FUGRO

Annual Report
July 2017 Through June 2018
Calle Del Barco Landslide
Assessment District
Malibu, California

March 2019
Fugro Project No. 04.62160605
Document No. 04.62160605-PR-002(Rev.00)

City of Malibu

Final
FUGRO

Annual Report
July 2017 Through June 2018
Calle Del Barco Landslide
Assessment District
Malibu, California

March 2019
Fugro Project No. 04.62160605
Document No. 04.62160605-PR-002(Rev.00)

Final

Prepared for: City of Malibu
23825 Stuart Ranch Road
Malibu, California 90265

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Status</th>
<th>Prepared</th>
<th>Reviewed</th>
<th>Approved</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Final</td>
<td>DT</td>
<td>MOP</td>
<td>MOP</td>
<td>March 8, 2019</td>
</tr>
<tr>
<td>A</td>
<td>Draft for Review</td>
<td>DT</td>
<td>MOP</td>
<td>MOP</td>
<td>February 12, 2019</td>
</tr>
</tbody>
</table>
Fugro is pleased to present this annual report for the Calle del Barco Landslide Assessment District. This report summarizes the monitoring and maintenance activities completed during the period of July 2017 through June 2018.

Fugro appreciates the opportunity to be of service to the City of Malibu and the District homeowners. Please contact David Thornhill or Matt Pollard at (805) 650-7000 if you have any questions regarding this report.

Sincerely,

Fugro USA Land, Inc.

David Thornhill, P.E.
Project Engineer/Lead Technician

Matthew Q. Pollard, P.E.
Associate Engineer/Project Manager

Distribution: (1) Addressee and PDF
(1) City of Malibu - Geotechnical staff and PDF
CONTENTS

1. **INTRODUCTION** .. 1
1.1 Authorization ... 1
1.2 Background ... 1
1.3 Scope of Work ... 1
1.4 Report Organization .. 2
1.5 Report Availability ... 2

2. **MONITORING** .. 3
2.1 Rainfall Data ... 3
2.2 Groundwater Monitoring ... 3
 2.2.1 Standpipe Piezometers .. 4
 2.2.2 Pneumatic Piezometers .. 4
 2.2.3 Groundwater Level Discussion .. 4
2.3 Dewatering Production .. 6
 2.3.1 Total Dewatering Production ... 6
 2.3.2 Dewatering Well Production ... 6
 2.3.3 Hydrauger Production ... 7
2.4 Slope Inclinometer Measurements ... 7

3. **FACILITY MAINTENANCE** ... 8
3.1 Maintenance Summary ... 8
3.2 Capital Improvement Projects ... 8

4. **SUMMARY AND CONCLUSIONS** .. 9

5. **REFERENCES** ... 10
TABLES

Table 1. Summary of Average Groundwater Elevations by Area...6
Table 2. Summary of Facility Maintenance ..8

PLATES

Site Location Map..1
Assessment District Map...2
Rainfall Graph..3
Total Discharge - Wells and Hydraulers..4
Groundwater Levels, Dewatering and Rainfall ...5
APPENDICES

A GROUNDWATER DATA
Piezometer Information ... Plate A-1
Summary of Groundwater Data ... Plate A-2
Groundwater Hydrograph - Rambla Vista Plate A-3
Groundwater Hydrograph - Calle Del Barco Plate A-4
Groundwater Hydrograph - Rambla Pacifico Plate A-5

B DEWATERING DATA
Dewatering Well / Hydrauger Information Plate B-1
Dewatering Well Graph - Rambla Orienta and Slope Plate B-2
Dewatering Well Graph - Calle Del Barco and Rambla Pacifico Plate B-3
Hydrauger Discharge Rate Graph-Rambla Orienta Plate B-4
Hydrauger Discharge Rate Graph-Landslide Toe Plate B-5

C SLOPE INCLINOMETER DATA
Summary of Slope Inclinometers .. Plate C-1
SI-4 – Cumulative and Incremental Displacement (A Direction)...... Plate C-2a
SI-4 – Cumulative and Incremental Displacement (B Direction)...... Plate C-2b
SI-4 – Displacement vs. Time (A Direction) Plate C-2c
SI-4 – Displacement vs. Time (B Direction) Plate C-2d
SI-5 – Cumulative and Incremental Displacement (A Direction)...... Plate C-3a
SI-5 – Cumulative and Incremental Displacement (B Direction)...... Plate C-3b
SI-5 – Displacement vs. Time (A Direction) Plate C-3c
SI-5 – Displacement vs. Time (B Direction) Plate C-3d
SI-7 – Cumulative and Incremental Displacement (A Direction)...... Plate C-4a
SI-7 – Cumulative and Incremental Displacement (B Direction)...... Plate C-4b
SI-7 – Displacement vs. Time (A Direction) Plate C-4c
SI-7 – Displacement vs. Time (B Direction) Plate C-4d
SI-8 – Cumulative and Incremental Displacement (A Direction)...... Plate C-5a
SI-8 – Cumulative and Incremental Displacement (B Direction)...... Plate C-5b
SI-8 – Displacement vs. Time (A Direction) Plate C-5c
SI-8 – Displacement vs. Time (B Direction) Plate C-5d
SI-9 – Cumulative and Incremental Displacement (A Direction)...... Plate C-6a
SI-9 – Cumulative and Incremental Displacement (B Direction)...... Plate C-6b
SI-9 – Displacement vs. Time (A Direction) Plate C-6c
SI-9 – Displacement vs. Time (B Direction) Plate C-6d
SI-10 – Cumulative and Incremental Displacement (A Direction)... Plate C-7a
SI-10 – Cumulative and Incremental Displacement (B Direction)... Plate C-7b
SI-10 – Displacement vs. Time (A Direction) Plate C-7c
SI-10 – Displacement vs. Time (B Direction) Plate C-7d
SI-11 – Cumulative and Incremental Displacement (A Direction)... Plate C-8a
SI-11 – Cumulative and Incremental Displacement (B Direction) .. Plate C-8b
SI-11 – Displacement vs. Time (A Direction) ... Plate C-8c
SI-11 – Displacement vs. Time (B Direction) ... Plate C-8d
SI-12 – Cumulative and Incremental Displacement (A Direction) Plate C-9a
SI-12 – Cumulative and Incremental Displacement (B Direction) Plate C-9b
SI-12 – Displacement vs. Time (A Direction) ... Plate C-9d
SI-12 – Displacement vs. Time (B Direction) ... Plate C-9d
SI-13 – Cumulative and Incremental Displacement (A Direction) Plate C-10a
SI-13 – Cumulative and Incremental Displacement (B Direction) Plate C-10b
SI-13 – Displacement vs. Time (A Direction) ... Plate C-10c
SI-13 – Displacement vs. Time (B Direction) ... Plate C-10d
SI-14 – Cumulative and Incremental Displacement (A Direction) Plate C-11a
SI-14 – Cumulative and Incremental Displacement (B Direction) Plate C-11b
SI-14 – Displacement vs. Time (A Direction) ... Plate C-11c
SI-14 – Displacement vs. Time (B Direction) ... Plate C-11d
SI-15 – Cumulative and Incremental Displacement (A Direction) Plate C-12a
SI-15 – Cumulative and Incremental Displacement (B Direction) Plate C-12b
SI-15 – Displacement vs. Time (A Direction) ... Plate C-12c
SI-15 – Displacement vs. Time (B Direction) ... Plate C-12d
SI-16 – Cumulative and Incremental Displacement (A Direction) Plate C-13a
SI-16 – Cumulative and Incremental Displacement (B Direction) Plate C-13b
SI-16 – Displacement vs. Time (A Direction) ... Plate C-13c
SI-16 – Displacement vs. Time (B Direction) ... Plate C-13d
1. INTRODUCTION

1.1 Authorization

Fugro prepared this data report in accordance with our contract with the City of Malibu (City) and consistent with the cost estimate document "Exhibit A - FY 2017-2018 Maintenance Cost Estimate" presented in the Annual Assessment Report (Taussig, 2017).

1.2 Background

The Calle del Barco Landslide Assessment District (Assessment District) was established in 1986 by the County of Los Angeles (County) following the activation of a landslide between Rambla Orienta and Calle del Barco in 1978. The Assessment District provides permanent funding to maintain and monitor dewatering facilities with the purpose of stabilizing the landslide. The County administered the Assessment District until 1991 when the City of Malibu incorporated. The Assessment District was reauthorized in May 1998 under Resolution No. 98-033. The City has since administered the Assessment District, utilizing consultants to maintain and monitor the district facilities.

1.3 Scope of Work

This annual report summarizes the monitoring and maintenance of the geotechnical instrumentation and dewatering facilities for the period between July 1, 2017, and June 30, 2018 (herein after, the 'monitoring period').

Data collected during this monitoring period included the following:

- Annual rainfall data from a local rain gauge operated by the County of Los Angeles, Department of Public Works - Water Resources Division;
- Monthly groundwater level measurements from 9 standpipes;
- Periodic groundwater level measurements from 19 pneumatic piezometers;
- Monthly dewatering production readings from 11 dewatering wells;
- Monthly dewatering production readings from 11 horizontal drains;
- Quarterly to Semi-Annual ground deformation measurements from 12 slope inclinometers; and
- Periodic maintenance of dewatering and monitoring facilities.

Fugro staff checked the operating condition of the instrumentation and dewatering facilities at each field monitoring/observation location and by evaluating preliminary data in the office as information was received. Maintenance was performed as needed, based on field observations, preliminary data evaluation and correspondence from concerned homeowners and tenants.

The scope of our services is limited to monitoring and maintaining the Assessment District facilities. The services that are provided on an annual basis for the Assessment District do not include geologic or engineering evaluations of the stability of the landslide.
1.4 Report Organization

This report summarizes the monitoring data collected during the July 1, 2017 to June 30, 2018 monitoring period and presents conclusions regarding the annual monitoring results. The location of the Assessment District is illustrated on Plate 1 - Site Location Map. Locations of the geotechnical instrumentation facilities are shown on Plate 2 - Assessment District Map. Tabulated and graphic summaries of monitoring data are presented in Appendices A through C as indicated in the table of contents.

1.5 Report Availability

The annual Assessment District reports are available for review at Malibu City Hall. Reports may also be viewed on the City's website at http://www.malibucity.org.
2. MONITORING

2.1 Rainfall Data

A graph of historical monthly rainfall and average annual rainfall from October 1968 through September 30, 2018, is shown on Plate 3 - Rainfall Graph. Monthly rainfall totals from 1968 through 2004 were obtained from County of Los Angeles Department of Public Works (LADPW) Carbon Canyon Rain Station 447C and monthly rainfall totals from 2004 to the present were obtained from LADPW Big Rock Mesa Rain Gauge 1239.

Rainfall data indicate that approximately 7.36 inches of precipitation fell during the monitoring period from July 1, 2017, through June 30, 2018. The average annual rainfall from 1968 to 2018 in the "Malibu Area" for the same months is approximately 15.4 inches.

However, rainfall data are usually analyzed in terms of the annual "rain season" that covers the time period between October 1 through September 30. Rainfall for October 1, 2017 through September 30, 2018, was approximately 7.36 inches. That is approximately 47 percent of the average annual rainfall of 15.69 inches for the "rain seasons" between 1968 and 2018.

Plate 5 – Groundwater Levels, Dewatering, and Rainfall shows the yearly magnitude of deviation of each years’ rainfall relative to the mean annual rainfall. The graphic also shows the average annual dewatering output in gallons per day (gpd). The data illustrate that the average annual dewatering output is generally consistent with average rainfall.

2.2 Groundwater Monitoring

The groundwater level data collected during the current monitoring period are summarized in Appendix A and a summary graph of annual mean high groundwater elevations for the Assessment District is included as part of Plate 5. Groundwater levels fluctuate throughout the year and from year-to-year in response to natural and man-made influences. The primary natural influence is varying precipitation. Man-made influences include:

- Infiltration from septic systems;
- Infiltration from irrigation;
- Alterations to surface drainage by, for example, grading, landscaping, storm drains and rain gutters;
- Accidental water discharges from leaking utilities such as water, irrigation, sewer, and storm drain lines as well as swimming pools; and
- Dewatering activities from pumping dewatering wells and hydraulers.

Typically, groundwater levels rise relatively quickly following significant rainfall and gradually lower after a wet season ends. Groundwater levels recorded in the Assessment District have typically peaked around late-March to mid-April and gradually decline from late September through November.
2.2.1 Standpipe Piezometers
Nine standpipe piezometers (SI-4, SI-5, SI-7, SI-8, SI-9, SI-13, SI-14, SI-15, and SI-16) were measured over the monitoring period. Standpipe piezometers are constructed from a length of pipe, usually PVC, inserted into a borehole and then backfilled in place with grout, sand or other approved backfill materials. The pipe contains perforations along selected depth intervals that allow groundwater to enter from the formation and fill the pipe to a height equivalent to the water head at the perforated interval. Some of the standpipes in Calle del Barco may be perforated along most of their length and are therefore effective at measuring the average water head at their location, which is typically the equivalent of the water table. Other standpipes are perforated only at the bottom five feet of the casing and measure water head specific to that depth interval. The water level inside piezometers is measured directly by lowering an electric sounder down the standpipe into contact with the water surface. The locations of the standpipe piezometers are depicted on Plate 2 - Assessment District Map, and groundwater elevation data are presented in Appendix A.

2.2.2 Pneumatic Piezometers
Inclinometer casings installed within the Assessment District after 1996 were outfitted with between two and four pneumatic piezometer sensors, also referred to as ‘Tips’, nested at varying depths along the length of the inclinometer casing. Each sensor records the saturated pore water pressure at its nested depth by measuring differential air pressure between the instrument sensor and the groundwater surface across a flexible bladder. Differential pressure is converted into water head, which is translated to a relative groundwater elevation. Measuring pore pressures at specific elevations along a vertical profile can be used to measure flow gradients for groundwater migrating through the formation above and within the water table and to infer the presence of perched or confined groundwater zones.

With the exception of SI-16 installed in 2003, the District's pneumatic sensors were installed in 1998 or earlier. Over time, some of the sensors and their air-line tubing have developed leaks or become occluded, resulting in inconsistent results especially when reading low pore pressures. Due to the inconsistent data and generally historical low groundwater levels, the pneumatic piezometers were monitored only intermittently during the 2017-2018 monitoring period.

The locations of the piezometers are shown on Plate 2 and groundwater elevation data are presented in Appendix A. The results of the pneumatic piezometer readings are presented along with standpipe measurements in Appendix A.

2.2.3 Groundwater Level Discussion
General. Groundwater data were reviewed by evaluating changes that occurred within each of three geographic areas delineated within the Calle del Barco Landslide limits. Groundwater elevations within each of the three areas were compared to the previous and current monitoring period as well as to levels over extended periods. To analyze trends in seasonal groundwater fluctuations, the average (mean) annual and highest annual recorded groundwater elevation for each piezometer were calculated and compared with those of previous years (Appendix A, Plate A-2).
Rambla Vista. Groundwater elevation data for the Rambla Vista Area are presented in Plate A-3. Groundwater levels for this area are monitored using standpipes SI-4 and SI-7 and the pneumatic piezometers attached to Inclinometer SI-10. In general, groundwater elevations in the Rambla Vista Area remained relatively constant during the 2017-2018 monitoring period. The calculated area average (160.2 ft) was equal to the area average for the 2016-2017 monitoring period and is about 7.5 feet lower than the mean water level elevation for this area for the period of record (1991-2018).

Groundwater levels measured in standpipe SI-4 remained relatively stable throughout the monitoring year with the exception of an anomalous reading in May 2018 that was approximately nine feet higher than the average elevation for the monitoring period. Groundwater elevations in SI-7 remained relatively constant. Pore pressure readings in pneumatic piezometer SI-10 Tip 3 and Tip 4 measured 0 PSI. Pneumatic piezometer SI-10 Tip 3 has read 0 PSI since September 2006 and Tip 4 has read 0 PSI since installation. It is believed that Tip 3 and Tip 4 are functioning, but are reading zero due to the groundwater elevation being lower than the piezometer tip elevation. SI-10 Tip 2 is clogged and non-functional and was last readable in January 2010. SI-10 Tip 1 decreased throughout the monitoring year.

Calle Del Barco. Groundwater data for the Calle del Barco Area is presented on Plate A-4. Groundwater levels for this area are monitored using standpipe piezometers SI-5, SI-8, SI-9, SI-15, and SI-16 and pneumatic piezometers attached to inclinometers SI-9, SI-11, SI-12, SI-15, and SI-16. In general, groundwater elevations in the Calle del Barco Area for the 2017-2018 monitoring period decreased approximately 0.2 feet from the 2016-2017 monitoring period. The Calle del Barco area remains approximately 13.5 feet below the mean water level elevation for this area over the period of record.

Water levels in all of the individual standpipe piezometers remained relatively constant throughout the monitoring year with the exception of an anomalous reading in SI-5 in May 2018 that was approximately ten feet higher than the average elevation for the monitoring period. Pneumatic piezometers remained relatively constant throughout the monitoring year.

Rambla Pacífico. Groundwater data for the Rambla Pacífico Area are presented on Plate A-5. Groundwater levels for this area are monitored using standpipe piezometers SI-13 and SI-14 along with two pneumatic piezometers installed within each of those standpipes. In general, groundwater elevations in the Rambla Pacífico Area for the 2017-2018 monitoring period remained relatively constant. The calculated area average increased by 0.1 feet when compared to the 2016-2017 monitoring period and is 4.8 feet below the mean water level elevation for the area for the period of record.

Water levels in SI-13 continued to decline slightly throughout the monitoring period and is at an all-time low for the period of record. SI-14 experienced minor fluctuations throughout the monitoring period, but ended at near an all-time low for the period of record. Pneumatic Piezometers SI-13 Tip 1 has read 0 PSI since May 2017. It is believed that Tip 1 is functioning, but is reading zero due to the groundwater elevation being lower than the piezometer tip elevation. SI-13 Tip 2 and SI-14 Tip 1 remained relatively constant throughout the monitoring period. The shallow pneumatic piezometer (Tip 2) in SI-14 has been dry since installation and no data are reported.
Dewatering well W-K, located within the Rambla Pacifico Area near SI-13 has a reported bottom elevation of 370 feet and has been dry since December 2015.

Summary. Groundwater levels in individual piezometers were generally similar to the previous year. Table 1 presents the average and highest annual groundwater levels by area. The shallow pneumatic piezometers located above the water table reflect unsaturated conditions, which indicates that there has not been sufficient recharge to maintain significant shallow perched water.

<table>
<thead>
<tr>
<th>Location</th>
<th>Average Groundwater Elevation 2017-2018</th>
<th>Change from Prior Year Average</th>
<th>Peak Groundwater Elevation 2017-2018</th>
<th>Change from Prior Year Peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rambla Vista</td>
<td>160.2</td>
<td>--</td>
<td>165.1</td>
<td>+3.6</td>
</tr>
<tr>
<td>Calle Del Barco</td>
<td>248.2</td>
<td>-0.2</td>
<td>249.7</td>
<td>--</td>
</tr>
<tr>
<td>Rambla Pacifico</td>
<td>345.8</td>
<td>+0.1</td>
<td>346.4</td>
<td>--</td>
</tr>
</tbody>
</table>

Note: All Units are in feet.

2.3 Dewatering Production

Dewatering production data are provided in Appendix B, with dewatering well and hydrauger information presented on Plate B-1. A summary of the dewatering output compared to groundwater levels and rainfall is depicted on Plate 5.

2.3.1 Total Dewatering Production

A combined graph of the total dewatering rate for the monitored dewatering wells and hydraugers is presented on Plate 4. Total dewatering production data for the measured hydraugers and wells indicates the following:

- The average total dewatering rate during the monitoring period was approximately 339 gallons per day (gpd). This represents a 31 percent decrease in the average dewatering rate relative to the 492 gpd average recorded during the previous monitoring period.

2.3.2 Dewatering Well Production

Graphs showing production rates for individual dewatering wells are provided in Appendix B. Production data for the dewatering wells indicate the following:

- The average total dewatering well production rate for this monitoring period was approximately 190 gpd. That represents a decrease of about 13 percent from the average production rate of 219 gpd for the previous monitoring period.
- The decline in dewatering well production correlates with continued decline in average groundwater levels.
- Dewatering well W-K has remained dry since December 2015.
2.3.3 **Hydrauger Production**

Graphs of production rates for individual hydraugers are included in Appendix B. Data for the hydraugers indicate the following:

- The average production rate for all hydraugers over the monitoring period is approximately 149 gpd. That represents a decrease of approximately 45 percent from the average production rate of 273 gpd for the previous monitoring period.
- Approximately 85% of the total hydrauger production for the assessment district came from hydrauger H1

2.4 **Slope Inclinometer Measurements**

Fugro monitored 10 slope inclinometers on a semi-annual basis and 2 slope inclinometers on a quarterly basis to evaluate changes in subsurface ground deformation. Plots of slope inclinometer measurements (four plots for each monitored slope inclinometer) are presented in Appendix C. The first plot shows the cumulative deflection and incremental deflection for the A-direction and the second plot shows the cumulative deflection and incremental deflection for the B-direction. Those two plots show approximately one measurement per year from about 2006 through the current monitoring year. The third and fourth plots show displacement versus time for the same period for all the measurements plotted on the A and B direction plates during that period.

When reviewing and interpreting the slope inclinometer data plots, instrument limitations and movement history should be considered. Individual plots have been reviewed and interpreted with regard to movement along identified slide planes. Interpreted movement along the identified slide planes is summarized on Plate C-1 in Appendix C. No discernible movement was detected in any inclinometers within the Calle del Barco Assessment District during the 2017-2018 monitoring year.
3. FACILITY MAINTENANCE

3.1 Maintenance Summary
The operating status of each dewatering well and hydrauger was checked monthly. When necessary, repair work was scheduled and undertaken as expeditiously as possible, typically within a matter of a few hours or days. Table 2 - Summary of Facility Maintenance provides a description of significant maintenance activities that were completed during the current monitoring period.

Table 2. Summary of Facility Maintenance

<table>
<thead>
<tr>
<th>Repair Date</th>
<th>Facility</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 27, 2017</td>
<td>Dewatering Well W-M</td>
<td>Replaced the well box at W-M</td>
</tr>
<tr>
<td>May 30, 2018</td>
<td>Dewatering Well W-M</td>
<td>Replaced pump, motor, and pipe at W-M</td>
</tr>
</tbody>
</table>

3.2 Capital Improvement Projects
No capital improvements were performed during the current monitoring period.
4. SUMMARY AND CONCLUSIONS

The status of monitoring facilities within the Calle del Barco Landslide Assessment District can be summarized as follows:

- Measured rainfall during the 2017 - 2018 monitoring year (July 1 through June 30) was 7.51 inches of precipitation. Rainfall during that monitoring period was below the “Malibu Area” historical average of 15.6 inches per monitoring year measured from 1968 through 2018.
- Average groundwater levels for all areas within the District were approximately equal to the previous year.
- In the standpipe piezometers, measured groundwater levels were lower than groundwater levels in monitoring year 1997-1998 when major slope failure occurred.
- Total dewatering production decreased about 31 percent when compared to last year’s total production. Decreased production is thought to be attributed to decreased rainfall.
- Groundwater production from existing dewatering wells and hydraugers should be expected to continually decline regardless of rainfall amounts as the efficiency of the wells and hydraugers decrease due to mineralization and aging. This may contribute to reduced rates of groundwater lowering or localized increases in groundwater levels. Periodic maintenance of the existing facilities and replacement of older, worn-out pumps should improve the efficiency of the dewatering systems throughout the year, especially during and immediately following the rainy months.
- No discernible movement was detected in any inclinometers within the Calle del Barco Assessment District during the 2017-2018 monitoring year.
- Water conservation is encouraged throughout the Calle Del Barco District to reduce the infiltration of domestic water and the potential for future groundwater level increases. Control of groundwater levels within the landslide area is a critical to maintaining the stability of the landslides.
5. REFERENCES

______(1991), 'Monitoring, Instrumentation, and Dewatering Facilities at Calle Del Barco, Puerco Beach, Latigo Canyon, and Rambla Pacifico (two wells) Landslide Sites,' dated October 4.

PLATES
SITE LOCATION MAP
Calle del Barco Landslide Assessment District
Malibu, California

PLATE 1
LEGEND
- Active Dewatering Well
- Inactive Dewatering Well
- Slope Inclinometer/Standpipe
- ROWH-1-Conveyance Line for H-2
- Horizontal Drain (Hydrauger)
- Approximate Limits of Landslide
- Assessment District Boundary
- Extent of Horizontal Drain (Hydrauger)
- Inset

Coordinate Grid: California State Plane, Zone 5, NAD 83, Feet

Scale: 1:180

Inset Map

Extent of Horizontal Drain (Hydrauger)

Coordinate Grid: California State Plane, Zone 5, NAD 83, Feet

Scale: 1:1,800

ASSESSMENT DISTRICT MAP
Calle del Barco Landslide Assessment District
Malibu, California
Monitoring Period: July 2017 - June 2018 Total: 7.51”
Rain Season Period: October 2017 - September 2018 Total: 7.36”

Average Annual Rainfall “Malibu Area”:
Monitoring Period = 15.42 in.
Rain Season = 15.69 in.
TOTAL DISCHARGE - WELLS AND HYDRAUGERS
Calle del Barco Landslide Assessment District
Malibu, California

PLATE 4
Graph shows the average of the highest groundwater elevations recorded in each well/piezometer during the monitoring period.

GROUNDWATER LEVELS, DEWATERING AND RAINFALL
Calle del Barco Landslide Assessment District
Malibu, California
APPENDIX A
GROUNDWATER DATA
CALLE DEL BARCO LAD - Standpipe Piezometer Information

<table>
<thead>
<tr>
<th>Standpipe ID</th>
<th>Reference Elevation (ft)</th>
<th>Casing Depth (ft)</th>
<th>Perforation Interval (ft)</th>
<th>Installed By</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SI-4</td>
<td>207.0</td>
<td>81.0</td>
<td>Unknown</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>SI-5</td>
<td>302.0</td>
<td>100.0</td>
<td>Unknown</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>SI-7</td>
<td>201.0</td>
<td>106.0</td>
<td>Unknown</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>SI-8</td>
<td>352.0</td>
<td>131.0</td>
<td>Unknown</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>SI-9</td>
<td>298.0</td>
<td>100.0</td>
<td>Unknown</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>SI-13</td>
<td>424.0</td>
<td>82.0</td>
<td>75-80</td>
<td>BYA</td>
<td></td>
</tr>
<tr>
<td>SI-14</td>
<td>408.0</td>
<td>80.0</td>
<td>73-78</td>
<td>BYA</td>
<td></td>
</tr>
<tr>
<td>SI-15</td>
<td>301.0</td>
<td>78.0</td>
<td>71-76</td>
<td>BYA</td>
<td></td>
</tr>
<tr>
<td>SI-16</td>
<td>297.0</td>
<td>90.0</td>
<td>Unknown</td>
<td>Unknown</td>
<td></td>
</tr>
</tbody>
</table>

CALLE DEL BARCO LAD - Pneumatic Piezometer Information

<table>
<thead>
<tr>
<th>Piezometer ID</th>
<th>Tip No.</th>
<th>Reference Elevation (ft)</th>
<th>Tip Depth (ft)</th>
<th>Tip Elev. (ft)</th>
<th>Installed By</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SI-9</td>
<td>1</td>
<td>298</td>
<td>68</td>
<td>230</td>
<td>BYA</td>
<td>functioning</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>38</td>
<td>260</td>
<td>BYA</td>
<td>0 PSI</td>
</tr>
<tr>
<td>SI-10</td>
<td>1</td>
<td>202</td>
<td>60</td>
<td>142</td>
<td>BYA</td>
<td>functioning</td>
</tr>
<tr>
<td></td>
<td>2*</td>
<td></td>
<td>50</td>
<td>152</td>
<td>BYA</td>
<td>blocked air line</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>40</td>
<td>162</td>
<td>BYA</td>
<td>0 PSI</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td>20</td>
<td>182</td>
<td>BYA</td>
<td>0 PSI</td>
</tr>
<tr>
<td>SI-11</td>
<td>1</td>
<td>291.5</td>
<td>60</td>
<td>231.5</td>
<td>BYA</td>
<td>functioning</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>50</td>
<td>241.5</td>
<td>BYA</td>
<td>functioning</td>
</tr>
<tr>
<td></td>
<td>3*</td>
<td></td>
<td>40</td>
<td>251.5</td>
<td>BYA</td>
<td>air line leak</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td>20</td>
<td>271.5</td>
<td>BYA</td>
<td>blocked air line</td>
</tr>
<tr>
<td>SI-12</td>
<td>1</td>
<td>301</td>
<td>60</td>
<td>241</td>
<td>BYA</td>
<td>functioning</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>50</td>
<td>251</td>
<td>BYA</td>
<td>functioning</td>
</tr>
<tr>
<td></td>
<td>3*</td>
<td></td>
<td>40</td>
<td>261</td>
<td>BYA</td>
<td>functioning</td>
</tr>
<tr>
<td></td>
<td>4*</td>
<td></td>
<td>20</td>
<td>281</td>
<td>BYA</td>
<td>0 PSI</td>
</tr>
<tr>
<td>SI-13</td>
<td>1</td>
<td>424</td>
<td>70</td>
<td>354</td>
<td>BYA</td>
<td>readings <0.3PSI</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>50</td>
<td>374</td>
<td>BYA</td>
<td>readings <0.3PSI</td>
</tr>
<tr>
<td>SI-14</td>
<td>1</td>
<td>408</td>
<td>68</td>
<td>340</td>
<td>BYA</td>
<td>functioning</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>48</td>
<td>360</td>
<td>BYA</td>
<td>functioning</td>
</tr>
<tr>
<td>SI-15</td>
<td>1</td>
<td>301</td>
<td>66</td>
<td>235</td>
<td>BYA</td>
<td>functioning</td>
</tr>
<tr>
<td></td>
<td>2*</td>
<td></td>
<td>36</td>
<td>265</td>
<td>BYA</td>
<td>non functioning</td>
</tr>
<tr>
<td>SI-16</td>
<td>1</td>
<td>297</td>
<td>70</td>
<td>227</td>
<td>BYA</td>
<td>functioning</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>40</td>
<td>257</td>
<td>BYA</td>
<td>functioning</td>
</tr>
</tbody>
</table>

* - Piezometer not functioning
- functionality not certain, readings not included in calculation of area averages
| Piezometer ID. | 01-02 | 91-92 | 92-93 | 93-94 | 94-95 | 95-96 | 96-97 | 97-98 | 98-99 | 99-00 | 00-01 | 01-02 | 02-03 | 03-04 | 04-05 | 05-06 | 06-07 | 07-08 | 08-09 | 09-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 | Published Data Recorded | Mean '91-’18 | Best Dev. | 17-18 vs 91-’18 | 17-18 vs Mean |
|---------------|
| TIP-1 | Mean El. | 259.9 | 262.9 | 259.4 | 257.6 | 257.6 | 257.6 | 257.6 | 258.2 | 257.6 | -- | 259.2 | 261.3 | Mar-05 | 1.8 |
| Max El. | 285.7 | 288.1 | 286.5 | 284.6 | 284.0 | 284.5 | 264.4 | 264.3 | 263.9 | 263.7 | 262.6 | 261.4 | 258.9 | 262.1 | 260.1 | 258.1 | 257.9 | 256.8 | 257.3 | 254.3 | 252.2 | 254.6 | 250.9 | 249.7 | 263.9 | 12.6 | -14.7 | 0.0 | -14.2 |
| TIP-2 | Mean El. | 275.2 | 273.9 | 272.5 | 270.9 | 268.7 | 266.9 | 267.1 | 267.1 | 269.2 | 266.7 | 266.7 | 265.2 | 264.8 | 264.6 | 263.0 | 258.9 | 259.0 | 268.3 | 257.4 | 257.7 | Jun-98 | 5.1 | -17.5 |
| Max El. | 285.7 | 288.1 | 286.5 | 284.6 | 284.0 | 284.5 | 264.4 | 264.3 | 263.9 | 263.7 | 262.6 | 261.4 | 258.9 | 262.1 | 260.1 | 258.1 | 257.9 | 256.8 | 257.3 | 254.3 | 252.2 | 254.6 | 250.9 | 249.7 | 263.9 | 12.6 | -14.7 | 0.0 | -14.2 |
| Rambla Paolo | Mean El. | 362.9 | 361.1 | 362.5 | 362.5 | 361.4 | 361.5 | 361.9 | 363.3 | 362.3 | 361.2 | 359.0 | 358.6 | 359.3 | 359.5 | 357.5 | 357.1 | -- | -- | -- | Nov-07 | 2.0 |
| Max El. | 363.2 | 362.1 | 363.2 | 363.2 | 363.2 | 362.1 | 365.5 | 364.4 | 364.4 | 367.8 | 360.3 | 359.8 | 359.8 | 360.3 | 359.2 | 359.2 | -- | -- | -- | -- | 367.8 | 2.5 |
| Rambla Vista | Mean El. | 167.8 | 168.5 | 167.0 | 165.3 | 165.7 | 165.2 | 165.7 | 167.1 | 165.3 | 164.8 | 164.2 | 164.0 | 164.2 | 163.7 | 163.4 | 164.4 | 163.9 | 163.5 | 163.1 | 168.2 | 165.7 | 168.2 | 152.4 | 151.3 | 151.3 | 151.1 | Aug-99 | 158.3 | -6.4 | -11.7 | -0.2 | -7.2 |
| Max El. | 177.4 | 179.5 | 179.0 | 179.9 | 177.6 | 177.5 | 172.8 | 175.8 | 181.2 | 171.4 | 168.4 | 166.6 | 164.4 | 166.8 | 164.4 | 166.8 | 163.8 | 163.7 | 164.4 | 171.4 | 168.8 | 166.5 | 168.4 | 165.4 | 164.6 | 161.6 | 165.2 | 6.1 | -7.6 | 3.6 |

SUMMARY OF GROUNDWATER DATA

Calle del Barco Landslide Assessment District
Malibu, California
Limited Access SI-4 and SI-7; 12/98 - 10/99
GROUNDWATER HYDROGRAPH
Rambla Pacifico
Calle del Barco Landslide Assessment District
Malibu, California

PLATE A-5
APPENDIX B
DEWATERING DATA
Dewatering Well Information

<table>
<thead>
<tr>
<th>Well ID</th>
<th>Vault Elevation (ft.)</th>
<th>Bottom Elevation (ft.)</th>
<th>Pump Elevation (ft.)</th>
<th>Pump Size (hp)</th>
<th>2017-2018 Pumping Rate (gpd)</th>
<th>% of Total Well Production</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>W-A</td>
<td>196.0</td>
<td>Unknown</td>
<td>45.0</td>
<td>1/2</td>
<td>11.6</td>
<td>6%</td>
<td></td>
</tr>
<tr>
<td>W-B</td>
<td>204.0</td>
<td>Unknown</td>
<td>54.0</td>
<td>1/2</td>
<td>3.6</td>
<td>2%</td>
<td></td>
</tr>
<tr>
<td>W-C</td>
<td>295.0</td>
<td>Unknown</td>
<td>233.0</td>
<td>1/2</td>
<td>17.8</td>
<td>9%</td>
<td></td>
</tr>
<tr>
<td>W-D*</td>
<td>297.0</td>
<td>Unknown</td>
<td>Unknown</td>
<td>none</td>
<td>0.0</td>
<td>0%</td>
<td>Destroyed '98</td>
</tr>
<tr>
<td>W-E</td>
<td>215.0</td>
<td>Unknown</td>
<td>116.5</td>
<td>1/2</td>
<td>25.9</td>
<td>14%</td>
<td></td>
</tr>
<tr>
<td>W-F</td>
<td>210.0</td>
<td>109.0</td>
<td>112.0</td>
<td>1/2</td>
<td>68.4</td>
<td>36%</td>
<td></td>
</tr>
<tr>
<td>W-G*</td>
<td>292.0</td>
<td>222.0</td>
<td>223.0</td>
<td>1/3</td>
<td>0.0</td>
<td>0%</td>
<td>No Pump</td>
</tr>
<tr>
<td>W-H</td>
<td>299.5</td>
<td>234.5</td>
<td>242.5</td>
<td>1/3</td>
<td>0.3</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>W-I</td>
<td>298.0</td>
<td>238.0</td>
<td>248.0</td>
<td>1/3</td>
<td>7.0</td>
<td>4%</td>
<td></td>
</tr>
<tr>
<td>W-J</td>
<td>304.0</td>
<td>244.0</td>
<td>254.0</td>
<td>1/3</td>
<td>23.1</td>
<td>12%</td>
<td></td>
</tr>
<tr>
<td>W-K</td>
<td>430.0</td>
<td>370.0</td>
<td>380.0</td>
<td>1/3</td>
<td>0.0</td>
<td>0%</td>
<td>Dry</td>
</tr>
<tr>
<td>W-L</td>
<td>258.0</td>
<td>189.0</td>
<td>192.5</td>
<td>1/2</td>
<td>5.6</td>
<td>3%</td>
<td></td>
</tr>
<tr>
<td>W-M</td>
<td>302.0</td>
<td>237.0</td>
<td>Unknown</td>
<td>Unknown</td>
<td>26.2</td>
<td>14%</td>
<td></td>
</tr>
</tbody>
</table>

*Note: * Non-functioning Dewatering Wells

Hydrauger Information

<table>
<thead>
<tr>
<th>Hydrauger ID</th>
<th>Installed Length (ft)</th>
<th>Functional Length (ft)</th>
<th>2017-2018 Flow Rate (gpd)</th>
<th>% of Total Production</th>
<th>Installed By</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>HD-12</td>
<td>93</td>
<td>unknown</td>
<td>0</td>
<td>0%</td>
<td>BYA</td>
<td>Destroyed per BYA (2000)</td>
</tr>
<tr>
<td>HD-2</td>
<td>127</td>
<td>unknown</td>
<td>0</td>
<td>0%</td>
<td>BYA</td>
<td>Destroyed per BYA (2000)</td>
</tr>
<tr>
<td>HD-3</td>
<td>155</td>
<td>unknown</td>
<td>0</td>
<td>0%</td>
<td>BYA</td>
<td>Destroyed per BYA (2000)</td>
</tr>
<tr>
<td>HD-4</td>
<td>80</td>
<td>unknown</td>
<td>0</td>
<td>0%</td>
<td>BYA</td>
<td>Destroyed per BYA (2000)</td>
</tr>
<tr>
<td>HD-5</td>
<td>65</td>
<td>unknown</td>
<td>0</td>
<td>0%</td>
<td>BYA</td>
<td>Destroyed per BYA (2000)</td>
</tr>
<tr>
<td>HD-6</td>
<td>97</td>
<td>unknown</td>
<td>0</td>
<td>0%</td>
<td>BYA</td>
<td>Destroyed per BYA (2000)</td>
</tr>
<tr>
<td>HD-7</td>
<td>227</td>
<td>unknown</td>
<td>0</td>
<td>0%</td>
<td>BYA</td>
<td>no production '17-'18</td>
</tr>
<tr>
<td>HD-8</td>
<td>290</td>
<td>unknown</td>
<td>0</td>
<td>0%</td>
<td>BYA</td>
<td>no production '17-'18</td>
</tr>
<tr>
<td>HD-9</td>
<td>230</td>
<td>unknown</td>
<td>0</td>
<td>0%</td>
<td>BYA</td>
<td>no production '17-'18</td>
</tr>
<tr>
<td>HD-10</td>
<td>330</td>
<td>unknown</td>
<td>0</td>
<td>0%</td>
<td>BYA</td>
<td>no production '17-'18</td>
</tr>
<tr>
<td>HD-11</td>
<td>230</td>
<td>unknown</td>
<td>0</td>
<td>0%</td>
<td>BYA</td>
<td>no production '17-'18</td>
</tr>
<tr>
<td>HD-12</td>
<td>330</td>
<td>unknown</td>
<td>0</td>
<td>0%</td>
<td>BYA</td>
<td>no production '17-'18</td>
</tr>
<tr>
<td>HD-13</td>
<td>210</td>
<td>unknown</td>
<td>25</td>
<td>17%</td>
<td>BYA</td>
<td></td>
</tr>
<tr>
<td>H-1</td>
<td>240</td>
<td>unknown</td>
<td>127</td>
<td>83%</td>
<td>LA County</td>
<td>No outlet to monitor</td>
</tr>
<tr>
<td>H-2</td>
<td>180</td>
<td>unknown</td>
<td>0</td>
<td>0%</td>
<td>LA County</td>
<td></td>
</tr>
<tr>
<td>ROWH-1</td>
<td>--</td>
<td>unknown</td>
<td>0</td>
<td>0%</td>
<td>BYA</td>
<td>discharge diverted from H-2</td>
</tr>
<tr>
<td>H-3</td>
<td>235</td>
<td>unknown</td>
<td>0</td>
<td>0%</td>
<td>LA County</td>
<td>Destroyed 1998</td>
</tr>
<tr>
<td>H-4</td>
<td>140</td>
<td>unknown</td>
<td>0</td>
<td>0%</td>
<td>LA County</td>
<td>Destroyed 1998</td>
</tr>
<tr>
<td>H-5</td>
<td>260</td>
<td>unknown</td>
<td>0</td>
<td>0%</td>
<td>LA County</td>
<td>Destroyed 1998</td>
</tr>
<tr>
<td>H-6</td>
<td>140</td>
<td>unknown</td>
<td>0</td>
<td>0%</td>
<td>LA County</td>
<td>Destroyed 1998</td>
</tr>
<tr>
<td>H-7</td>
<td>205</td>
<td>unknown</td>
<td>0</td>
<td>0%</td>
<td>LA County</td>
<td>Destroyed 1998</td>
</tr>
<tr>
<td>H-1A</td>
<td>100</td>
<td>92</td>
<td>0</td>
<td>0%</td>
<td>Fugro</td>
<td></td>
</tr>
<tr>
<td>H-2A</td>
<td>130</td>
<td>125</td>
<td>0</td>
<td>0%</td>
<td>Fugro</td>
<td></td>
</tr>
</tbody>
</table>
DEWATERING WELL DISCHARGE RATE GRAPH
Calle del Barco and Rambla Pacifico
Calle del Barco Landslide Assessment District
Malibu, California
HYDRAUGER DISCHARGE RATE GRAPH
Rambla Orienta
Calle del Barco Landslide Assessment District
Malibu, California
HYDRAUGER DISCHARGE RATE GRAPH
Landslide Toe
Calle del Barco Landslide Assessment District
Malibu, California
Plate B-5
APPENDIX C
SLOPE INCLINOMETER DATA
Slope Inclinometer Interpretation Summary

<table>
<thead>
<tr>
<th>Surface Elev. (ft)</th>
<th>Original DEPTH (ft.)</th>
<th>Current DEPTH (ft.)</th>
<th>Installation Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>SI-1*</td>
<td>295.0</td>
<td>297.0</td>
<td></td>
</tr>
<tr>
<td>SI-1A</td>
<td>298.0</td>
<td>298.0</td>
<td></td>
</tr>
<tr>
<td>SI-2**</td>
<td>207.0</td>
<td>206.0</td>
<td></td>
</tr>
<tr>
<td>SI-3</td>
<td>302.0</td>
<td>300.0</td>
<td></td>
</tr>
<tr>
<td>SI-4</td>
<td>296.0</td>
<td>295.0</td>
<td></td>
</tr>
<tr>
<td>SI-5</td>
<td>355.0</td>
<td>348.0</td>
<td></td>
</tr>
<tr>
<td>SI-6</td>
<td>202.0</td>
<td>201.5</td>
<td></td>
</tr>
<tr>
<td>SI-7</td>
<td>301.0</td>
<td>300.0</td>
<td></td>
</tr>
<tr>
<td>SI-8</td>
<td>405.0</td>
<td>400.0</td>
<td></td>
</tr>
<tr>
<td>SI-9</td>
<td>398.0</td>
<td>397.0</td>
<td></td>
</tr>
<tr>
<td>SI-10</td>
<td>304.0</td>
<td>303.0</td>
<td></td>
</tr>
<tr>
<td>SI-11</td>
<td>304.0</td>
<td>303.0</td>
<td></td>
</tr>
<tr>
<td>SI-12</td>
<td>304.0</td>
<td>303.0</td>
<td></td>
</tr>
<tr>
<td>SI-13</td>
<td>304.0</td>
<td>303.0</td>
<td></td>
</tr>
<tr>
<td>SI-14</td>
<td>304.0</td>
<td>303.0</td>
<td></td>
</tr>
<tr>
<td>SI-15</td>
<td>304.0</td>
<td>303.0</td>
<td></td>
</tr>
<tr>
<td>SI-16</td>
<td>304.0</td>
<td>303.0</td>
<td></td>
</tr>
</tbody>
</table>

Summary of Surface Elevations

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>295.0</td>
<td>297.0</td>
<td>298.0</td>
<td>207.0</td>
<td>206.0</td>
<td>302.0</td>
<td>300.0</td>
<td>296.0</td>
<td>355.0</td>
<td>202.0</td>
<td>301.0</td>
<td>405.0</td>
<td>398.0</td>
<td>304.0</td>
<td>304.0</td>
<td>304.0</td>
<td>304.0</td>
</tr>
</tbody>
</table>

Key to Interpretations

- **D**: Destroyed
- **F**: Functioning
- **B**: New baseline in 1999
- **NI**: No information
- **--**: No clearly defined interpreted movement

Notes

- Original SI-1 installed in 1978, and was destroyed.
- SI-65 (installed in 1979) was renamed to SI-1
- Original SI-2 installed in 1978, and was destroyed.
- SI-90 (installed in 1979) was renamed to SI-2

Summary of Slope Inclinometers

Calle del Barco Landslide Assessment District

Malibu, California

PLATE C-1
Assessment District 98-2, Inclinometer SI-4
City of Malibu

Sets marked * include zero shift and/or rotation corrections.

O:\Management\04_2014\04_6214_0605_Calle del Barco Assessment District 98_204\FIELD AND LAB DATA\Inclinometer Data\GTL\CDB 2017-2018\SI04.gtl
Assessment District 98-2, Inclinometer SI-4
City of Malibu
Sets marked * include zero shift and/or rotation corrections.
Displacements shown are in the A Direction

Assessment District 98-2, Inclinometer SI-4

City of Malibu
Displacements shown are in the B Direction

Assessment District 98-2, Inclinometer SI-4

City of Malibu
Assessment District 98-2, Inclinometer SI-5
City of Malibu

Sets marked * include zero shift and/or rotation corrections.

O:\Management\04_2014\04_6214_0605_Calle del Barco Assessment District 98_204_FIELD AND LAB DATA\Inclinometer Data\GTL\CDB 2017-2018\SI05.gtl
Displacements shown are in the A Direction

- 25/45 ft
- 11/45 ft
- 3/45 ft

Assessment District 98-2, Inclinometer SI-5

City of Malibu
Displacements shown are in the B Direction

Assessment District 98-2, Inclinometer SI-5

City of Malibu
Calle del Barco, Inclinometer SI-7
City of Malibu

Sets marked * include zero shift and/or rotation corrections.

Fugro West, Inc. - Ventura, CA
Calle del Barco, Inclinometer SI-7
City of Malibu

Sets marked * include zero shift and/or rotation corrections.
Displacements shown are in the A Direction

Calle del Barco, Inclinometer SI-7

City of Malibu
Displacements shown are in the B Direction

Calle del Barco, Inclinometer SI-7

City of Malibu
Assessment District 98-2, Inclinometer SI-8
City of Malibu

Sets marked * include zero shift and/or rotation corrections.

O:\Management\04_2014\04_6214_0605_Calle del Barco Assessment District 98_204_FIELD AND LAB DATA\Inclinometer Data\GTL\CDB 2017-2018\SI08.gtl
Displacements shown are in the A Direction.

Assessment District 98-2, Inclinometer SI-8

City of Malibu
Displacements shown are in the B Direction

Assessment District 98-2, Inclinometer SI-8

City of Malibu
Calle del Barco, Inclinometer SI-9
City of Malibu

Sets marked * include zero shift and/or rotation corrections.
Calle del Barco, Inclinometer SI-9
City of Malibu

Sets marked * include zero shift and/or rotation corrections.
Displacements shown are in the A Direction

Calle del Barco, Inclinometer SI-9

City of Malibu
Displacements shown are in the B Direction

Calle del Barco, Inclinometer SI-9

City of Malibu
Calle del Barco, Inclinometer SI-10
City of Malibu

Sets marked * include zero shift and/or rotation corrections.
Displacements shown are in the B Direction

Calle del Barco, Inclinometer SI-10

City of Malibu
Assessment District 98-2, Inclinometer SI-11
City of Malibu

Sets marked * include zero shift and/or rotation corrections.
Assessment District 98-2, Inclinometer SI-11
City of Malibu

Sets marked * include zero shift and/or rotation corrections.

Ref. Elevation 291.5 ft
Displacements shown are in the A Direction

Assessment District 98-2, Inclinometer SI-11

City of Malibu
Displacements shown are in the B Direction

Assessment District 98-2, Inclinometer SI-11

City of Malibu
Assessment District 98-2, Inclinometer SI-12
City of Malibu

Sets marked * include zero shift and/or rotation corrections.

O:\Management\04_2014\04_6214_0605_Calle del Barco Assessment District 98_204_FIELD AND LAB DATA\Inclinometer Data\GTL\CDB 2017-2018\SI12.gtl
Displacements shown are in the A Direction

Assessment District 98-2, Inclinometer SI-12

City of Malibu
Displacements shown are in the B Direction.

Assessment District 98-2, Inclinometer SI-12

City of Malibu
Assessment District 98-2, Inclinometer SI-13
City of Malibu

Sets marked * include zero shift and/or rotation corrections.
Assessment District 98-2, Inclinometer SI-13
City of Malibu

Sets marked * include zero shift and/or rotation corrections.
Displacements shown are in the A Direction

Assessment District 98-2, Inclinometer SI-13

City of Malibu
Displacements shown are in the B Direction

Assessment District 98-2, Inclinometer SI-13

City of Malibu
Assessment District 98-2, Inclinometer SI-14
City of Malibu

Sets marked * include zero shift and/or rotation corrections.

O:\Management\04_2014\04_6214_0605_Calle del Barco Assessment District 98_2\FIELD AND LAB DATA\Inclinometer Data\GTL\CDB 2017-2018\SI14.gtl
Assessment District 98-2, Inclinometer SI-14
City of Malibu

Sets marked * include zero shift and/or rotation corrections.

O:\Management\04_2014\04_6214_0605_Calle del Barco Assessment District 98_2\04 FIELD AND LAB DATA\Inclinometer Data\GTL\CDB 2017-2018\SI14.gtl
Displacements shown are in the A Direction

Assessment District 98-2, Inclinometer SI-14
City of Malibu
Displacements shown are in the **B** Direction

- 21/31 ft
- 9/31 ft
- 3/31 ft

Assessment District 98-2, Inclinometer SI-14

City of Malibu
CALLE DEL BARCO, Inclinometer SI-15

Depth of readings = 72 ft

Sets marked * include zero shift and/or rotation corrections.
CALLE DEL BARCO, Inclinometer SI-15

Depth of readings = 72 ft

Sets marked * include zero shift and/or rotation corrections.
Displacements shown are in the A Direction.

17/23 ft
9/23 ft
3/23 ft

CALLE DEL BARCO, Inclinometer SI-15

Depth of readings = 72 ft
Displacements shown are in the B Direction

CALLE DEL BARCO, Inclinometer SI-15

Depth of readings = 72 ft

Fugro West, Inc. - Ventura, CA

PLATE C-12d
Assessment District 98-2, Inclinometer SI-16
City of Malibu

Sets marked * include zero shift and/or rotation corrections.
Displacements shown are in the A Direction

Assessment District 98-2, Inclinometer SI-16

City of Malibu
Displacements shown are in the B Direction

Assessment District 98-2, Inclinometer SI-16

City of Malibu