ANNUAL REPORT
JULY 2012 THROUGH JUNE 2013
MALIBU ROAD LANDSLIDE ASSESSMENT DISTRICT
MALIBU, CALIFORNIA

Prepared for:
CITY OF MALIBU

January 2014
Fugro Project No. 04.B3399004
January 13, 2014
Project No. 04.B3399004

City of Malibu
23825 Stuart Ranch Road
Malibu, California 90265

Attention: Mr. Rob Duboux

Subject: Annual Report, July 2012 through June 2013, Malibu Road Landslide Assessment District

Dear Mr. Duboux,

Fugro is pleased to present this annual report for the Malibu Road Landslide Assessment District. This report summarizes the monitoring and maintenance activities completed during the period of July 2012 through June 2013.

Fugro appreciates the opportunity to be of service to the City of Malibu and the District homeowners. Please contact Chris Dean at (310) 456-2489, x306 or Todd Curtis at (310) 456-2489, x307 if you have any questions regarding this report.

Sincerely,

FUGRO CONSULTANTS, INC.

Christopher Dean, C.E.G.
Senior Engineering Geologist/Project Manager

Todd Curtis, P.E.
Senior Staff Engineer

Joe Reeves
Senior Field Technician

Copies Submitted: (2) Addressee
(1) City of Malibu - Geotechnical Staff
CONTENTS

1.0 INTRODUCTION .. 1
 1.1 Authorization ... 1
 1.2 Background ... 1
 1.3 Scope of Work ... 1
 1.4 Report Organization .. 2
 1.5 Report Availability .. 2

2.0 MONITORING .. 2
 2.1 Rainfall Data .. 2
 2.2 Groundwater Monitoring .. 2
 2.2.1 Standpipe Piezometers ... 3
 2.2.2 Pneumatic Piezometers .. 3
 2.2.3 Groundwater Level Discussion .. 3
 2.3 Dewatering Production .. 4
 2.3.1 Dewatering Well Production .. 4
 2.3.2 Hydrauger Production ... 4
 2.3.3 Total Dewatering Production ... 4
 2.4 Slope Inclinometer Measurements ... 5

3.0 DEWATERING FACILITY MAINTENANCE ... 5
 3.1 Facility Maintenance .. 5
 3.2 Capital Improvement Projects ... 6

4.0 SUMMARY AND CONCLUSIONS ... 6
 4.1 Summary ... 6

5.0 REFERENCES ... 8

TABLES

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>1 Summary of Average Groundwater Elevations by Area .. 4</td>
</tr>
<tr>
<td>2 Maintenance Activities ... 6</td>
</tr>
</tbody>
</table>

PLATES

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>Site Location Map .. 1</td>
</tr>
<tr>
<td>Assessment District Map .. 2</td>
</tr>
<tr>
<td>Rainfall Graph .. 3</td>
</tr>
<tr>
<td>Total Discharge - Wells and Hydraugers .. 4</td>
</tr>
<tr>
<td>Groundwater Levels, Dewatering, and Rainfall .. 5</td>
</tr>
</tbody>
</table>
APPENDICES

APPENDIX A GROUNDWATER DATA
- Piezometer Information ... Plate A-1
- Summary of Groundwater Data ... Plate A-2
- Groundwater Hydrograph - Malibu Road (West End) Plate A-3
- Groundwater Hydrograph - Malibu Road (East End) Plate A-4
- Groundwater Hydrograph - Bayshore Drive Plate A-5

APPENDIX B DEWATERING DATA
- Dewatering Well / Hydrauger Information Plate B-1
- Dewatering Well Graph - Malibu Road Plate B-2a
- Dewatering Well Graph - Bayshore Drive Plate B-2b
- Hydrauger Graph - Malibu Road (West End) Plate B-3a
- Hydrauger Graph - Malibu Road (East End) Plate B-3b

APPENDIX C SLOPE INCLINOMETER DATA
- Summary of Slope Inclinometers .. Plate C-1
- Monitoring Period Slope Inclinometer Plot SI-1A Plate C-2a
- Baseline Slope Inclinometer Plot SI-1A Plate C-2b
- Monitoring Period Slope Inclinometer Plot SI-2A Plate C-3a
- Baseline Slope Inclinometer Plot SI-2 Plate C-3b
- Monitoring Period / Baseline Slope Inclinometer Plot SI-4a .. Plate C-4
- Monitoring Period Slope Inclinometer Plot SI-5 Plate C-5a
- Baseline Slope Inclinometer Plot SI-5 Plate C-5b
- Monitoring Period Slope Inclinometer Plot SI-6 Plate C-6a
- Baseline Slope Inclinometer Plot SI-6 Plate C-6b
1.0 INTRODUCTION

1.1 AUTHORIZATION

Fugro performed the work summarized in this report in accordance with our contract with the City of Malibu (City) and consistent with the cost estimate document "Exhibit A - FY 2012-2013 Maintenance Cost Estimate" presented in the Annual Assessment Report (Taussig, 2012).

1.2 BACKGROUND

The Malibu Road Landslide Assessment District (Assessment District) was established in 1981 by the County of Los Angeles (County) following the activation of a landslide on the west end of Malibu Road in 1978 (Plates 1 and 2). The assessment district provides permanent funding to maintain and monitor dewatering facilities with the purpose of stabilizing the landslide to the extent feasible using dewatering methods only. The County administered the assessment district until 1991 when the City incorporated. The Assessment District was reauthorized in May 1998 under Resolution No. 98-036. The City has administered the assessment district, utilizing consultants to maintain and monitor the district facilities.

1.3 SCOPE OF WORK

This annual report summarizes the monitoring and maintenance of the geotechnical instrumentation and dewatering facilities within the Malibu Road Assessment District for the period between July 1, 2012, and June 30, 2013 (hereafter, the "monitoring period").

Routine monitoring data collected during the current monitoring period included the following:

- Review of annual rainfall data from a local rain gauge operated by the County of Los Angeles, Department of Public Works - Water Resources Division;
- Monthly groundwater level measurements from nine standpipes and nine pneumatic piezometers;
- Monthly dewatering production readings from ten dewatering wells owned by the Assessment District and three wells owned by a private homeowner on Bayshore Drive;
- Monthly dewatering production readings from 23 horizontal drains (hydraugers);
- Quarterly ground deformation measurements from five slope inclinometers; and
- Ongoing maintenance of dewatering and monitoring facilities.

The operating condition of the instrumentation and dewatering facilities was checked during each field monitoring/observation visit and by evaluating preliminary data in the office as it was received. Maintenance was performed as-needed based upon the field observations and preliminary data evaluation, and correspondence from concerned homeowners and tenants.
The scope of services includes monitoring and maintenance of the assessment district facilities. The services provided on an annual basis for the assessment district do not include an engineering evaluation of the stability of the landslide.

1.4 REPORT ORGANIZATION

This report summarizes the monitoring data collected during the current monitoring period and presents conclusions regarding the annual monitoring results. The location of the assessment district is illustrated on Plate 1 - Site Location Map. Locations of the geotechnical instrumentation are shown on Plate 2 - Assessment District Map. Tabulated and graphic summaries of monitoring data are presented in Appendix A through Appendix C as indicated in the Table of Contents.

1.5 REPORT AVAILABILITY

The annual Assessment District reports are available for review at Malibu City Hall. Reports may also be viewed on the City's website at http://www.malibucity.org.

2.0 MONITORING

2.1 RAINFALL DATA

Rainfall totals were tabulated based on recorded values from the Los Angeles County Rainfall Station 1239 - located at Big Rock Mesa. A graph of historical monthly rainfall and average annual rainfall is shown on Plate 3 - Rainfall Graph.

Rainfall data indicate that approximately 8.06 inches of precipitation fell during the monitoring period from July 2012 through June 2013. The average annual rainfall from 1968 to 2012 in the Malibu area for the monitoring period July through June is approximately 16.0 inches.

Rainfall data are usually analyzed in terms of the annual "rain season" that covers the time period from October 1 through September 30. Rainfall for October 1, 2012, through June 30, 2013, was approximately 8.06 inches. This is approximately 50 percent of the average annual rainfall of 16.0 inches for the rain seasons of 1968 through 2012.

2.2 GROUNDWATER MONITORING

The groundwater level data collected during the current monitoring period are summarized in Appendix A. Groundwater levels fluctuate throughout the year and from year to year in response to natural and man-made influences. The primary natural influence is varying precipitation. Man-made influences include:

- Recharge from septic systems;
- Recharge from irrigation;
• Alterations to surface drainage by grading, landscaping, storm drains, and rain gutters;
• Accidental water discharges from leaking utilities (water, irrigation, sewer, storm drain), and swimming pools; and
• Dewatering activities including pumping dewatering wells and hydraugers.

Typically, groundwater levels rise relatively quickly following significant rainfall and gradually lower after the wet season ends. Groundwater levels measured in standpipe piezometers (wells) and pneumatic piezometers are depicted on Plates A-1 through A-5 in Appendix A. Groundwater levels at Malibu Road typically peak around late-March to mid-April and gradually decline through late September to November.

A summary graph of mean high groundwater elevations for Malibu Road is presented on Plate 5 - Groundwater Levels, Dewatering, and Rainfall. Plate 5 also shows the average dewatering output (gpd) and the yearly deviation from the mean annual rainfall. The mean annual rainfall used for the chart was computed using all of the data from 1988 through the present. This graph illustrates that since 2010-2011, annual rainfall has been generally decreasing. During the same period, the average dewatering output has been decreasing.

2.2.1 Standpipe Piezometers

Nine standpipe piezometers (W-2A, W-3A, PZ-A, PZ-B, PZ-C, PZ-D, PZ-E, SI-5 and SI-6) were measured regularly over the monitoring period. Slope inclinometers/piezometers SI-5 and SI-6 were installed in 1998 along Bayshore Drive. Los Angeles County installed the other piezometers at earlier dates. The locations of the standpipe piezometers are depicted on Plate 2 - Assessment District Map, and groundwater hydrographs are presented in Appendix A.

2.2.2 Pneumatic Piezometers

Inclinometers installed within the assessment district after 1997 were typically outfitted with one or two pneumatic piezometer sensors. Nine sensors were measured regularly over the monitoring period; one piezometer was added (SI-1A) in August 2006. Each sensor records groundwater elevations by measuring differential air pressure between the instrument sensor and groundwater surface across a flexible bladder. The locations of the piezometers are depicted on Plate 2, and hydrographs are presented in Appendix A.

2.2.3 Groundwater Level Discussion

The groundwater data were reviewed by evaluating changes that occurred during the current monitoring period as well as changes in groundwater levels over extended periods. To analyze trends in seasonal groundwater fluctuations, the average (mean) annual and highest annual recorded groundwater elevation for each piezometer was calculated (Plate A-2).

Groundwater levels rose significantly immediately following the record rainfall in the winter of 2004 to 2005 (37.6 inches). Since about mid-2005, groundwater levels in the eastern
and western portions of the district under Malibu Road have been slowly rising, while levels in the central portion of the district under Malibu Road have remained the same. Groundwater levels under Bayshore Drive have generally decreased since mid-2005. Groundwater levels under Malibu Road and Bayshore Drive the past two reporting years (2011-12 and 2012-13) have remained essentially the same, the result of below-average rainfall years (11.71 and 8.06 inches, respectively). Groundwater levels at SI-5 have decreased significantly following the installation of the replacement dewatering well, W-14, in October 2008.

The average and highest annual groundwater levels are indicated below:

Table 1. Summary of Average Groundwater Elevations by Area

<table>
<thead>
<tr>
<th>Location</th>
<th>Average Groundwater El. 2012-2013</th>
<th>Change from Prior Year Average</th>
<th>Peak Groundwater El. 2012-2013</th>
<th>Change from Prior Year Peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malibu Road</td>
<td>8.9</td>
<td>+0.1</td>
<td>9.2</td>
<td>-0.3</td>
</tr>
<tr>
<td>Bay Shore Drive</td>
<td>21.6</td>
<td>+0.1</td>
<td>22.2</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Note: All units are in feet.

2.3 DEWATERING PRODUCTION

2.3.1 Dewatering Well Production

A graph of the production rate for all dewatering wells is presented on Plate 4. Graphs showing production rates of individual wells are provided in Appendix B. Production data for the dewatering wells indicates the following:

- The average total well production rate for this monitoring period was approximately 1,038 gallons per day (gpd). That represents a decrease of about 12 percent from the previous monitoring period of 1,168 gpd.

2.3.2 Hydraulger Production

A graph of the production rate for all hydraulgers is presented on Plate 4. Graphs of individual production rates for all hydraulgers are included in Appendix B. Data for the hydraulgers indicates the following:

- The average production rate for all hydraulgers over the monitoring period is approximately 256 gpd. This represents an increase of approximately 43 percent from the average production rate of 179 gpd for the previous monitoring period.

2.3.3 Total Dewatering Production

A combined graph of the total dewatering rate for all dewatering wells and hydraulgers is presented on Plate 4. Total dewatering production data for the hydraulgers and wells indicates the following:
• The average total dewatering rate during the monitoring period was approximately 1,294 gpd. This represents a 4 percent decrease in the average rate relative to the 1,347 gpd average recorded during the previous monitoring period.

2.4 SLOPE INCLINOMETER MEASUREMENTS

Fugro monitored five slope inclinometers on a quarterly basis to measure subsurface ground deformation through June 2013. Slope inclinometer measurement plots are presented in Appendix C for each monitored inclinometer installation. Two plots for each slope inclinometer are presented. The first plot has a baseline reading from the final round of monitoring of the previous year, showing any ground movement within the 2012 to 2013 monitoring year. The second plot has a baseline reading from the spring of 2005, except for SI-1A and SI-2A (as discussed below). Only readings with validated checksums\(^1\) are presented.

SI-1A was installed in August 2006 and has a baseline reading from September 2006. SI-2A was installed in September of the 2010-2011 monitoring year with a baseline reading in May 2011. Therefore, the first plot of SI-2A shows the current year readings, while the second plot shows the readings of SI-2 from 2005-2008. SI-4A was installed in August 2012 as a replacement for SI-4 and has a baseline reading from September 2012.

Interpretation of inclinometer data along Malibu Road shows no clearly defined interpreted movement during the 2012-2013 monitoring year.

Inclinometers SI-5 and SI-6 are located on Bayshore Drive, upslope and outside the defined limit of the most recent 1998 movement. No significant movement was observed during this monitoring year in SI-5 or SI-6.

3.0 DEWATERING FACILITY MAINTENANCE

3.1 FACILITY MAINTENANCE

The operating status of each dewatering well and hydrauger was checked monthly. When necessary, repair work was scheduled and undertaken (typically within a matter of a few hours to a few days of identifying a problem). Generally, repairs and maintenance consisted of brush clearance around facilities and fixing broken hydraugers and conveyance lines. The repairs performed are summarized in the following table:

\(^1\) Checksums are a data validation technique for slope inclinometers where the "0" (downslope) and "180" (upslope) readings are summed and the theoretical result should be zero.
Table 2. Maintenance Activities

<table>
<thead>
<tr>
<th>Date</th>
<th>Facility</th>
<th>Work Performed</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/11/12</td>
<td>Hydraugers</td>
<td>Brush clearance around hydraugers</td>
</tr>
<tr>
<td>7/25/12</td>
<td>Hydraugers</td>
<td>Brush clearance around hydraugers</td>
</tr>
<tr>
<td>7/25/12</td>
<td>Dewatering</td>
<td>Fixed broken hydrauger conveyance line</td>
</tr>
<tr>
<td>8/14/12</td>
<td>SI-4A</td>
<td>Installed new slope inclinometer as a CIP</td>
</tr>
<tr>
<td>8/17/12</td>
<td>Dewatering</td>
<td>Un-clogged conveyance line</td>
</tr>
<tr>
<td>8/20/12</td>
<td>HD-11</td>
<td>Fixed broken hydrauger</td>
</tr>
<tr>
<td>10/18/12</td>
<td>Hydraugers</td>
<td>Brush clearance around hydraugers</td>
</tr>
<tr>
<td>1/25/13</td>
<td>HD-11</td>
<td>Fixed broken hydrauger</td>
</tr>
<tr>
<td>1/29/13</td>
<td>HD-20</td>
<td>Fixed broken hydrauger</td>
</tr>
<tr>
<td>2/15/13</td>
<td>Hydraugers</td>
<td>Brush clearance around hydraugers</td>
</tr>
<tr>
<td>2/27/13</td>
<td>Dewatering</td>
<td>Repaired broken conveyance line</td>
</tr>
<tr>
<td>3/18/13</td>
<td>W-8</td>
<td>Cleaned meter</td>
</tr>
<tr>
<td>4/4/13</td>
<td>W-8</td>
<td>Cleaned dirt from around well control box</td>
</tr>
<tr>
<td>5/17/13</td>
<td>Dewatering</td>
<td>Un-clogged conveyance line</td>
</tr>
<tr>
<td>5/29/13</td>
<td>HD-20</td>
<td>Fixed broken hydrauger</td>
</tr>
<tr>
<td>6/7/13</td>
<td>HD-21</td>
<td>Fixed broken hydrauger</td>
</tr>
</tbody>
</table>

3.2 CAPITAL IMPROVEMENT PROJECTS

A replacement inclinometer, SI-4A, was installed in August 2012 to replace SI-4, which had become difficult to read below approximately 30 feet.

4.0 SUMMARY AND CONCLUSIONS

4.1 SUMMARY

The status of the Malibu Road Landslide Assessment District can be summarized as follows:

- The 2012 through 2013 monitoring year rainfall was below average with 8.06 inches of precipitation. Rainfall during the monitoring period was below the historical average of 16.0 inches per year measured from 1968 through 2012.
- Groundwater levels in the assessment district area were at or below normal levels for Bayshore Drive and the central portion of Malibu Road. Groundwater levels at the east and west end of Malibu Road have slightly increased.
- Average daily dewatering production declined 4 percent from the previous monitoring year. This could be a reflection of the below-average rainfall.
• Readings for the five slope inclinometers show no clearly defined interpreted movement during the 2012 to 2013 monitoring year.

• A replacement inclinometer, SI-4A, was installed in August 2012 to replace SI-4, which had become difficult to read below approximately 30 feet.

• Water conservation is encouraged throughout the Malibu Road area to reduce future groundwater level increases. Control of groundwater levels within the landslide area is critical to maintaining the stability of the landslides. The following are suggested:
 1. Rain Gutters - Installation and Maintenance.
 2. Limit Irrigation.
 3. Use of low-flow toilet and plumbing fixtures.

• Groundwater production from existing dewatering wells and hydraugers should be expected to gradually decline over time as the efficiency of the wells and hydraugers decrease due to mineralization and aging of the facilities. This may contribute to reduced rates of groundwater lowering or localized increases in groundwater levels. Periodic maintenance of the existing facilities and replacement of older, worn-out pumps should improve the efficiency of the dewater systems throughout the year, especially during and immediately following the rainy months.
5.0 REFERENCES

_____ (2009), "Annual Assessment District No. 98-3 (Malibu Road) FY 2009-10," dated June 8.

PLATES
GROUNDWATER LEVELS, DEWATERING, AND RAINFALL
Malibu Road Landslide Assessment District
Malibu, California

Graph shows the mean value of the highest groundwater elevations recorded for each standpipe piezometer during the monitoring year.
APPENDIX A
GROUNDWATER DATA
MALIBU ROAD LAD - Standpipe Piezometer Information

<table>
<thead>
<tr>
<th>Well Identification</th>
<th>Previous Reference Elevation (8/91)</th>
<th>Updated Reference Elevation (4/00)</th>
<th>Depth (ft.)</th>
<th>Perforation Interval</th>
<th>Installed By</th>
</tr>
</thead>
<tbody>
<tr>
<td>W-2A</td>
<td>22.6</td>
<td>20.6</td>
<td>9.0</td>
<td>Unknown</td>
<td>LA COUNTY</td>
</tr>
<tr>
<td>W-3A</td>
<td>22.0</td>
<td>20.5</td>
<td>32.5</td>
<td>Unknown</td>
<td>LA COUNTY</td>
</tr>
<tr>
<td>PZ-A</td>
<td>20.0</td>
<td>19.8</td>
<td>17.2</td>
<td>Unknown</td>
<td>LA COUNTY</td>
</tr>
<tr>
<td>PZ-B</td>
<td>20.0</td>
<td>19.1</td>
<td>27.9</td>
<td>Unknown</td>
<td>LA COUNTY</td>
</tr>
<tr>
<td>PZ-C</td>
<td>20.0</td>
<td>19.4</td>
<td>29.7</td>
<td>Unknown</td>
<td>LA COUNTY</td>
</tr>
<tr>
<td>PZ-D</td>
<td>20.0</td>
<td>19.2</td>
<td>24.7</td>
<td>Unknown</td>
<td>LA COUNTY</td>
</tr>
<tr>
<td>PZ-E</td>
<td>20.0</td>
<td>21.4</td>
<td>15.8</td>
<td>Unknown</td>
<td>LA COUNTY</td>
</tr>
<tr>
<td>SI-5†</td>
<td>59.0</td>
<td>59.3</td>
<td>78.0</td>
<td>-19.0 to -14.0</td>
<td>BYA</td>
</tr>
<tr>
<td>SI-6**</td>
<td>57.0</td>
<td>58.0</td>
<td>78.0</td>
<td>-21.0 to -16.0</td>
<td>BYA</td>
</tr>
</tbody>
</table>

Note: † Formerly designated as MR-5
++ Formerly designated as MR-6

MALIBU ROAD LAD - Pneumatic Piezometer Information

<table>
<thead>
<tr>
<th>Well Identification</th>
<th>Previous Reference Elevation (8/91)</th>
<th>Updated Reference Elevation (4/00)</th>
<th>Tip Depth (ft.)</th>
<th>Tip El. (ft.)</th>
<th>Installed By</th>
</tr>
</thead>
<tbody>
<tr>
<td>SI-1</td>
<td>20.0</td>
<td>20.1</td>
<td>34.6</td>
<td>-14.6</td>
<td>BYA</td>
</tr>
<tr>
<td>SI-2</td>
<td>20.0</td>
<td>19.7</td>
<td>65.1</td>
<td>-45.1</td>
<td>BYA</td>
</tr>
<tr>
<td>SI-3</td>
<td>20.0</td>
<td>20.3</td>
<td>49.8</td>
<td>-29.8</td>
<td>BYA</td>
</tr>
<tr>
<td>SI-4</td>
<td>22.0</td>
<td>18.9</td>
<td>43.9</td>
<td>-21.9</td>
<td>BYA</td>
</tr>
<tr>
<td>SI-5 Tip 1</td>
<td>59.0</td>
<td>59.3</td>
<td>60</td>
<td>-1</td>
<td>BYA</td>
</tr>
<tr>
<td>SI-5 Tip 2</td>
<td>59.0</td>
<td>59.3</td>
<td>40</td>
<td>19</td>
<td>BYA</td>
</tr>
<tr>
<td>SI-6 Tip 1</td>
<td>57.0</td>
<td>58.0</td>
<td>60</td>
<td>-3</td>
<td>BYA</td>
</tr>
<tr>
<td>SI-6 Tip 2</td>
<td>57.0</td>
<td>58.0</td>
<td>40</td>
<td>17</td>
<td>BYA</td>
</tr>
<tr>
<td>SI-1A</td>
<td>20.0</td>
<td>20.0</td>
<td>50</td>
<td>-30</td>
<td>FUGRO</td>
</tr>
</tbody>
</table>

Note: SI-1 thru SI-4 were previously designated MR98-1 thru MR98-4
SI-5 and SI-6 were previously designated MR-5 and MR-6
<table>
<thead>
<tr>
<th>Station/Plunger ID</th>
<th>P0</th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
<th>P5</th>
<th>Mean</th>
<th>Min</th>
<th>Max</th>
<th>SD</th>
<th>Mean</th>
<th>Min</th>
<th>Max</th>
<th>SD</th>
<th>Mean</th>
<th>Min</th>
<th>Max</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>-20</td>
<td>8.2</td>
<td>6.6</td>
<td>7.9</td>
<td>5.7</td>
<td>4.9</td>
<td>5.2</td>
<td>6.3</td>
<td>4.7</td>
<td>8.2</td>
<td>4.6</td>
<td>6.2</td>
<td>5.2</td>
<td>8.2</td>
<td>4.6</td>
<td>6.2</td>
<td>5.2</td>
<td>8.2</td>
<td>4.6</td>
</tr>
<tr>
<td>-21</td>
<td>11.4</td>
<td>10.4</td>
<td>12.1</td>
<td>11.8</td>
<td>11.7</td>
<td>11.5</td>
<td>12.6</td>
<td>12.4</td>
<td>13.1</td>
<td>6.1</td>
<td>12.1</td>
<td>11.8</td>
<td>11.7</td>
<td>11.5</td>
<td>12.6</td>
<td>12.4</td>
<td>13.1</td>
<td>6.1</td>
</tr>
<tr>
<td>-22</td>
<td>7.8</td>
<td>6.6</td>
<td>9.1</td>
<td>5.7</td>
<td>4.9</td>
<td>5.0</td>
<td>6.3</td>
<td>4.7</td>
<td>8.2</td>
<td>4.6</td>
<td>6.2</td>
<td>5.2</td>
<td>8.2</td>
<td>4.6</td>
<td>6.2</td>
<td>5.2</td>
<td>8.2</td>
<td>4.6</td>
</tr>
<tr>
<td>-23</td>
<td>11.4</td>
<td>10.4</td>
<td>12.1</td>
<td>11.8</td>
<td>11.7</td>
<td>11.5</td>
<td>12.6</td>
<td>12.4</td>
<td>13.1</td>
<td>6.1</td>
<td>12.1</td>
<td>11.8</td>
<td>11.7</td>
<td>11.5</td>
<td>12.6</td>
<td>12.4</td>
<td>13.1</td>
<td>6.1</td>
</tr>
<tr>
<td>-24</td>
<td>7.8</td>
<td>6.6</td>
<td>9.1</td>
<td>5.7</td>
<td>4.9</td>
<td>5.0</td>
<td>6.3</td>
<td>4.7</td>
<td>8.2</td>
<td>4.6</td>
<td>6.2</td>
<td>5.2</td>
<td>8.2</td>
<td>4.6</td>
<td>6.2</td>
<td>5.2</td>
<td>8.2</td>
<td>4.6</td>
</tr>
</tbody>
</table>

SUMMARY OF GROUNDWATER DATA

Malibu Road Landslide Assessment District

Malibu, California
GROUNDWATER HYDROGRAPH
Malibu Road (West End)
Malibu Road Landslide Assessment District
Malibu, California

*Note: W-3A uncovered in Jan. '99
GROUNDWATER HYDROGRAPH
Malibu Road (East End)
Malibu Road Landslide Assessment District

Notes:
SI-1 thru SI-4 installed March '98.
SI-1 and SI-3 not plotted. Pneumatic piezometers not functioning.
SI-1A (Pneumatic) - Pneumatic piezometers functioning but no readings after 06/26/13
APPENDIX B
DEWATERING DATA
MALIBU ROAD LAD - Dewatering Well Information

<table>
<thead>
<tr>
<th>Well ID</th>
<th>Vault Elevation (ft.)</th>
<th>Bottom Elevation (ft.)</th>
<th>Pump Elevation (ft.)</th>
<th>Pump Size (hp)</th>
<th>2012-2013 Mean Pumping Rate (gpd)</th>
<th>% of Total Well Production</th>
<th>Installed By</th>
</tr>
</thead>
<tbody>
<tr>
<td>W-3</td>
<td>19.5</td>
<td>-4.0</td>
<td>Unknown</td>
<td>1/2</td>
<td>201</td>
<td>19%</td>
<td>LA Co.</td>
</tr>
<tr>
<td>W-4</td>
<td>20.0</td>
<td>-9.0</td>
<td>Unknown</td>
<td>1/2</td>
<td>9</td>
<td>1%</td>
<td>LA Co.</td>
</tr>
<tr>
<td>W-5</td>
<td>19.0</td>
<td>-9.5</td>
<td>Unknown</td>
<td>1/2</td>
<td>460</td>
<td>44%</td>
<td>LA Co.</td>
</tr>
<tr>
<td>W-6</td>
<td>20.0</td>
<td>-4.5</td>
<td>Unknown</td>
<td>1/2</td>
<td>58</td>
<td>6%</td>
<td>LA Co.</td>
</tr>
<tr>
<td>W-8</td>
<td>27.5</td>
<td>11.0</td>
<td>Unknown</td>
<td>1/2</td>
<td>53</td>
<td>5%</td>
<td>LA Co.</td>
</tr>
<tr>
<td>W-9</td>
<td>20.0</td>
<td>-40.0</td>
<td>-35.0</td>
<td>1/3</td>
<td>11</td>
<td>1%</td>
<td>LA Co.</td>
</tr>
<tr>
<td>W-10</td>
<td>19.0</td>
<td>-40.0</td>
<td>-35.0</td>
<td>1/3</td>
<td>105</td>
<td>10%</td>
<td>LA Co.</td>
</tr>
<tr>
<td>W-11</td>
<td>61.0</td>
<td>1.0</td>
<td>13.0</td>
<td>1/3</td>
<td>43</td>
<td>4%</td>
<td>BYA</td>
</tr>
<tr>
<td>W-12</td>
<td>58.0</td>
<td>-2.0</td>
<td>8.0</td>
<td>1/3</td>
<td>8</td>
<td>1%</td>
<td>BYA</td>
</tr>
<tr>
<td>W-14</td>
<td>60.0</td>
<td>-20.0</td>
<td>Unknown</td>
<td>1/3</td>
<td>41</td>
<td>4%</td>
<td>Fugro West</td>
</tr>
<tr>
<td>NW-1</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>20</td>
<td>2%</td>
<td>Homeowner</td>
</tr>
<tr>
<td>NW-2</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>20</td>
<td>2%</td>
<td>Homeowner</td>
</tr>
<tr>
<td>NW-3</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>9</td>
<td>1%</td>
<td>Homeowner</td>
</tr>
</tbody>
</table>

MALIBU ROAD LAD - Hydrauger Information

<table>
<thead>
<tr>
<th>Hydraulor ID</th>
<th>Installed Length (ft.)</th>
<th>Bearing</th>
<th>Functional Length* (ft)</th>
<th>2012-2013 Mean Flow Rate (gpd)</th>
<th>% of Total Production</th>
<th>Installed By</th>
</tr>
</thead>
<tbody>
<tr>
<td>HD-1</td>
<td>Unknown</td>
<td>N05E</td>
<td>74</td>
<td>0</td>
<td>0%</td>
<td>LA County</td>
</tr>
<tr>
<td>HD-2</td>
<td>Unknown</td>
<td>N21E</td>
<td>34</td>
<td>0</td>
<td>0%</td>
<td>LA County</td>
</tr>
<tr>
<td>HD-3</td>
<td>Unknown</td>
<td>N06E</td>
<td>13</td>
<td>0</td>
<td>0%</td>
<td>LA County</td>
</tr>
<tr>
<td>HD-4</td>
<td>Unknown</td>
<td>N29E</td>
<td>53</td>
<td>0</td>
<td>0%</td>
<td>LA County</td>
</tr>
<tr>
<td>HD-5</td>
<td>Unknown</td>
<td>N13E</td>
<td>41</td>
<td>0</td>
<td>0%</td>
<td>LA County</td>
</tr>
<tr>
<td>HD-6</td>
<td>Unknown</td>
<td>N08W</td>
<td>55</td>
<td>0</td>
<td>0%</td>
<td>LA County</td>
</tr>
<tr>
<td>HD-7</td>
<td>Unknown</td>
<td>N26E</td>
<td>87</td>
<td>0</td>
<td>0%</td>
<td>LA County</td>
</tr>
<tr>
<td>HD-8</td>
<td>Unknown</td>
<td>N19E</td>
<td>92</td>
<td>0</td>
<td>0%</td>
<td>LA County</td>
</tr>
<tr>
<td>HD-9</td>
<td>Unknown</td>
<td>N34E</td>
<td>76</td>
<td>0</td>
<td>0%</td>
<td>LA County</td>
</tr>
<tr>
<td>HD-10</td>
<td>Unknown</td>
<td>N19E</td>
<td>55</td>
<td>0</td>
<td>0%</td>
<td>LA County</td>
</tr>
<tr>
<td>HD-11</td>
<td>Unknown</td>
<td>N11E</td>
<td>78</td>
<td>45</td>
<td>18%</td>
<td>LA County</td>
</tr>
<tr>
<td>HD-12</td>
<td>Unknown</td>
<td>N08E</td>
<td>70</td>
<td>0</td>
<td>0%</td>
<td>LA County</td>
</tr>
<tr>
<td>HD-13</td>
<td>Unknown</td>
<td>N09E</td>
<td>79</td>
<td>0</td>
<td>0%</td>
<td>LA County</td>
</tr>
<tr>
<td>HD-14</td>
<td>Unknown</td>
<td>N08E</td>
<td>80</td>
<td>0</td>
<td>0%</td>
<td>LA County</td>
</tr>
<tr>
<td>HD-15</td>
<td>Unknown</td>
<td>N14E</td>
<td>82</td>
<td>0</td>
<td>0%</td>
<td>LA County</td>
</tr>
<tr>
<td>HD-16</td>
<td>Unknown</td>
<td>N15E</td>
<td>69</td>
<td>0</td>
<td>0%</td>
<td>LA County</td>
</tr>
<tr>
<td>HD-17</td>
<td>150</td>
<td>N15E</td>
<td>150</td>
<td>0</td>
<td>0%</td>
<td>BYA</td>
</tr>
<tr>
<td>HD-18</td>
<td>150</td>
<td>N18E</td>
<td>150</td>
<td>0</td>
<td>0%</td>
<td>BYA</td>
</tr>
<tr>
<td>HD-19</td>
<td>150</td>
<td>N10E</td>
<td>150</td>
<td>0</td>
<td>0%</td>
<td>BYA</td>
</tr>
<tr>
<td>HD-20</td>
<td>150</td>
<td>N09W</td>
<td>150</td>
<td>69</td>
<td>27%</td>
<td>BYA</td>
</tr>
<tr>
<td>HD-21</td>
<td>150</td>
<td>N22E</td>
<td>150</td>
<td>18</td>
<td>7%</td>
<td>BYA</td>
</tr>
<tr>
<td>HD-22</td>
<td>180</td>
<td>N13E</td>
<td>180</td>
<td>124</td>
<td>48%</td>
<td>Fugro West</td>
</tr>
<tr>
<td>HD-23</td>
<td>160</td>
<td>N01E</td>
<td>160</td>
<td>0</td>
<td>0%</td>
<td>Fugro West</td>
</tr>
</tbody>
</table>

Note: * Measured on 4/1/98 (except HD-22 and HD-23 installed 1/22/05)

DEWATERING WELL/HYDRAUGER INFORMATION
Malibu Road Landslide Assessment District
Malibu, California

PLATE B-1
DEWATERING WELL GRAPH
Discharge Rates for Malibu Road Dewatering Wells
Malibu Road Landslide Assessment District
Malibu, California
DEWATERING WELL GRAPH
Discharge Rates for Bayshore Drive Dewatering Wells
Malibu Road Landslide Assessment District
Malibu, California

Same Chart at Different Scale
Discharge Rates for all Hydraugers (West End)

HYDRAUGER GRAPH

Malibu Road Landslide Assessment District
Malibu, California
Malibu, California
Malibu Road Landslide Assessment District
Discharge Rates for all Hydraugers (East End)

HYDRAUGER GRAPH
Discharge Rates for all Hydraugers (East End)
Malibu Road Landslide Assessment District
Malibu, California
APPENDIX C
SLOPE INCLINOMETER DATA
MALIBU ROAD LAD - Slope Inclinometer Interpretation Summary

<table>
<thead>
<tr>
<th></th>
<th>SI-1 (MR06-1)</th>
<th>SI-1A (MR06-2)</th>
<th>SI-2A (MR06-3)</th>
<th>SI-3 (MR06-4)</th>
<th>SI-4</th>
<th>SI-4A</th>
<th>SI-5</th>
<th>SI-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth (ft.)</td>
<td>34</td>
<td>50</td>
<td>64</td>
<td>64</td>
<td>49</td>
<td>43</td>
<td>50</td>
<td>78</td>
</tr>
<tr>
<td>Install Date</td>
<td>Apr-98</td>
<td>Aug-98</td>
<td>Apr-98</td>
<td>Apr-98</td>
<td>Apr-98</td>
<td>Aug-98</td>
<td>Apr-98</td>
<td>Apr-98</td>
</tr>
<tr>
<td>A+ Axis orientation (deg)</td>
<td>184</td>
<td>197</td>
<td>201</td>
<td>200</td>
<td>190</td>
<td>204</td>
<td>204</td>
<td>176</td>
</tr>
<tr>
<td>Casing</td>
<td>RST</td>
<td>SI</td>
<td>RST</td>
<td>RST</td>
<td>RST</td>
<td>SI</td>
<td>SI</td>
<td>SI</td>
</tr>
<tr>
<td>Installer</td>
<td>BYA</td>
<td>FWA</td>
<td>BYA</td>
<td>BYA</td>
<td>BYA</td>
<td>BYA</td>
<td>Fugro</td>
<td>BYA</td>
</tr>
<tr>
<td>Interpreted Rupture Depth (ft)</td>
<td>30-32</td>
<td>30-32</td>
<td>28-32</td>
<td>28-32</td>
<td>35-38</td>
<td>32-34</td>
<td>32-34</td>
<td>unknown</td>
</tr>
<tr>
<td>Status</td>
<td>D</td>
<td>F</td>
<td>D</td>
<td>F</td>
<td>D</td>
<td>F</td>
<td>D</td>
<td>F</td>
</tr>
<tr>
<td>Reading Interval</td>
<td>Quarterly</td>
<td>Quarterly</td>
<td>Quarterly</td>
<td>Quarterly</td>
<td>Quarterly</td>
<td>Quarterly</td>
<td>Quarterly</td>
<td>Quarterly</td>
</tr>
<tr>
<td>Interpretation Movement (inches)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012-2013</td>
<td>NR</td>
<td>--</td>
<td>NR</td>
<td>--</td>
<td>NR</td>
<td>NR</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2011-2012</td>
<td>NR</td>
<td>--</td>
<td>NR</td>
<td>--</td>
<td>NR</td>
<td>NR</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2010-2011</td>
<td>NR</td>
<td>--</td>
<td>NR</td>
<td>--</td>
<td>NR</td>
<td>0.6</td>
<td>NR</td>
<td>--</td>
</tr>
<tr>
<td>2009-2010</td>
<td>NR</td>
<td>--</td>
<td>NR</td>
<td>--</td>
<td>NR</td>
<td>NR</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2008-2009</td>
<td>NR</td>
<td>--</td>
<td><0.1 (4)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2007-2006</td>
<td>NR</td>
<td>--</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2006-2007</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2005-2005</td>
<td>0.5 (3)</td>
<td>NR</td>
<td>0.4</td>
<td>NR</td>
<td>>1.6</td>
<td>0.4 to 0.5</td>
<td>NR</td>
<td>~0.2</td>
</tr>
<tr>
<td>2003-2004 (1)</td>
<td>--</td>
<td>NR</td>
<td>--</td>
<td>NR</td>
<td>--</td>
<td>NR</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2002-2003</td>
<td>--</td>
<td>0.2</td>
<td>NR</td>
<td>~0.1</td>
<td>NR</td>
<td>--</td>
<td>NR</td>
<td>--</td>
</tr>
<tr>
<td>2001-2002</td>
<td>--</td>
<td>NR</td>
<td>--</td>
<td>NR</td>
<td>--</td>
<td>NR</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2000-2001</td>
<td>0.5</td>
<td>NR</td>
<td>0.4</td>
<td>NR</td>
<td>0.3</td>
<td>0.6</td>
<td>NR</td>
<td>--</td>
</tr>
<tr>
<td>1999-2000</td>
<td>--</td>
<td>NR</td>
<td>--</td>
<td>NR</td>
<td>--</td>
<td>NR</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>1998-1999</td>
<td>3.1</td>
<td>NR</td>
<td>1.5</td>
<td>NR</td>
<td>4.1</td>
<td>1.3 (2)</td>
<td>NR</td>
<td>--</td>
</tr>
</tbody>
</table>

NOTES:
- D Destroyed
- F Functioning
- N No information
- (1) Readings only through March 2004
- (2) Readings are through 2000, although majority of movement occurred in 1998
- (3) Inclinometer sheared off in January, 2005.
- (4) Inclinometer sheared off winter of 2009.
- NR No reading
- ~ No clearly defined interpreted movement
- ~0.1 * Indicated displacement is less than reliable instrument accuracy. Interpreted movement is theoretical.
Sets marked * include zero shift and/or rotation corrections.

\VENWEST06\DATA6\MANAGEMENT\3399_MALIBU\3399-004_MALIBU_ROAD\03_DATA\SI_DATA\2012-2013\SI-1A.GTL
Fugro West, Inc. - Ventura, CA

MALIBU ROAD, Inclinometer SI-1A

Sets marked * include zero shift and/or rotation corrections.

\VENWEST06\DATA\MANAGEMENT\3399_MALIBU\3399-004_MALIBU_ROAD\03_DATA\SI_DATA\2012-2013\SI-1A.GTL
MALIBU ROAD, Inclinometer SI-2A

Depth of Readings = 50 ft

Sets marked * include zero shift and/or rotation corrections.

\VENWEST06\DATA\MANAGEMENT\3399_MALIBU\3399-004_MALIBU_ROAD\03_DATA\SI_DATA\2012-2013\SI-2A.GTL

PLATE C-3a
MALIBU ROAD, Inclinometer SI-2A

Depth of Readings = 50 ft

Sets marked * include zero shift and/or rotation corrections.
Sets marked * include zero shift and/or rotation corrections.

\VENWEST06\DATA6\MANAGEMENT\3399_MALIBU\3399-004_MALIBU_ROAD\03_DATA\SI_DATA\2012-2013\SI-4A.GTL
Malibu Road Landslide Assessment District, City of Malibu
Project No. 04.B3399004

Fugro West, Inc. - Ventura, CA

DEFLECTION VS DEPTH

LEGEND
Initial 21 May 2012*
6 Sep 2012*
20 Nov 2012
27 Feb 2013
29 May 2013*

Ref. Elevation 59.3 ft

Cumulative Deflection
Direction A

Incremental Deflection
Direction A

MALIBU ROAD, Inclinometer SI-5

Depth of readings = 78 ft

Sets marked * include zero shift and/or rotation corrections.

\VENWEST06\DATA6\MANAGEMENT\3399_MALIBU\3399-004_MALIBU_ROAD\03_DATA\SI_DATA\2012-2013\SI-5.GTL

PLATE C-5a
Fugro West, Inc. - Ventura, CA

LEGEND

Initial 20 May 2005*
3 Aug 2005*
3 Feb 2006*
10 Aug 2006*
1 Feb 2007*
7 Aug 2007*
6 Nov 2007*
13 Feb 2008*
8 May 2008*
10 Nov 2008*
2 Apr 2009*
5 Jun 2009*
27 Aug 2009*
19 Nov 2009*
25 Feb 2010*
13 May 2010*
18 Aug 2010*
13 Jan 2011*
26 May 2011*
30 Aug 2011*
20 Dec 2011*
7 Mar 2012*
21 May 2012*
6 Sep 2012*
Ref. Elevation 59.3 ft
20 Nov 2012
27 Feb 2013
29 May 2013*

MALIBU ROAD, Inclinometer SI-5

Depth of readings = 78 ft

Sets marked * include zero shift and/or rotation corrections.

\VENWEST06\DATA6\MANAGEMENT\3399_MALIBU\3399-004_MALIBU_ROAD\03_DATA\SI_DATA\2012-2013\SI-5.GTL

PLATE C-5b
MALIBU ROAD, Inclinometer SI-6

Depth of readings = 78 ft

Sets marked * include zero shift and/or rotation corrections.

Fugro West, Inc. - Ventura, CA

Ref. Elevation 58.0 ft

\VENWEST06\DATA6\MANAGEMENT\3399_MALIBU\3399-004_MALIBU_ROAD\03_DATA\SI_DATA\2012-2013\SI-6.GTL
MALIBU ROAD, Inclinometer SI-6

Depth of readings = 78 ft

Sets marked * include zero shift and/or rotation corrections.

\VENWEST06\DATA6\MANAGEMENT\3399_MALIBU\3399-004_MALIBU_ROAD\03_DATA\SI_DATA\2012-2013\SI-6.GTL

PLATE C-6b