ANNUAL REPORT
JULY 2009 THROUGH JUNE 2010
CALLE DEL BARCO
LANDSLIDE ASSESSMENT DISTRICT
MALIBU, CALIFORNIA

Prepared for:
CITY OF MALIBU

May 2011
Fugro Job No. 04.B3399005
May 25, 2011
Project No. 3399.005

City of Malibu
23815 Stuart Ranch Road
Malibu, California 90265

Attention: Mr. Rob Duboux

Subject: Annual Report, July 2009 through June 2010, Calle del Barco Landslide
Assessment District, Malibu, California

Dear Mr. Duboux:

Fugro is pleased to present this annual report for the Calle del Barco Landslide
Assessment District. This report summarizes the monitoring and maintenance activities
completed during the period of July 2009 through June 2010.

Fugro appreciates this opportunity to be of service to the City of Malibu and the District
homeowners. Please contact us at our office if you have any questions regarding this report.

Sincerely,

FUGRO CONSULTANTS, INC.

Alexis M. Spencer, E.I.T.
Project Engineer, Project Manager

Christopher W. Dean.
Associate Engineering Geologist

Copies Submitted: (1) Addressee and 1-CD
(1) City of Malibu Geology & Soils Staff

A member of the Fugro group of companies with offices throughout the world.
CONTENTS

1.0 INTRODUCTION .. 1
 1.1 Authorization .. 1
 1.2 Background ... 1
 1.3 Scope of Work ... 1
 1.4 Report Organization ... 2
 1.5 Report Availability .. 2

2.0 MONITORING .. 2
 2.1 Rainfall Data .. 2
 2.2 Groundwater Monitoring .. 2
 2.2.1 Standpipe Piezometers .. 3
 2.2.2 Pneumatic Piezometers ... 3
 2.2.3 Groundwater Level Discussion ... 3
 2.3 Dewatering Production .. 4
 2.3.1 Dewatering Well Production ... 4
 2.3.2 Hydrauger Production .. 4
 2.4 Slope Inclinometer Measurement ... 4

3.0 FACILITY MAINTENANCE ... 5
 3.1 Maintenance Summary .. 5
 3.2 New Dewatering Facilities .. 5

4.0 SUMMARY AND CONCLUSIONS .. 5
 4.1 Summary ... 5

5.0 REFERENCES ... 7

TABLES

Page

1. Summary of Average Groundwater Elevations by Area ... 4
2. Maintenance Activities ... 5

PLATES

Plate

Site Location Map .. 1
Assessment District Map .. 2
Malibu Area Monthly and Annual Rainfall ... 3
Dewatering Graph ... 4
Summary Graph: Groundwater Levels, Dewatering, & Rainfall 5
CONTENTS - CONTINUED

APPENDICES

APPENDIX A GROUNDWATER DATA

Pneumatic Piezometer Information ... Plate A-1
Calle del Barco Groundwater Levels ... Plate A-2
Groundwater Hydrograph - Rambla Vista ... Plate A-3
Groundwater Hydrograph - Calle del Barco .. Plate A-4
Groundwater Hydrograph - Rambla Pacifico .. Plate A-5

APPENDIX B DEWATERING DATA

Well and Hydrauger Information ... Plate B-1
Dewatering Well Graph - Rambla Orienta & Slope Plate B-2
Dewatering Well Graph - Calle del Barco & Rambla Pacifico Plate B-3
Hydrauger Graph ... Plate B-4

APPENDIX C SLOPE INCLINOMETER DATA

Summary of Slope Inclinometers ... Plate C-1
Calle del Barco 2008-2009, SI-4 through SI-16 ... Plates C-2 through C-12
1.0 INTRODUCTION

1.1 AUTHORIZATION

Fugro prepared this data report in accordance with our contract with the City of Malibu (City), commencing July 2010.

1.2 BACKGROUND

The Calle del Barco Landslide Assessment District (Assessment District) was established in 1986 by the County of Los Angeles following the activation of a landslide between Rambla Orienta and Calle del Barco in 1978. The Assessment District provides permanent funding to maintain and monitor dewatering facilities with the purpose of stabilizing the landslide. The County administered the Assessment District until 1991 when the City of Malibu incorporated. Since then, the City has administered the Assessment District, utilizing consultants to maintain and monitor the district facilities.

1.3 SCOPE OF WORK

This annual report summarizes the monitoring and maintenance of the geotechnical instrumentation and dewatering facilities for the period between July 1, 2009, and June 30, 2010 (hereinafter, the "monitoring period").

Data collected during this monitoring period included the following:

- Annual rainfall data from a local rain gauge operated by the County of Los Angeles, Department of Public Works - Water Resources Division;
- Monthly groundwater level measurements from 9 standpipe piezometers and 22 pneumatic piezometers;
- Monthly dewatering production readings from 11 dewatering wells;
- Monthly dewatering production readings from 8 horizontal drains;
- Quarterly ground deformation measurements from 11 slope inclinometers; and
- Periodic maintenance of dewatering and monitoring facilities.

The operating condition of the instrumentation and dewatering facilities was checked at each field monitoring/observation location and by evaluating preliminary data in the office as they were received. Maintenance was performed as needed, based upon the field observations and preliminary data evaluation.

The scope of services include monitoring and maintenance of the Assessment District facilities. The services provided on an annual basis for the Assessment District do not include an engineering evaluation of the stability of the landslide.
1.4 REPORT ORGANIZATION

This report summarizes the monitoring data collected during the monitoring period and presents conclusions regarding the annual monitoring results. The location of the Assessment District is illustrated on Plate 1 - Site Location Map. Locations of the geotechnical instrumentation are shown on Plate 2 - Assessment District Map. Tabulated and graphic summaries of monitoring data are presented in Appendices A through C.

1.5 REPORT AVAILABILITY

The annual Assessment District reports are available for review at Malibu City Hall and the Malibu Library. Reports may also be viewed on the City’s website at http://www.malibucity.org.

2.0 MONITORING

2.1 RAINFALL DATA

Rainfall totals were tabulated based on recorded values from the Los Angeles County Rainfall Station 1239 - located at Big Rock Mesa. A combination graph of historical and annual cumulative monthly rainfall totals is shown on Plate 3 - Rainfall Graph.

Rainfall data indicate that approximately 17.97 inches of precipitation fell during the monitoring period from July 2009 through June 2010. The average rainfall total from 1968 to 2010 in the Malibu area for the period July through June is approximately 16.05 inches.

Rainfall data is usually analyzed in terms of the annual "rain season" that covers the time period October 1 through September 30. Rainfall for October 1, 2009, through June 30, 2010, was approximately 17.97 inches. This is approximately 107 percent of the average rainfall total of 16.8 inches for the rain seasons of 1968 through 2010.

2.2 GROUNDWATER MONITORING

The groundwater-monitoring data collected during this monitoring period are summarized in Appendix A. Groundwater levels fluctuate throughout the year and from year to year in response to natural and man-made influences. The primary natural influence is varying precipitation. Man-made influences include:

- Infiltration from septic systems;
- Infiltration from irrigation;
- Alterations to surface drainage by grading, landscaping, storm drains, and rain gutters;
- Accidental water discharges from leaking utilities (water, irrigation, sewer, storm drain) and swimming pools; and
- Dewatering activities including pumping dewatering wells and hydraugers.
Typically, groundwater levels rise relatively quickly following significant rainfall and gradually lower after a wet season ends. Groundwater levels measured in standpipe piezometers (wells) and pneumatic piezometers are depicted in Appendix A. Groundwater levels recorded in the Assessment District typically peak around late March to mid April and gradually decline from late September through November.

2.2.1 Standpipe Piezometers

Nine standpipe piezometers (SI-4, SI-5, SI-7, SI-8, SI-9, SI-13, SI-14, SI-15, and SI-16) were measured over the monitoring period. The locations of the standpipe piezometers are shown on Plate 2 and hydrographs are presented in Appendix A.

2.2.2 Pneumatic Piezometers

Each of the inclinometers installed within the Assessment District after 1996 were outfitted with two to four pneumatic piezometer sensors. Twenty-two sensors were measured regularly over the monitoring period. Each sensor records groundwater elevations by measuring differential air pressure between the instrument sensor and groundwater surface across a flexible bladder. Differential pressure is converted into inches of water head, and represented as a relative groundwater level. The locations of the piezometers are given on Plate 2, and hydrographs are given in Appendix A.

2.2.3 Groundwater Level Discussion

The groundwater data were reviewed by evaluating changes that occurred during the current monitoring period as well as changes in groundwater levels over extended periods. To analyze trends in seasonal groundwater fluctuations, the average (mean) annual and highest annual recorded groundwater elevation for each piezometer were calculated (Appendix A, Plate A-2).

Groundwater levels in individual piezometers were low relative to the previous year, with annual average groundwater elevations generally lower than the prior year averages. Average and peak groundwater levels for Rambla Vista and Rambla Orienta were generally at or above levels relative to the previous year except for SI-7. Piezometers showed groundwater levels at the levels from the prior year, but still below average. Measured groundwater levels around Calle del Barco were at or below average in standpipes and piezometers, except for SI-15. Measured groundwater levels around Rambla Pacifico were below levels for the prior year and were generally below normal levels. Overall, groundwater levels still show a general decline from the record rainfall of the 2004-2005 monitoring period. The average and highest annual groundwater levels are indicated in the following table:
Table 1. Summary of Average Groundwater Elevations by Area

<table>
<thead>
<tr>
<th>Location</th>
<th>Average Groundwater Elevation</th>
<th>Change from Prior Period</th>
<th>Peak Groundwater Elevation</th>
<th>Change from Peak Prior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rambla Orienta/ Rambla Vista</td>
<td>160.4</td>
<td>-0.1</td>
<td>162.7</td>
<td>+0.7</td>
</tr>
<tr>
<td>Calle del Barco</td>
<td>255.1</td>
<td>0.0</td>
<td>256.5</td>
<td>+0.1</td>
</tr>
<tr>
<td>Rambla Pacifico</td>
<td>335.7</td>
<td>-0.5</td>
<td>336.4</td>
<td>-0.4</td>
</tr>
</tbody>
</table>

All Units are in feet

2.3 DEWATERING PRODUCTION

Dewatering production data are provided in Appendix B, with dewatering well and hydrauger information presented on Plate B-1.

2.3.1 Dewatering Well Production

The average total well production rate for this monitoring period was approximately 590 gallons per day (gpd). This represents an increase of about 19 percent from the previous monitoring period of 494 gpd. A graph of the production rate for all dewatering wells is presented on Plate 4. Graphs showing production rates of individual wells are provided in Appendix B.

2.3.2 Hydrauger Production

The total production rate for all hydraugers from August 1991 through June 2010 is depicted on Plate 4. Hydrauger production rates for individual hydraugers are presented on Plate B-4 (Appendix B). Additional data regarding hydraugers and production rates are included in Appendix B.

The average hydrauger production rate for all hydraugers over the monitoring period was approximately 99 gpd. This represents a decrease of approximately 16 percent over last year’s hydrauger production rate of 119 gpd.

2.4 SLOPE INCLINOMETER MEASUREMENT

Fugro monitored 11 slope inclinometers on a quarterly basis to observe subsurface ground deformation. Plots of slope inclinometer measurements (two plots for each monitored slope inclinometer) are presented in Appendix C. The first plot has a baseline reading from the final round of monitoring in the 2008 through 2009 monitoring year, showing ground movement within the 2009 through 2010 monitoring year. The second plot has a baseline reading from the spring of 2005 following heavy rains, which led to significant ground movement in winter and
spring of 2005. Only inclinometer readings that have been checksum validated are presented on the data plots\(^1\).

When reviewing and interpreting the slope inclinometer data plots instrument limitations and movement history should be considered. Individual plots have been reviewed and interpreted with regard to movement along identified slide planes. Interpreted movement along the identified slide planes is summarized on Plate C-1. Slope indicator plots show no signs of movement along identified slide planes during the 2009 through 2010 monitoring year.

During previous years, SI-13 (located on Rambla Pacifico above and outside the deep landslide) showed a variable pattern of compression in the upper 30 feet. However, no significant observable lateral displacement has been associated with this compression. This slope inclinometer may need to be replaced or the City may wish to consider other types of monitoring observations in order to further monitor or characterize conditions in that area.

3.0 FACILITY MAINTENANCE

3.1 MAINTENANCE SUMMARY

The operating status of each dewatering well and hydrauger was checked monthly. When necessary, repair work was scheduled and undertaken as expeditiously as possible, typically within a matter of a few hours to a few days of identifying a problem. Generally, repairs and maintenance consisted of well pump and electrical repairs, and cleanout of the hydrauger system. These repairs are summarized in the following table:

<table>
<thead>
<tr>
<th>Date</th>
<th>Facility</th>
<th>Work Performed</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/18/2009</td>
<td>DWW</td>
<td>Clean out well vaults</td>
</tr>
<tr>
<td>2/9/2010</td>
<td>DWW</td>
<td>Clean out well vaults</td>
</tr>
<tr>
<td>4/13/2010</td>
<td>W-M</td>
<td>Readjust W-M, damaged in surficial slide</td>
</tr>
</tbody>
</table>

3.2 NEW DEWATERING FACILITIES

No new facilities were installed during the monitoring period.

4.0 SUMMARY AND CONCLUSIONS

4.1 SUMMARY

- This year’s rainfall was above average with 17.97 inches of precipitation. Rainfall during the monitoring period was above the historical average.

\(^1\) Checksums are a data validation technique for slope inclinometers where the '0' (downslope) and ‘180’ (upslope) readings are summed and the theoretical result should be zero.
• In general, groundwater levels in the assessment district area were lower than average for Rambla Orienta, and near or above average for Rambla Vista and Calle del Barco. Groundwater levels generally are continuing to decrease from the levels observed in the record winter of 2004 through 2005.

• In the standpipe piezometers, groundwater levels were generally near or lower than groundwater levels in 1998 when major slope failure occurred.

• Total dewatering production increased about 13 percent when compared to last year’s total production.

• Slope inclinometer readings indicate no significant ground movement.

• Additional dewatering facilities are recommended in order to increase the dewatering capacity of the landslide stabilization system. Plate 5 indicates decreased production from hydraugers. Over time, hydraugers become clogged and less efficient at removal of water by gravity. Replacement hydraugers should be considered for Rambla Orienta.

• Water conservation is encouraged throughout the Calle del Barco area to reduce infiltration of domestic water and the potential for future groundwater level increases. Control of groundwater levels within the landslide area is critical to maintaining the stability of the landslides.

• Groundwater production from existing dewatering wells and hydraugers should be expected to gradually decline over time as the efficiency of the wells and hydraugers decrease due to mineralization and aging of the facilities.
5.0 REFERENCES

_____ (1992), 'First Quarter Observation Report: Instrumentation and Dewatering Facilities at Calle del Barco, Puerco Beach, and Latigo Canyon Landslide Sites,' dated April 7.

PLATES
SITE LOCATION MAP
2008 through 2009 Annual Report
Calle del Barco Landslide Assessment District
Malibu, California
Average Annual Rainfall
40 Year Average=16.1 in.

Malibu Area Monthly and Annual Rainfall
DEWATERING GRAPH
(Total Output - All Wells & Hydraugers)

Calle del Barco Landslide Assessment District, City of Malibu
Project No. 3399.005

PLATE 4
SUMMARY GRAPH

Calle Del Barco
Groundwater Levels, Dewatering, & Rainfall

* Graph shows the average of the highest groundwater elevations recorded in each well/piezometer during the monitoring period.
<table>
<thead>
<tr>
<th>Piezometer ID</th>
<th>Tip No.</th>
<th>Surface Elev. (ft)</th>
<th>Tip depth (ft)</th>
<th>Tip Elev. (ft)</th>
<th>Installed By</th>
</tr>
</thead>
<tbody>
<tr>
<td>SI-9</td>
<td>1</td>
<td>298</td>
<td>71</td>
<td>227</td>
<td>BYA</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>41</td>
<td>257</td>
<td>BYA</td>
</tr>
<tr>
<td>SI-10</td>
<td>1</td>
<td></td>
<td>64</td>
<td>138</td>
<td>BYA</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>54</td>
<td>148</td>
<td>BYA</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>44</td>
<td>158</td>
<td>BYA</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td>24</td>
<td>178</td>
<td>BYA</td>
</tr>
<tr>
<td>SI-11</td>
<td>1</td>
<td></td>
<td>60</td>
<td>231.5</td>
<td>BYA</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>50</td>
<td>241.5</td>
<td>BYA</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>40</td>
<td>251.5</td>
<td>BYA</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td>20</td>
<td>271.5</td>
<td>BYA</td>
</tr>
<tr>
<td>SI-12</td>
<td>1</td>
<td></td>
<td>60</td>
<td>241</td>
<td>BYA</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>50</td>
<td>251</td>
<td>BYA</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>40</td>
<td>261</td>
<td>BYA</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td>20</td>
<td>281</td>
<td>BYA</td>
</tr>
<tr>
<td>SI-13</td>
<td>1</td>
<td></td>
<td>70</td>
<td>335</td>
<td>BYA</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>50</td>
<td>355</td>
<td>BYA</td>
</tr>
<tr>
<td>SI-14</td>
<td>1</td>
<td></td>
<td>68</td>
<td>330</td>
<td>BYA</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>48</td>
<td>350</td>
<td>BYA</td>
</tr>
<tr>
<td>SI-15</td>
<td>1</td>
<td></td>
<td>66</td>
<td>238</td>
<td>BYA</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>36</td>
<td>268</td>
<td>BYA</td>
</tr>
<tr>
<td>SI-16</td>
<td>1</td>
<td></td>
<td>70</td>
<td>228</td>
<td>BYA</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>40</td>
<td>258</td>
<td>BYA</td>
</tr>
</tbody>
</table>
Calle del Barco - Summary of Groundwater Data

| Piezometer I.D. | 91-92 | 92-93 | 93-94 | 94-95 | 95-96 | 96-97 | 97-98 | 98-99 | 99-00 | 00-01 | 01-02 | 02-03 | 03-04 | 04-05 | 05-06 | 06-07 | 07-08 | 08-09 | 09-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | 18-19 |
|----------------|
| **Rambla Vista** |
SI-4	Mean El.	158.1	158.2	158.3	158.5	159.0	159.5	159.3	159.7	160.0	160.8	161.0	161.0	161.4	161.7	162.0	162.2	162.3	162.2	162.0	162.1	162.1	162.0	162.0	162.0	
Mean El.	158.0	158.1	158.2	158.4	158.8	159.2	159.5	159.7	160.0	160.7	161.0	161.0	161.3	161.7	162.0	162.2	162.3	162.2	162.0	162.1	162.1	162.0	162.0	162.0		
SI-7	Mean El.	117.5	117.6	117.6	117.8	118.0	118.3	118.4	118.7	119.0	119.6	119.9	120.0	120.4	120.7	121.0	121.2	121.3	121.2	121.0	121.1	121.1	121.0	121.0	121.0	
Mean El.	117.4	117.5	117.6	117.8	118.0	118.3	118.4	118.7	119.0	119.6	119.9	120.0	120.4	120.7	121.0	121.2	121.3	121.2	121.0	121.1	121.1	121.0	121.0	121.0		
SI-10	Mean El.	128.7	128.8	128.8	129.0	129.2	129.4	129.5	129.8	130.0	130.6	130.9	131.0	131.4	131.7	132.0	132.2	132.2	132.1	132.0	132.1	132.1	132.0	132.0	132.0	
Mean El.	128.6	128.7	128.8	129.0	129.2	129.4	129.5	129.8	130.0	130.6	130.9	131.0	131.4	131.7	132.0	132.2	132.2	132.1	132.0	132.1	132.1	132.0	132.0	132.0		
SI-14	Mean El.	95.9	96.0	96.0	96.2	96.5	96.8	96.9	97.2	97.4	98.0	98.3	98.4	98.8	99.1	99.4	99.7	99.7	99.6	99.5	99.4	99.3	99.3	99.2	99.1	99.0
Mean El.	95.8	95.9	96.0	96.2	96.5	96.8	96.9	97.2	97.4	98.0	98.3	98.4	98.8	99.1	99.4	99.7	99.7	99.6	99.5	99.4	99.3	99.3	99.2	99.1	99.0	

Table Data

- **SI-4**: Mean El. 158.1 vs. 158.0, Dev. 0.1, El. Range 0.3
- **SI-7**: Mean El. 117.5 vs. 117.4, Dev. 0.1, El. Range 0.3
- **SI-10**: Mean El. 128.7 vs. 128.6, Dev. 0.1, El. Range 0.4
- **SI-14**: Mean El. 95.9 vs. 95.8, Dev. 0.1, El. Range 0.3

Change vs. Previous Year

- **SI-4**: Mean El. 158.1 vs. 158.0, Dev. 0.1, El. Range 0.3
- **SI-7**: Mean El. 117.5 vs. 117.4, Dev. 0.1, El. Range 0.3
- **SI-10**: Mean El. 128.7 vs. 128.6, Dev. 0.1, El. Range 0.4
- **SI-14**: Mean El. 95.9 vs. 95.8, Dev. 0.1, El. Range 0.3

Change vs. Previous Year

- **SI-4**: Mean El. 158.1 vs. 158.0, Dev. 0.1, El. Range 0.3
- **SI-7**: Mean El. 117.5 vs. 117.4, Dev. 0.1, El. Range 0.3
- **SI-10**: Mean El. 128.7 vs. 128.6, Dev. 0.1, El. Range 0.4
- **SI-14**: Mean El. 95.9 vs. 95.8, Dev. 0.1, El. Range 0.3

Summary

- **SI-4**: Mean El. 158.1 vs. 158.0, Dev. 0.1, El. Range 0.3
- **SI-7**: Mean El. 117.5 vs. 117.4, Dev. 0.1, El. Range 0.3
- **SI-10**: Mean El. 128.7 vs. 128.6, Dev. 0.1, El. Range 0.4
- **SI-14**: Mean El. 95.9 vs. 95.8, Dev. 0.1, El. Range 0.3

Notes

- For a detailed view, please refer to the attached file: [Calle del Barco Groundwater Levels.xls](#)

PLATE A-2

Barco Groundwater Levels.xls
GROUNDWATER HYDROGRAPH
Rambla Vista

Observation Date

Water Elevation (feet)

Note: Gaps in data represent missed readings due to site construction.
GROUNDWATER HYDROGRAPH
Rambla Pacifico

Note: SI-13, SI-14 installed Sept. 1998
* SI-14 Tip2 not plotted. Tip above water level.
APPENDIX B
DEWATERING DATA
CALLE DEL BARCO - Dewatering Well Information

<table>
<thead>
<tr>
<th>Well ID</th>
<th>Vault Elevation (ft.)</th>
<th>Bottom Elevation (ft.)</th>
<th>Pump Elevation (ft.)</th>
<th>Pump Size (hp)</th>
<th>2009-2010 Pumping Rate (gpd)</th>
<th>% of Total Well Production</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>W-A</td>
<td>196.0</td>
<td>Unknown</td>
<td>45.0</td>
<td>1/2</td>
<td>22</td>
<td>3%</td>
<td></td>
</tr>
<tr>
<td>W-B</td>
<td>204.0</td>
<td>Unknown</td>
<td>54.0</td>
<td>1/2</td>
<td>7</td>
<td>1%</td>
<td></td>
</tr>
<tr>
<td>W-C</td>
<td>295.0</td>
<td>Unknown</td>
<td>233.0</td>
<td>1/2</td>
<td>101</td>
<td>16%</td>
<td></td>
</tr>
<tr>
<td>W-D</td>
<td>297.0</td>
<td>Unknown</td>
<td>Unknown</td>
<td>none</td>
<td>24</td>
<td>4%</td>
<td>dry - no pump</td>
</tr>
<tr>
<td>W-E</td>
<td>215.0</td>
<td>Unknown</td>
<td>116.5</td>
<td>1/2</td>
<td>52</td>
<td>8%</td>
<td></td>
</tr>
<tr>
<td>W-F</td>
<td>210.0</td>
<td>109.0</td>
<td>112.0</td>
<td>1/2</td>
<td>52</td>
<td>8%</td>
<td></td>
</tr>
<tr>
<td>W-G</td>
<td>292.0</td>
<td>222.0</td>
<td>223.0</td>
<td>1/3</td>
<td>0</td>
<td>0%</td>
<td>dry</td>
</tr>
<tr>
<td>W-H</td>
<td>299.5</td>
<td>234.5</td>
<td>242.5</td>
<td>1/3</td>
<td>4</td>
<td>1%</td>
<td></td>
</tr>
<tr>
<td>W-I</td>
<td>298.0</td>
<td>238.0</td>
<td>248.0</td>
<td>1/3</td>
<td>62</td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td>W-J</td>
<td>304.0</td>
<td>244.0</td>
<td>254.0</td>
<td>1/3</td>
<td>126</td>
<td>20%</td>
<td></td>
</tr>
<tr>
<td>W-K</td>
<td>430.0</td>
<td>370.0</td>
<td>380.0</td>
<td>1/3</td>
<td>87</td>
<td>14%</td>
<td></td>
</tr>
<tr>
<td>W-L</td>
<td>258.0</td>
<td>189.0</td>
<td>192.5</td>
<td>1/2</td>
<td>1</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>W-M</td>
<td>302.0</td>
<td>237.0</td>
<td></td>
<td></td>
<td>104</td>
<td>16%</td>
<td></td>
</tr>
</tbody>
</table>

Note: * Average pumping rate during this monitoring period

CALLE DEL BARCO - Hydrauger Information

<table>
<thead>
<tr>
<th>Hydrauger ID</th>
<th>Installed Length (ft.)</th>
<th>Functional Length** (ft)</th>
<th>2009-2010 Flow Rate* (gpd)</th>
<th>% of Total Production</th>
<th>Installed By</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>HD-1</td>
<td>93</td>
<td>unknown</td>
<td>0</td>
<td>0%</td>
<td>BYA</td>
<td></td>
</tr>
<tr>
<td>HD-2</td>
<td>127</td>
<td>unknown</td>
<td>0</td>
<td>0%</td>
<td>BYA</td>
<td></td>
</tr>
<tr>
<td>HD-3</td>
<td>155</td>
<td>unknown</td>
<td>0</td>
<td>0%</td>
<td>BYA</td>
<td></td>
</tr>
<tr>
<td>HD-4</td>
<td>80</td>
<td>unknown</td>
<td>0</td>
<td>0%</td>
<td>BYA</td>
<td></td>
</tr>
<tr>
<td>HD-5</td>
<td>65</td>
<td>unknown</td>
<td>0</td>
<td>0%</td>
<td>BYA</td>
<td></td>
</tr>
<tr>
<td>HD-6</td>
<td>97</td>
<td>unknown</td>
<td>0</td>
<td>0%</td>
<td>BYA</td>
<td></td>
</tr>
<tr>
<td>HD-7</td>
<td>227</td>
<td>unknown</td>
<td>0</td>
<td>0%</td>
<td>BYA</td>
<td></td>
</tr>
<tr>
<td>HD-8</td>
<td>290</td>
<td>unknown</td>
<td>0</td>
<td>0%</td>
<td>BYA</td>
<td></td>
</tr>
<tr>
<td>HD-9</td>
<td>230</td>
<td>unknown</td>
<td>0</td>
<td>0%</td>
<td>BYA</td>
<td></td>
</tr>
<tr>
<td>HD-10</td>
<td>330</td>
<td>unknown</td>
<td>0</td>
<td>0%</td>
<td>BYA</td>
<td></td>
</tr>
<tr>
<td>HD-11</td>
<td>230</td>
<td>unknown</td>
<td>0</td>
<td>0%</td>
<td>BYA</td>
<td></td>
</tr>
<tr>
<td>HD-12</td>
<td>330</td>
<td>unknown</td>
<td>0</td>
<td>0%</td>
<td>BYA</td>
<td></td>
</tr>
<tr>
<td>HD-13</td>
<td>210</td>
<td>unknown</td>
<td>51</td>
<td>51%</td>
<td>BYA</td>
<td></td>
</tr>
<tr>
<td>H-1</td>
<td>240</td>
<td>unknown</td>
<td>48</td>
<td>49%</td>
<td>LA County</td>
<td></td>
</tr>
<tr>
<td>H-2</td>
<td>180</td>
<td>unknown</td>
<td>0</td>
<td>0%</td>
<td>LA County</td>
<td></td>
</tr>
<tr>
<td>ROWH-1</td>
<td>--</td>
<td>unknown</td>
<td>0</td>
<td>0%</td>
<td>BYA</td>
<td>diverted from H-2</td>
</tr>
<tr>
<td>H-3**</td>
<td>235</td>
<td>unknown</td>
<td>0</td>
<td>0%</td>
<td>LA County</td>
<td></td>
</tr>
<tr>
<td>H-4**</td>
<td>140</td>
<td>unknown</td>
<td>0</td>
<td>0%</td>
<td>LA County</td>
<td></td>
</tr>
<tr>
<td>H-5**</td>
<td>260</td>
<td>unknown</td>
<td>0</td>
<td>0%</td>
<td>LA County</td>
<td></td>
</tr>
<tr>
<td>H-6**</td>
<td>140</td>
<td>unknown</td>
<td>0</td>
<td>0%</td>
<td>LA County</td>
<td></td>
</tr>
<tr>
<td>H-7**</td>
<td>205</td>
<td>unknown</td>
<td>0</td>
<td>0%</td>
<td>LA County</td>
<td></td>
</tr>
</tbody>
</table>

Note: * Average flow rate during this monitoring period
** Destroyed in 1998 Landslide
HYDRAUGER GRAPH
Discharge Rates for all Hydraugers

Flow Rate (gpd)

Jan-91 Jan-92 Jan-93 Jan-94 Jan-95 Jan-96 Jan-97 Jan-98 Jan-99 Jan-00 Jan-01 Jan-02 Jan-03 Jan-04 Jan-05 Jan-06 Jan-07 Jan-08 Jan-09 Jan-10 Jan-11
APPENDIX C
SLOPE INCLINOMETER DATA
CALLE DEL BARCO - Slope Inclinometer Interpretation Summary

<table>
<thead>
<tr>
<th>Installation Details</th>
<th>Surface Elev. (ft.) 4/00</th>
<th>Original DEPTH (ft.)</th>
<th>Current DEPTH (ft.)</th>
<th>STATUS</th>
<th>READING INTERVAL</th>
<th>DATE OF INSTALLATION</th>
<th>DATE FIRST BASE READING</th>
<th>DEPTH of MOVEMENT (ft.)**</th>
<th>A+ Axis orientation</th>
<th>Interpretation Movement (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SI-1</td>
<td>295.0</td>
<td>64.0</td>
<td>64.0</td>
<td>D</td>
<td>Qrtly</td>
<td>NA</td>
<td>NA</td>
<td>21-28</td>
<td>0</td>
<td>2009-2010</td>
</tr>
<tr>
<td>SI-1A</td>
<td>297.0</td>
<td>N/A</td>
<td>N/A</td>
<td>D</td>
<td>Qrtly</td>
<td>3/13/98</td>
<td>12/22/97</td>
<td>40, 68-70</td>
<td>38.0</td>
<td>NA</td>
</tr>
<tr>
<td>SI-2**</td>
<td>298.0</td>
<td>N/A</td>
<td>N/A</td>
<td>D</td>
<td>Qrtly</td>
<td>3/12/98</td>
<td>3/16/98</td>
<td>15.0</td>
<td>28.0</td>
<td>2008-2009</td>
</tr>
<tr>
<td>SI-3</td>
<td>207.0</td>
<td>N/A</td>
<td>N/A</td>
<td>D</td>
<td>Qrtly</td>
<td>3/12/98</td>
<td>3/12/98</td>
<td>46.0</td>
<td>20.0</td>
<td>NA</td>
</tr>
<tr>
<td>SI-6</td>
<td>200.0</td>
<td>N/A</td>
<td>N/A</td>
<td>D</td>
<td>Qrtly</td>
<td>8/1/99</td>
<td>12/23/98</td>
<td>0.22</td>
<td>220.0</td>
<td>2005-2006</td>
</tr>
<tr>
<td>SI-7</td>
<td>335.0</td>
<td>100.0</td>
<td>100.0</td>
<td>D</td>
<td>Qrtly</td>
<td>3/16/98</td>
<td>10/12/98</td>
<td>0.4</td>
<td>220.0</td>
<td>2004-2005</td>
</tr>
<tr>
<td>SI-8</td>
<td>298.0</td>
<td>130.0</td>
<td>130.0</td>
<td>D</td>
<td>Qrtly</td>
<td>3/13/98</td>
<td>10/12/98</td>
<td>0.5</td>
<td>220.0</td>
<td>2003-2004</td>
</tr>
<tr>
<td>SI-9</td>
<td>202.0</td>
<td>100.0</td>
<td>100.0</td>
<td>D</td>
<td>Qrtly</td>
<td>3/12/98</td>
<td>10/12/98</td>
<td><0.1</td>
<td>220.0</td>
<td>2002-2003</td>
</tr>
<tr>
<td>SI-10</td>
<td>291.5</td>
<td>60.0</td>
<td>60.0</td>
<td>D</td>
<td>Qrtly</td>
<td>9/1998</td>
<td>10/12/98</td>
<td><0.1</td>
<td>220.0</td>
<td>2001-2002</td>
</tr>
<tr>
<td>SI-11</td>
<td>301.0</td>
<td>60.0</td>
<td>60.0</td>
<td>D</td>
<td>Qrtly</td>
<td>3/12/98</td>
<td>10/12/98</td>
<td><0.1</td>
<td>220.0</td>
<td>2000-2001</td>
</tr>
<tr>
<td>SI-12</td>
<td>405.0</td>
<td>60.0</td>
<td>60.0</td>
<td>D</td>
<td>Qrtly</td>
<td>9/1998</td>
<td>10/12/98</td>
<td><0.1</td>
<td>220.0</td>
<td>1999-2000</td>
</tr>
<tr>
<td>SI-13</td>
<td>398.0</td>
<td>60.0</td>
<td>60.0</td>
<td>D</td>
<td>Qrtly</td>
<td>3/12/98</td>
<td>10/12/98</td>
<td><0.1</td>
<td>220.0</td>
<td>1998-1999</td>
</tr>
<tr>
<td>SI-14</td>
<td>304.0</td>
<td>60.0</td>
<td>60.0</td>
<td>D</td>
<td>Qrtly</td>
<td>3/12/98</td>
<td>10/12/98</td>
<td><0.1</td>
<td>220.0</td>
<td>1997-1998</td>
</tr>
<tr>
<td>SI-15</td>
<td>295.0</td>
<td>60.0</td>
<td>60.0</td>
<td>D</td>
<td>Qrtly</td>
<td>3/12/98</td>
<td>10/12/98</td>
<td><0.1</td>
<td>220.0</td>
<td>1996-1997</td>
</tr>
<tr>
<td>SI-16</td>
<td>295.0</td>
<td>60.0</td>
<td>60.0</td>
<td>D</td>
<td>Qrtly</td>
<td>3/12/98</td>
<td>10/12/98</td>
<td><0.1</td>
<td>220.0</td>
<td>1995-1996</td>
</tr>
</tbody>
</table>

KEY:
- **D:** Destroyed
- **F:** Functioning
- **B:** New baseline in 1999
- **NI:** No information

NOTES:
- * Original SI-1 installed in 1978, and was destroyed.
- SI-65 (installed in 1979) was renamed to SI-1
- ** Original SI-2 installed in 1978, and was destroyed.
- SI-90 (installed in 1979) was renamed to SI-2
- *** Referenced to current depth of SI (see above note)

NB: SI-4, SI-7, and SI-10 were extended 6 feet upwards during reconstruction of the road in 1999.
Calle del Barco Landslide Assessment District, City of Malibu
Project No. 3399.005

Calle del Barco Landslide Assessment District, City of Malibu
Project No. 3399.005

CALLE DEL BARCO, Inclinometer SI-4

Depth of readings = 78 ft

Sets marked * include zero shift and/or rotation corrections.
CALLE DEL BARCO, Inclinometer SI-4

Depth of readings = 78 ft

Sets marked * include zero shift and/or rotation corrections.
CALLE DEL BARCO, Inclinometer SI-5

Depth of readings = 96 ft

Sets marked * include zero shift and/or rotation corrections.
CALLE DEL BARCO, Inclinometer SI-5

Depth of readings = 96 ft

Sets marked * include zero shift and/or rotation corrections.
Calle del Barco Landslide Assessment District, City of Malibu
Project No. 3399.005

Fugro West, Inc. - Ventura, CA

CALLE DEL BARCO, Inclinometer SI-8

Depth of readings = 128 ft

Sets marked * include zero shift and/or rotation corrections.
CALLE DEL BARCO, Inclinometer SI-8

Depth of readings = 128 ft

Sets marked * include zero shift and/or rotation corrections.
Calle del Barco Landslide Assessment District, City of Malibu
Project No. 3399.005

Fugro West, Inc. - Ventura, CA

Legend:
- Initial 23 Jun 2009*
- 28 Aug 2009*
- 15 Dec 2009*
- 9 Feb 2010*
- 7 May 2010*

Depth of Readings = 96 ft

Sets marked * include zero shift and/or rotation corrections.

CALLE DEL BARCO, Inclinometer SI-9

Depth of Readings = 96 ft

PLATE C-5a
CALLE DEL BARCO, Inclinometer SI-9

Depth of Readings = 96 ft

Sets marked * include zero shift and/or rotation corrections.
CALLE DEL BARCO, Inclinometer SI-10

Depth of readings = 62 ft

Sets marked * include zero shift and/or rotation corrections.

E:\Malibu AD\Calle del Barco\SI Data\SI10.gtl
Calle del Barco Landslide Assessment District, City of Malibu
Project No. 3399.005

Fugro West, Inc. - Ventura, CA

CALLE DEL BARCO, Inclinometer SI-10

Depth of readings = 62 ft

Sets marked * include zero shift and/or rotation corrections.
CALLE DEL BARCO, Inclinometer SI-11

Depth of readings = 57 ft

Sets marked * include zero shift and/or rotation corrections.

LEGEND
Initial 23 Jun 2009*
28 Aug 2009*
15 Dec 2009*
4 May 2010*
CALLE DEL BARCO, Inclinometer SI-11

Depth of readings = 57 ft

Sets marked * include zero shift and/or rotation corrections.
CALLE DEL BARCO, Inclinometer SI-12

Depth of readings = 56 ft

Sets marked * include zero shift and/or rotation corrections.
CALLE DEL BARCO, Inclinometer SI-12

Depth of readings = 56 ft

Sets marked * include zero shift and/or rotation corrections.
Calle del Barco Landslide Assessment District, City of Malibu
Project No. 3399.005

Fugro West, Inc. - Ventura, CA

LEGEND

Initial 8 Jun 2009*
23 Sep 2009*
3 Nov 2009*
7 May 2010*

Cumulative Deflection Direction A
Deflection (in)

Depth (ft)
Ref. Elevation 405 ft

Depth of readings = 78 ft
Sets marked * include zero shift and/or rotation corrections.

CALLE DEL BARCO, Inclinometer SI-13

Incremental Deflection Direction A
Deflection (in)

PLATE C-9a
CALLE DEL BARCO, Inclinometer SI-13

Depth of readings = 78 ft

Sets marked * include zero shift and/or rotation corrections.
CALLE DEL BARCO, Inclinometer SI-14

Depth of readings = 76 ft

Sets marked * include zero shift and/or rotation corrections.
Calle del Barco Landslide Assessment District, City of Malibu
Project No. 3399.005

CALLE DEL BARCO, Inclinometer SI-14

Depth of readings = 76 ft

Sets marked * include zero shift and/or rotation corrections.
CALLE DEL BARCO, Inclinometer SI-15

Depth of readings = 72 ft

Sets marked * include zero shift and/or rotation corrections.
CALLE DEL BARCO, Inclinometer SI-15

Depth of readings = 72 ft

Sets marked * include zero shift and/or rotation corrections.
CALLE DEL BARCO, Inclinometer SI16

Depth of readings = 86 ft

Sets marked * include zero shift and/or rotation corrections.
CALLE DEL BARCO, Inclinometer SI16

Depth of readings = 86 ft

Sets marked * include zero shift and/or rotation corrections.

E:\Malibu AD\Calle del Barco\SI Data\SI16.gtl