information .. Plate A-1
Summary of Groundwater Data.. Plate A-2
Groundwater Hydrograph - Malibu Road (West End) Plate A-3
Groundwater Hydrograph - Malibu Road (East End) Plate A-4
Groundwater Hydrograph - Bayshore Drive Plate A-5

APPENDIX B DEWATERING DATA

Dewatering Well / Piezometer Information Plate B-1
Dewatering Well Graph .. Plate B-2
Hydrauger Graph .. Plate B-3

APPENDIX C SLOPE INCLINOMETER DATA

Summary of Slope Inclinometers .. Plate C-1
Slope Inclinometer Interpretation Summary - SI-1 to SI-6 Plates C-2 to C-6
1.0 INTRODUCTION

1.1 AUTHORIZATION

Fugro Consultants, Inc. (Fugro), performed the work summarized in this report in accordance with our contract with the City of Malibu (City) and consistent with the cost estimate document "Exhibit A-FY 2009-2010 Maintenance Cost Estimate" presented in the Annual Assessment Report (Taussig, 2009).

1.2 BACKGROUND

The Malibu Road Landslide Assessment District was established in 1981 by the County of Los Angeles following the activation of a landslide on the west end of Malibu Road in 1978 (Plates 1 and 2). The assessment district provides permanent funding to maintain and monitor dewatering facilities with the purpose of stabilizing the landslide to the extent feasible using dewatering methods only. The County administered the assessment district until 1991 when the City incorporated. Since then, the City has administered the assessment district, utilizing consultants to maintain and monitor the district facilities.

1.3 SCOPE OF WORK

This report summarizes the monitoring and maintenance of the geotechnical instrumentation and dewatering facilities within the Malibu Road Assessment District for the period between July 1, 2009, and June 30, 2010 (hereafter, the "monitoring period").

Routine data collected and reviewed during this monitoring period included the following:

- Annual rainfall data recorded by a local rain gauge operated by the County of Los Angeles, Department of Public Works - Water Resources Division;
- Monthly groundwater level measurements from nine standpipes and eight pneumatic piezometers;
- Monthly dewatering production readings from nine dewatering wells owned by the Assessment District and three wells owned by a private homeowner on Bayshore Drive;
- Monthly dewatering production readings from 23 horizontal drains (hydraulicers);
- Quarterly ground deformation measurements from five slope inclinometers; and
- Periodic maintenance of dewatering and monitoring facilities.

The operating condition of the instrumentation and dewatering facilities was checked during each field monitoring/observation visit and by evaluating preliminary data in the office as it was received. Maintenance was performed as needed based upon the field observations and preliminary data evaluation.

The scope of services includes monitoring and maintenance of the assessment district facilities. The services provided on an annual basis for the assessment district do not include an evaluation of the stability of the landslide.
1.4 REPORT ORGANIZATION

This report summarizes the monitoring data collected during the monitoring period and presents conclusions regarding the annual monitoring results. An outline of the report is presented as the Table of Contents. The location of the assessment district is illustrated on Plate 1 - Site Location Map. Locations of the geotechnical instrumentation are shown on Plate 2 - Assessment District Map. Tabulated and graphic summaries of monitoring data are presented in Appendix A through Appendix C as indicated in the Table of Contents.

1.5 REPORT AVAILABILITY

The annual assessment district reports are available for review in Malibu at City Hall. Reports may also be viewed on the City’s website at http://www.ci.malibu.ca.us. Electronic versions on CD (pdf format) are also available for purchase from the City.

2.0 MONITORING

2.1 RAINFALL DATA

Rainfall totals were tabulated based on recorded values from the Los Angeles County Rainfall Station 1239 - located at Big Rock Mesa. A combination graph of historical and annual cumulative monthly rainfall totals is shown on Plate 3 - Rainfall Graph.

Rainfall data indicate that approximately 17.97 inches of precipitation fell during the monitoring period from July 2009 through June 2010. The average rainfall total from 1968 to 2010 in the Malibu area for the period July through June is approximately 16.05 inches.

Rainfall data is usually analyzed in terms of the annual "rain season" that covers the time period October 1 through September 30. Rainfall for October 1, 2009, through June 30, 2010, was approximately 17.97 inches. This is approximately 107 percent of the average rainfall total of 16.8 inches for the rain seasons of 1968 through 2010.

2.2 GROUNDWATER MONITORING

The groundwater level data collected during this monitoring period are summarized in Appendix A. Groundwater levels fluctuate throughout the year and from year to year in response to natural and man-made influences. The primary natural influence is varying precipitation. Man-made influences include:

- Recharge from septic systems;
- Recharge from irrigation;
- Alterations to surface drainage by grading, landscaping, storm drains, and rain gutters;
- Accidental water discharges from leaking utilities (water, irrigation, sewer, storm drain), and swimming pools; and
- Dewatering activities including pumping dewatering wells and hydraulics.
Typically, groundwater levels rise relatively quickly following significant rainfall and gradually lower after the wet season ends. Groundwater levels measured in standpipe piezometers (wells) and pneumatic piezometers are depicted on Plates A1 through A5 in Appendix A. Groundwater levels at Malibu Road typically peak around late March to mid-April and gradually decline through late September to November.

2.2.1 Standpipe Piezometers

Nine standpipe piezometers (W-2A, W-3A, PZ-A, PZ-B, PZ-C, PZ-D, PZ-E, SI-5 and SI-6) were measured regularly over the monitoring period. Slope inclinometers/piezometers SI-5 and SI-6 were installed in 1998 along Bayshore Drive. Los Angeles County installed the other piezometers at earlier dates. The locations of the standpipe piezometers are depicted on Plate 2 - Assessment District Map, and groundwater hydrographs are presented in Appendix A.

2.2.2 Pneumatic Piezometers

Inclinometers installed within the assessment district after 1997 were typically outfitted with one or two pneumatic piezometer sensors. Nine sensors were measured regularly over the monitoring period; one piezometer was added (SI-1A) in August 2006. Each sensor records groundwater elevations by measuring differential air pressure between the instrument sensor and groundwater surface across a flexible bladder. The locations of the piezometers are depicted in Plate 2, and hydrographs are presented in Appendix A.

2.2.3 Groundwater Level Discussion

The groundwater data were evaluated by reviewing changes that occurred during the current monitoring period as well as changes in groundwater levels over extended periods. To analyze trends in seasonal groundwater fluctuations, the average (mean) annual and highest annual recorded groundwater elevation for each piezometer was calculated (Appendix A, Plate A-2).

Groundwater levels rose significantly following record rainfall in the winter of 2004 to 2005. Since about April 2005, groundwater levels declined and are now lower than average levels for the period 1991 through 2010, though groundwater increased during this monitoring year.

The average and highest annual groundwater levels are indicated below:

<table>
<thead>
<tr>
<th>Location</th>
<th>Average Groundwater El. 2009-2010</th>
<th>Change vs. Prior Year Average</th>
<th>Peak Groundwater El. 2009-2010</th>
<th>Change vs. Prior Year Peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malibu Road</td>
<td>7.5</td>
<td>+0.6</td>
<td>8.9</td>
<td>+1.4</td>
</tr>
<tr>
<td>Bay Shore Drive</td>
<td>23.9</td>
<td>-1.9</td>
<td>25.1</td>
<td>-1.3</td>
</tr>
</tbody>
</table>

All units are in feet
2.3 DEWATERING PRODUCTION

2.3.1 Dewatering Well Production

A graph of the production rate for all dewatering wells is presented on Plate 4. Graphs showing production rates of individual wells are provided in Appendix B. Production data for the dewatering wells indicates the following:

- The average total well production rate for this monitoring period was approximately 1,018 gallons per day (gpd). This represents an increase of about 5 percent from the previous monitoring period of 962 gpd.
- A replacement dewatering well, W-14, was installed in the fall of 2008 on Bayshore Drive. Due to the installation of this well, production rates in W-4 and W-10 (located downslope on Malibu Road) have been greatly reduced from prior years.

2.3.2 Hydrauger Production

A graph of the production rate for all hydraugers is presented on Plate 4. A graph of production rates for all hydraugers is included in Appendix B. Data for the hydraugers indicates the following:

- The average production rate for all hydraugers over the monitoring period is approximately 556 gpd. This represents an increase of approximately 67 percent from the average production rate of 333 gpd for the previous monitoring period.

2.3.3 Total Dewatering Production

A combined graph of the total dewatering rate for all dewatering wells and hydraugers is presented on Plate 4. Total dewatering production data for the hydraugers and wells indicates the following:

- The average total dewatering rate during the monitoring period was approximately 1,574 gpd. This represents a 21.5 percent increase in the average rate relative to the 1,295 gpd average recorded during the previous monitoring period.

2.4 SLOPE INCLINOMETER MEASUREMENTS

Fugro monitored four slope inclinometers on a quarterly basis to measure subsurface ground deformation through June 2010. Slope inclinometer measurement plots are presented in Appendix C for each monitored inclinometer installation. Two plots for each slope inclinometer are presented. The first plot has a baseline reading from the final round of monitoring in the 2008 to 2009 monitoring year and depicts any ground movement recorded within the 2009 to 2010 monitoring year. The second plot has a baseline reading from January or February 2005, except for SI-1A. SI-1A was installed in August 2006 and has a baseline
reading from September 2006 to replace SI-1 and SI-3. Only readings with validated checksums\(^1\) are presented.

Interpretation of inclinometer data along Malibu Road for SI-1A and SI-4 shows no significant movement during the 2009-2010 monitoring year. There was difficulty obtaining data below 28 feet in SI-2, indicating that SI-2 was "sheared off" in the winter of 2009. A replacement inclinometer was installed during the fall of 2010.

Inclinometers SI-5 and SI-6 are located on Bayshore Drive, upslope and outside the defined limit of the most recent 1998 movement. No significant movement was observed during this monitoring year in SI-5 or SI-6.

3.0 DEWATERING FACILITY MAINTENANCE

3.1 FACILITY MAINTENANCE

The operating status of each dewatering well and hydrauger was checked monthly. When necessary, repair work was scheduled and undertaken (typically within a matter of a few hours to a few days of identifying a problem). Generally, repairs and maintenance consisted of well pump and electrical repairs, and cleanout of the hydrauger system. The repairs performed are summarized on the following table:

Table 2. Maintenance Activities

<table>
<thead>
<tr>
<th>Date</th>
<th>Facility</th>
<th>Work Performed</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 9, 2009</td>
<td>Hydraugers</td>
<td>Repairs to HD-20, HD-5, HD-9</td>
</tr>
<tr>
<td>September 18, 2009</td>
<td>Hydraugers</td>
<td>Temporary repair to reconnect line west of HD-15</td>
</tr>
<tr>
<td>January 6, 2010</td>
<td>Hydraugers</td>
<td>Cut through western conveyance line to clean; blockage located just east of HD-5. Temporarily connect ends of sawed pipe</td>
</tr>
<tr>
<td>January 8, 2010</td>
<td>Hydraugers</td>
<td>Clogged conveyance line east of western storm drain; blockage located far in.</td>
</tr>
<tr>
<td>January 18, 2010</td>
<td>Hydraugers</td>
<td>Clear clogged conveyance line east of western storm drain</td>
</tr>
<tr>
<td>January 19, 2010</td>
<td>Hydraugers</td>
<td>Clear clogged conveyance line east of western storm drain</td>
</tr>
<tr>
<td>January 29, 2010</td>
<td>Hydraugers</td>
<td>Repair to clogged conveyance line from HD-17</td>
</tr>
<tr>
<td>March 20, 2009</td>
<td>HD-20</td>
<td>Temporary repair to damaged hydrauger</td>
</tr>
</tbody>
</table>

3.2 CAPITAL IMPROVEMENT PROJECTS

No new or replacement facilities were installed during the 2009-2010 monitoring year. A replacement inclinometer for SI-2 was installed during the first quarter of the 2010-2011 monitoring year and will be discussed in next year’s monitoring report. This inclinometer

\(^1\)Checksums are a data validation technique for slope inclinometers where the "0" (downslope) and "180" (upslope) readings are summed and the theoretical result should be zero.
replaces SI-2 and SI-3 because they became impassable due to cumulative deformation in 2009 and 2005 respectively.

4.0 SUMMARY AND CONCLUSIONS

4.1 SUMMARY

The status of the Malibu Road Landslide Assessment District can be summarized as follows:

- The 2009-2010 monitoring year had above average rainfall with 17.97 inches recorded in Malibu. Rainfall during the rainfall season was slightly above the historical average.

- Groundwater levels in the assessment district area were generally below normal levels.

- Readings for the four slope inclinometers show no significant movement during the 2009 to 2010 monitoring year. A new inclinometer is proposed for 2010-2011 to replace SI-2 and SI-3 on Malibu Road; this inclinometer was installed in the first quarter of the 2010-2011 monitoring period.

- Water conservation is encouraged throughout the Malibu Road area to reduce future groundwater level increases. Control of ground water levels within the landslide area is critical to maintaining the stability of the landslides. The following are suggested:
 1. Rain Gutters - Installation and Maintenance to direct runoff to a contained system.
 2. Limit Irrigation.
 3. Use of low-flow toilet and plumbing fixtures to reduce inflow to onsite wastewater treatment systems.

- Groundwater production from existing dewatering wells and hydraugers should be expected to gradually decline over time as the efficiency of the wells and hydraugers decrease due to mineralization and aging of the facilities.

- Repairs and maintenance on existing facilities will be performed throughout the year, as necessary, to fix old and broken facilities, and improve the efficiency of the wells and hydraugers.
5.0 REFERENCES

PLATES
SITE LOCATION MAP
Malibu Road Landslide Assessment District
Malibu, California

PLATE 1
Graph shows the average of the highest groundwater elevations recorded in each well/piezometer during the monitoring period.

SUMMARY GRAPH
Groundwater Levels, Dewatering, & Rainfall
Malibu Road Landslide Assessment District
Malibu, California
APPENDIX A
GROUNDWATER DATA
MALIBU ROAD - Standpipe Piezometer Information

<table>
<thead>
<tr>
<th>Well Identification</th>
<th>Previous Reference Elevation (8/91)</th>
<th>Updated Reference Elevation (4/00)</th>
<th>Depth (ft.)*</th>
<th>Perforation Interval</th>
<th>Installed By</th>
</tr>
</thead>
<tbody>
<tr>
<td>W-2A</td>
<td>22.6</td>
<td>20.6</td>
<td>9.0</td>
<td>Unknown</td>
<td>LA COUNTY</td>
</tr>
<tr>
<td>W-3A</td>
<td>22.0</td>
<td>20.5</td>
<td>32.5</td>
<td>Unknown</td>
<td>LA COUNTY</td>
</tr>
<tr>
<td>PZ-A</td>
<td>20.0</td>
<td>19.8</td>
<td>17.2</td>
<td>Unknown</td>
<td>LA COUNTY</td>
</tr>
<tr>
<td>PZ-B</td>
<td>20.0</td>
<td>19.1</td>
<td>27.9</td>
<td>Unknown</td>
<td>LA COUNTY</td>
</tr>
<tr>
<td>PZ-C</td>
<td>20.0</td>
<td>19.4</td>
<td>29.7</td>
<td>Unknown</td>
<td>LA COUNTY</td>
</tr>
<tr>
<td>PZ-D</td>
<td>20.0</td>
<td>19.2</td>
<td>24.7</td>
<td>Unknown</td>
<td>LA COUNTY</td>
</tr>
<tr>
<td>PZ-E</td>
<td>20.0</td>
<td>21.4</td>
<td>15.8</td>
<td>Unknown</td>
<td>LA COUNTY</td>
</tr>
<tr>
<td>SI-5*</td>
<td>59.0</td>
<td>59.3</td>
<td>78.0</td>
<td>-19.0 to -14.0</td>
<td>BYA</td>
</tr>
<tr>
<td>SI-6**</td>
<td>57.0</td>
<td>58.0</td>
<td>78.0</td>
<td>-21.0 to -16.0</td>
<td>BYA</td>
</tr>
</tbody>
</table>

*Note: + Formerly designated as MR-5
++ Formerly designated as MR-6

MALIBU ROAD - Pneumatic Piezometer Information

<table>
<thead>
<tr>
<th>Well Identification</th>
<th>Previous Reference Elevation (8/91)</th>
<th>Updated Reference Elevation (4/00)</th>
<th>Tip Depth (ft.)</th>
<th>Tip Elev (ft.)</th>
<th>Installed By</th>
</tr>
</thead>
<tbody>
<tr>
<td>SI-1</td>
<td>20.0</td>
<td>20.1</td>
<td>34.6</td>
<td>-14.6</td>
<td>BYA</td>
</tr>
<tr>
<td>SI-2</td>
<td>20.0</td>
<td>19.7</td>
<td>65.1</td>
<td>-45.1</td>
<td>BYA</td>
</tr>
<tr>
<td>SI-3</td>
<td>20.0</td>
<td>20.3</td>
<td>49.8</td>
<td>-29.8</td>
<td>BYA</td>
</tr>
<tr>
<td>SI-4</td>
<td>22.0</td>
<td>18.9</td>
<td>43.9</td>
<td>-21.9</td>
<td>BYA</td>
</tr>
<tr>
<td>SI-5 Tip 1</td>
<td>59.0</td>
<td>59.3</td>
<td>60</td>
<td>-1</td>
<td>BYA</td>
</tr>
<tr>
<td>SI-5 Tip 2</td>
<td>59.0</td>
<td>59.3</td>
<td>40</td>
<td>19</td>
<td>BYA</td>
</tr>
<tr>
<td>SI-6 Tip 1</td>
<td>57.0</td>
<td>58.0</td>
<td>60</td>
<td>-3</td>
<td>BYA</td>
</tr>
<tr>
<td>SI-6 Tip 2</td>
<td>57.0</td>
<td>58.0</td>
<td>40</td>
<td>17</td>
<td>BYA</td>
</tr>
<tr>
<td>SI-1A</td>
<td>20.0</td>
<td>20.0</td>
<td>50</td>
<td></td>
<td>FUGRO</td>
</tr>
</tbody>
</table>

*Note: SI-1 thru SI-4 were previously designated MR98-1 thru MR98-4
SI-5 and SI-6 were previously designated MR-5 and MR-6
MALIBU ROAD - SUMMARY OF GROUNDWATER DATA

MALIBU ROAD - Standpipe Piezometers

<table>
<thead>
<tr>
<th>Piezometer I.D.</th>
<th>91-92</th>
<th>92-93</th>
<th>93-94</th>
<th>94-95</th>
<th>95-96</th>
<th>96-97</th>
<th>97-98</th>
<th>98-99</th>
<th>00-01</th>
<th>01-02</th>
<th>02-03</th>
<th>03-04</th>
<th>04-05</th>
<th>05-06</th>
<th>06-07</th>
<th>07-08</th>
<th>08-09</th>
<th>09-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean El.</td>
<td>91.0</td>
<td>91.3</td>
<td>91.5</td>
<td>91.7</td>
<td>91.8</td>
<td>91.9</td>
<td>92.0</td>
<td>92.1</td>
<td>92.2</td>
<td>92.3</td>
<td>92.4</td>
<td>92.5</td>
<td>92.6</td>
<td>92.7</td>
<td>92.8</td>
<td>92.9</td>
<td>93.0</td>
<td>93.1</td>
</tr>
<tr>
<td>Highest El.</td>
<td>91.7</td>
<td>91.9</td>
<td>92.1</td>
<td>92.3</td>
<td>92.4</td>
<td>92.5</td>
<td>92.6</td>
<td>92.7</td>
<td>92.8</td>
<td>92.9</td>
<td>93.0</td>
<td>93.1</td>
<td>93.2</td>
<td>93.3</td>
<td>93.4</td>
<td>93.5</td>
<td>93.6</td>
<td>93.7</td>
</tr>
</tbody>
</table>

MALIBU ROAD - Pneumatic Piezometers

<table>
<thead>
<tr>
<th>Piezometer I.D.</th>
<th>91-92</th>
<th>92-93</th>
<th>93-94</th>
<th>94-95</th>
<th>95-96</th>
<th>96-97</th>
<th>97-98</th>
<th>98-99</th>
<th>00-01</th>
<th>01-02</th>
<th>02-03</th>
<th>03-04</th>
<th>04-05</th>
<th>05-06</th>
<th>06-07</th>
<th>07-08</th>
<th>08-09</th>
<th>09-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean El.</td>
<td>91.0</td>
<td>91.3</td>
<td>91.5</td>
<td>91.7</td>
<td>91.8</td>
<td>91.9</td>
<td>92.0</td>
<td>92.1</td>
<td>92.2</td>
<td>92.3</td>
<td>92.4</td>
<td>92.5</td>
<td>92.6</td>
<td>92.7</td>
<td>92.8</td>
<td>92.9</td>
<td>93.0</td>
<td>93.1</td>
</tr>
<tr>
<td>Highest El.</td>
<td>91.7</td>
<td>91.9</td>
<td>92.1</td>
<td>92.3</td>
<td>92.4</td>
<td>92.5</td>
<td>92.6</td>
<td>92.7</td>
<td>92.8</td>
<td>92.9</td>
<td>93.0</td>
<td>93.1</td>
<td>93.2</td>
<td>93.3</td>
<td>93.4</td>
<td>93.5</td>
<td>93.6</td>
<td>93.7</td>
</tr>
</tbody>
</table>
GROUNDWATER HYDROGRAPH

Malibu Road (West End)

*Note: W-3A uncovered in Jan. '99
GROUNDWATER HYDROGRAPH
Malibu Road (East End)

Observation Date

Water Level Elevation (ft.) (amsc)

SI-2 (Pneumatic)
SI-4 (Pneumatic)
PZ-D (Standpipe)
PZ-E (Standpipe)
SI-1A (Pneumatic)

*Note: SI-1 thru SI-4 installed March '98.
SI-1 and SI-3 not plotted. Water level below piezometer tip.

Malibu Road Landslide Assessment District, City of Malibu
Project No. 3399.004
APPENDIX B
DEWATERING DATA
MALIBU ROAD - Dewatering Well Information

<table>
<thead>
<tr>
<th>Well</th>
<th>ID</th>
<th>Vault Elevation (ft.)</th>
<th>Bottom Elevation (ft.)</th>
<th>Pump Elevation (ft.)</th>
<th>Pump Size (hp)</th>
<th>2009-2010 Pumping Rate* (gpd)</th>
<th>% of Total Well Production</th>
<th>Installed By</th>
</tr>
</thead>
<tbody>
<tr>
<td>W-3</td>
<td>19.5</td>
<td>-4.0</td>
<td>Unknown</td>
<td>1/2</td>
<td>318</td>
<td>31%</td>
<td>LA Co.</td>
<td></td>
</tr>
<tr>
<td>W-4</td>
<td>20.0</td>
<td>-9.0</td>
<td>Unknown</td>
<td>1/2</td>
<td>9</td>
<td>1%</td>
<td>LA Co.</td>
<td></td>
</tr>
<tr>
<td>W-5</td>
<td>19.0</td>
<td>-9.5</td>
<td>Unknown</td>
<td>1/2</td>
<td>379</td>
<td>37%</td>
<td>LA Co.</td>
<td></td>
</tr>
<tr>
<td>W-6</td>
<td>20.0</td>
<td>-4.5</td>
<td>Unknown</td>
<td>1/2</td>
<td>122</td>
<td>12%</td>
<td>LA Co.</td>
<td></td>
</tr>
<tr>
<td>W-8</td>
<td>27.5</td>
<td>11.0</td>
<td>Unknown</td>
<td>1/2</td>
<td>24</td>
<td>2%</td>
<td>LA Co.</td>
<td></td>
</tr>
<tr>
<td>W-9</td>
<td>20.0</td>
<td>-40.0</td>
<td>-35.0</td>
<td>1/3</td>
<td>7</td>
<td>1%</td>
<td>LA Co.</td>
<td></td>
</tr>
<tr>
<td>W-10</td>
<td>19.0</td>
<td>-40.0</td>
<td>-35.0</td>
<td>1/3</td>
<td>32</td>
<td>3%</td>
<td>LA Co.</td>
<td></td>
</tr>
<tr>
<td>W-11</td>
<td>61.0</td>
<td>1.0</td>
<td>13.0</td>
<td>1/3</td>
<td>33</td>
<td>3%</td>
<td>BYA</td>
<td></td>
</tr>
<tr>
<td>W-12</td>
<td>58.0</td>
<td>-2.0</td>
<td>8.0</td>
<td>1/3</td>
<td>8</td>
<td>1%</td>
<td>BYA</td>
<td></td>
</tr>
<tr>
<td>W-14</td>
<td>60.0</td>
<td>-20.0</td>
<td>1/3</td>
<td>52</td>
<td>5%</td>
<td>Fugro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NW-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>1%</td>
<td>Homeowner</td>
<td></td>
</tr>
<tr>
<td>NW-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17</td>
<td>2%</td>
<td>Homeowner</td>
<td></td>
</tr>
<tr>
<td>NW-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>0%</td>
<td>Homeowner</td>
<td></td>
</tr>
</tbody>
</table>

Note: * Average pumping rate during this monitoring period

MALIBU ROAD - Hydrauger Information

<table>
<thead>
<tr>
<th>Hydrauger ID</th>
<th>Installed Length (ft.)</th>
<th>Bearing</th>
<th>Functional Length** (ft.)</th>
<th>2009-2010 Flow Rate* (gpd)</th>
<th>% of Total Production</th>
<th>Installed By</th>
</tr>
</thead>
<tbody>
<tr>
<td>HD-1</td>
<td>Unknown</td>
<td>N05E</td>
<td>74</td>
<td>0.0</td>
<td>0%</td>
<td>LA Co.</td>
</tr>
<tr>
<td>HD-2</td>
<td>Unknown</td>
<td>N21E</td>
<td>34</td>
<td>0.0</td>
<td>0%</td>
<td>LA Co.</td>
</tr>
<tr>
<td>HD-3</td>
<td>Unknown</td>
<td>N06E</td>
<td>13</td>
<td>0.0</td>
<td>0%</td>
<td>LA Co.</td>
</tr>
<tr>
<td>HD-4</td>
<td>Unknown</td>
<td>N29E</td>
<td>53</td>
<td>0.0</td>
<td>0%</td>
<td>LA Co.</td>
</tr>
<tr>
<td>HD-5</td>
<td>Unknown</td>
<td>N13E</td>
<td>41</td>
<td>69.6</td>
<td>13%</td>
<td>LA Co.</td>
</tr>
<tr>
<td>HD-6</td>
<td>Unknown</td>
<td>N08W</td>
<td>55</td>
<td>0.0</td>
<td>0%</td>
<td>LA Co.</td>
</tr>
<tr>
<td>HD-7</td>
<td>Unknown</td>
<td>N26E</td>
<td>87</td>
<td>16.5</td>
<td>3%</td>
<td>LA Co.</td>
</tr>
<tr>
<td>HD-8</td>
<td>Unknown</td>
<td>N19E</td>
<td>92</td>
<td>0.0</td>
<td>0%</td>
<td>LA Co.</td>
</tr>
<tr>
<td>HD-9</td>
<td>Unknown</td>
<td>N34E</td>
<td>76</td>
<td>0.0</td>
<td>0%</td>
<td>LA Co.</td>
</tr>
<tr>
<td>HD-10</td>
<td>Unknown</td>
<td>N19E</td>
<td>55</td>
<td>0.0</td>
<td>0%</td>
<td>LA Co.</td>
</tr>
<tr>
<td>HD-11</td>
<td>Unknown</td>
<td>N11E</td>
<td>78</td>
<td>28.7</td>
<td>5%</td>
<td>LA Co.</td>
</tr>
<tr>
<td>HD-12</td>
<td>Unknown</td>
<td>N08E</td>
<td>70</td>
<td>0.0</td>
<td>0%</td>
<td>LA Co.</td>
</tr>
<tr>
<td>HD-13</td>
<td>Unknown</td>
<td>N09E</td>
<td>79</td>
<td>0.0</td>
<td>0%</td>
<td>LA Co.</td>
</tr>
<tr>
<td>HD-14</td>
<td>Unknown</td>
<td>N08E</td>
<td>80</td>
<td>0.0</td>
<td>0%</td>
<td>LA Co.</td>
</tr>
<tr>
<td>HD-15</td>
<td>Unknown</td>
<td>N14E</td>
<td>82</td>
<td>0.0</td>
<td>0%</td>
<td>LA Co.</td>
</tr>
<tr>
<td>HD-16</td>
<td>Unknown</td>
<td>N15E</td>
<td>69</td>
<td>0.0</td>
<td>0%</td>
<td>LA Co.</td>
</tr>
<tr>
<td>HD-17</td>
<td>150</td>
<td>N15E</td>
<td>150</td>
<td>115.9</td>
<td>21%</td>
<td>BYA</td>
</tr>
<tr>
<td>HD-18</td>
<td>150</td>
<td>N18E</td>
<td>150</td>
<td>103.7</td>
<td>19%</td>
<td>BYA</td>
</tr>
<tr>
<td>HD-19</td>
<td>150</td>
<td>N10E</td>
<td>150</td>
<td>7.7</td>
<td>1%</td>
<td>BYA</td>
</tr>
<tr>
<td>HD-20</td>
<td>150</td>
<td>N09W</td>
<td>150</td>
<td>94.8</td>
<td>17%</td>
<td>BYA</td>
</tr>
<tr>
<td>HD-21</td>
<td>150</td>
<td>N22E</td>
<td>150</td>
<td>24.5</td>
<td>4%</td>
<td>BYA</td>
</tr>
<tr>
<td>HD-22</td>
<td>180</td>
<td>N13E</td>
<td>180</td>
<td>49.5</td>
<td>9%</td>
<td>FugroWest</td>
</tr>
<tr>
<td>HD-23</td>
<td>160</td>
<td>N01E</td>
<td>160</td>
<td>45.6</td>
<td>8%</td>
<td>FugroWest</td>
</tr>
</tbody>
</table>

Note: * Average flow rate during this monitoring period

** Measured on 4/1/98 (except HD-22 and HD-23 installed 1/22/05)
DEWATERING WELL GRAPH
Discharge Rates for Malibu Road Dewatering Wells
(Same Chart at Different Scales)
DEWATERING WELL GRAPH
Discharge Rates for Bayshore Drive Dewatering Wells
(Same Chart at Different Scales)
HYDRAUGER GRAPH
Discharge Rates for all Hydraugers
(Same Chart at Different Scales)
Discharge Rates for all Hydraugers

HYDRAUGER GRAPH

Malibu Road Landslide Assessment District, City of Malibu
Project No. 3350.004

PLATE B-30

HYDRAUGER GRAPH
Discharge Rates for all Hydraugers
(Same Chart at Different Scales)
APPENDIX C
SLOPE INCLINOMETER DATA
MALIBU ROAD - Slope Inclinometer Interpretation Summary

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous Ref.Elev.(8/91)</td>
<td>20.0</td>
<td>20.0</td>
<td>20.0</td>
<td>20.0</td>
<td>22.0</td>
<td>59.0</td>
</tr>
<tr>
<td>Updated Ref.Elev.(4/00)</td>
<td>20.1</td>
<td>20.0</td>
<td>19.7</td>
<td>20.3</td>
<td>18.9</td>
<td>59.3</td>
</tr>
<tr>
<td>Depth (ft.)</td>
<td>34</td>
<td>50</td>
<td>64</td>
<td>49</td>
<td>43</td>
<td>78</td>
</tr>
<tr>
<td>Install Date</td>
<td>Apr-98</td>
<td>Aug-08</td>
<td>Apr-98</td>
<td>Apr-98</td>
<td>Apr-98</td>
<td>Apr-98</td>
</tr>
<tr>
<td>A+ Axis orientation (deg)</td>
<td>184</td>
<td>201</td>
<td>190</td>
<td>204</td>
<td>176</td>
<td>186</td>
</tr>
<tr>
<td>Casing</td>
<td>RST</td>
<td>SI</td>
<td>RST</td>
<td>RST</td>
<td>SI</td>
<td>SI</td>
</tr>
<tr>
<td>Installer</td>
<td>BYA</td>
<td>FWI</td>
<td>BYA</td>
<td>BYA</td>
<td>BYA</td>
<td>BYA</td>
</tr>
<tr>
<td>Interpreted Rupture Depth (ft)</td>
<td>30-32</td>
<td>30-32</td>
<td>28-32</td>
<td>35-38</td>
<td>32-34</td>
<td>unknown</td>
</tr>
<tr>
<td>Reading Interval</td>
<td>Quarterly</td>
<td>Quarterly</td>
<td>Quarterly</td>
<td>Quarterly</td>
<td>Quarterly</td>
<td>Quarterly</td>
</tr>
</tbody>
</table>

Interpretation Movement (inches)

<table>
<thead>
<tr>
<th>Year</th>
<th>SI-1</th>
<th>SI-1A</th>
<th>SI-2</th>
<th>SI-3</th>
<th>SI-4</th>
<th>SI-5</th>
<th>SI-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009-2010</td>
<td>NR</td>
<td>--</td>
<td>NR</td>
<td>NR</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2008-2009</td>
<td>NR</td>
<td>--</td>
<td>< 0.1 *</td>
<td>NR</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2007-2008</td>
<td>NR</td>
<td>--</td>
<td>--</td>
<td>NR</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2006-2007</td>
<td>NR</td>
<td>N/A</td>
<td>--</td>
<td>NR</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2004-2005</td>
<td>0.5 (3)</td>
<td>NA</td>
<td>0.4</td>
<td>>1(3)</td>
<td>0.4 to 0.5</td>
<td>~ 0.2 *</td>
<td>--</td>
</tr>
<tr>
<td>2003-2004 (1)</td>
<td>--</td>
<td>NA</td>
<td>--</td>
<td>NR</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2002-2003</td>
<td>~ 0.2 *</td>
<td>NA</td>
<td>~ 0.1 *</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2001-2002</td>
<td>--</td>
<td>NA</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2000-2001</td>
<td>0.5</td>
<td>NA</td>
<td>0.4</td>
<td>0.3</td>
<td>0.6</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>1999-2000</td>
<td>--</td>
<td>NA</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>1998-1999</td>
<td>3.1</td>
<td>N/A</td>
<td>1.5</td>
<td>4.1</td>
<td>1.3 (2)</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

NOTES:

1. Readings only through March 2004
2. Readings are through 2000, although majority of movement occurred in 1998
3. Inclinometer sheared off in January, 2005, no readings below slide plane
4. Inclinometer sheared off winter of 2009, no readings below slide plane

NR: No readings
--: No clearly defined interpreted movement.
~ 0.05 *: Indicated displacement is less than reliable instrument accuracy. Interpreted movement is theoretical.
PLATE C-2a

Malibu Road Landslide Assessment District, City of Malibu
Project No. 3399.004

Fugro West, Inc. - Ventura, CA

Cumulative Deflection
Direction A

Incremental Deflection
Direction A

MAL-RD, Inclinometer SI1A

Depth of Readings = 48

Sets marked * include zero shift and/or rotation corrections.
Fugro West, Inc. - Ventura, CA

LEGEND

Initial 5 Sep2006
27 Nov2006*
1 Feb2007*
7 May2007*
7 Aug2007*
6 Nov2007*
13 Feb2008*
8 May2008*
10 Nov2008*
2 Apr2009*
22 Jun2009*
27 Aug2009*
19 Nov2009*
25 Feb2010*
13 May2010*

Cumulative Deflection
Direction A

Incremental Deflection
Direction A

MAL-RD, Inclinometer SI1A

Depth of Readings = 48

Sets marked * include zero shift and/or rotation corrections.
LEGEND

- Initial 5 Jun2009*
- 27 Aug2009*
- 19 Nov2009*
- 13 May2010*

Malibu Road Landslide Assessment District, City of Malibu

Project No. 3399.004

Cumulative Deflection
Direction A

Incremental Deflection
Direction A

MALIBU ROAD, Inclinometer SI-4

Depth of readings = 41 ft

Azimuth = 204

Sets marked * include zero shift and/or rotation corrections.
MALIBU ROAD, Inclinometer SI-4

Depth of readings = 41 ft

Azimuth = 204

Sets marked * include zero shift and/or rotation corrections.
LEGEND

Initial 5 Jun 2009*
27 Aug 2009*
19 Nov 2009*
25 Feb 2010*
13 May 2010*

Cumulative Deflection
Direction A

Incremental Deflection
Direction A

MALIBU ROAD, Inclinometer SI-5

Depth of readings = 78 ft
Azimuth = 176

Sets marked * include zero shift and/or rotation corrections.
Malibu Road Landslide Assessment District, City of Malibu
Project No. 3399.004

Fugro West, Inc. - Ventura, CA

MALIBU ROAD, Inclinometer SI-5

Depth of readings = 78 ft

Azimuth = 176

Sets marked * include zero shift and/or rotation corrections.
Malibu Road Landslide Assessment District, City of Malibu
Project No. 3399.004

Fugro West, Inc. - Ventura, CA

LEGEND

Initial 5 Jun2009*
27 Aug2009*
19 Nov2009*
25 Feb2010*
13 May2010*

Cumulative Deflection
Direction A

Incremental Deflection
Direction A

MALIBU ROAD, Inclinometer SI-6

Depth of readings = 78 ft

Azimuth = 186

Sets marked * include zero shift and/or rotation corrections.

O:\MANAGE~1\3399_M~1\33E1A1~1\03_DATA\SIDATA~1\MALRD\SI-6.GTL

PLATE C-5a
Malibu Road Landslide Assessment District, City of Malibu
Project No. 3399.004

Fugro West, Inc. - Ventura, CA

MALIBU ROAD, Inclinometer SI-6

Depth of readings = 78 ft

Azimuth = 186

Sets marked * include zero shift and/or rotation corrections.