FUGRO

Annual Report,
July 2016 Through June 2017
Malibu Road Landslide
Assessment District
Malibu, California

January 2018
Fugro Project No. 04.62160604
Document No. 04.62160604-PR-001(Rev.00)

City of Malibu

Final
FUGRO

Annual Report,
July 2016 Through June 2017
Malibu Road Landslide
Assessment District
Malibu, California

January 2018
Fugro Project No. 04.62160604
Document No. 04.62160604-PR-001(Rev.00)

Final

Prepared for: City of Malibu
23825 Stuart Ranch Road
Malibu, California 90265
Fugro Project No. 04.62160604
Document No. 04.62160604-PR-001(Rev.00)
March 19, 2018

City of Malibu
23825 Stuart Ranch Road
Malibu, California 90265

Attention: Mr. Rob DuBoux

Annual Report, July 2016 Through June 2017, Malibu Road Landslide Assessment District,
Malibu, California

Dear Mr. DuBoux,

Fugro is pleased to present this annual report for the Malibu Road Landslide Assessment District. This report summarizes the monitoring and maintenance activities completed during the period of July 2016 through June 2017.

Fugro appreciates the opportunity to be of service to the City of Malibu and the District homeowners. Please contact Loree Berry at (805) 289-3830, if you have any questions regarding this report.

Sincerely,
Fugro USA Land, Inc.

David Thornhill, P.E. Loree A. Berry, P.E.
Senior Staff Engineer/Lead Technician Senior Engineer/Project Manager

Distribution: (1) Addressee and PDF
(1) City of Malibu - Geotechnical Staff and PDF
CONTENTS

1. INTRODUCTION... 1
 1.1 Authorization ... 1
 1.2 Background ... 1
 1.3 Scope of Work ... 1
 1.4 Report Organization .. 2
 1.5 Report Availability .. 2

2. MONITORING ... 3
 2.1 Rainfall Data .. 3
 2.2 Groundwater Monitoring .. 3
 2.2.1 Standpipe Piezometers .. 4
 2.2.2 Pneumatic Piezometers ... 4
 2.2.3 Groundwater Level Discussion .. 4
 2.3 Dewatering Production .. 5
 2.3.1 Total Dewatering Production ... 5
 2.3.2 Dewatering Well Production .. 5
 2.3.3 Hydrauger Production .. 6
 2.4 Slope Inclinometer Measurements .. 6

3. DEWATERING FACILITY MAINTENANCE ... 7
 3.1 Facility Maintenance ... 7
 3.2 Capital Improvement Projects ... 7

4. SUMMARY AND CONCLUSIONS ... 8

5. REFERENCES... 9

TABLES IN THE MAIN TEXT

Table 1. Summary of Average Groundwater Elevations by Area ... 5
Table 2. Summary of Facility Maintenance .. 7

PLATES

Site Location Map .. 1
Assessment District Map .. 2
Rainfall Graph .. 3
Total Discharge - Wells and Hydraugers .. 4
Groundwater Levels, Dewatering, and Rainfall .. 5
APPENDICES

A GROUNDWATER DATA
Piezometer Information .. Plate A-1
Summary of Groundwater Data .. Plate A-2
Groundwater Level Information - Malibu Road (West End) .. Plate A-3
Groundwater Level Information - Malibu Road (East End) .. Plate A-4
Groundwater Level Information - Bayshore Drive ... Plate A-5

B DEWATERING DATA
Dewatering Well / Hydrauger Information .. Plate B-1
Dewatering Well Discharge Rate Graph - Malibu Road ... Plate B-2a
Dewatering Well Discharge Rate Graph - Bayshore Drive .. Plate B-2b
Hydrauger Discharge Rate Graph - Malibu Road (West End) ... Plate B-3a
Hydrauger Discharge Rate Graph - Malibu Road (East End) .. Plate B-3b

C SLOPE INCLINOMETER DATA
Summary of Slope Inclinometers ... Plate C-1
SI-1A – Cumulative and Incremental Displacement (A Direction) ... Plate C-2a
SI-1A – Cumulative and Incremental Displacement (B Direction) ... Plate C-2b
SI-1A – Displacement vs. Time (A Direction) ... Plate C-2c
SI-1A – Displacement vs. Time (B Direction) ... Plate C-2d
SI-2A – Cumulative and Incremental Displacement (A Direction) ... Plate C-3a
SI-2A – Cumulative and Incremental Displacement (B Direction) ... Plate C-3b
SI-2A – Displacement vs. Time (A Direction) ... Plate C-3c
SI-2A – Displacement vs. Time (B Direction) ... Plate C-3d
SI-4A – Cumulative and Incremental Displacement (A Direction) ... Plate C-4a
SI-4A – Cumulative and Incremental Displacement (B Direction) ... Plate C-4b
SI-4A – Displacement vs. Time (A Direction) ... Plate C-4c
SI-4A – Displacement vs. Time (B Direction) ... Plate C-4d
SI-5 – Cumulative and Incremental Displacement (A Direction) ... Plate C-5a
SI-5 – Cumulative and Incremental Displacement (B Direction) ... Plate C-5b
SI-5 – Displacement vs. Time (A Direction) ... Plate C-5c
SI-5 – Displacement vs. Time (B Direction) ... Plate C-5d
SI-6 – Cumulative and Incremental Displacement (A Direction) ... Plate C-6a
SI-6 – Cumulative and Incremental Displacement (B Direction) ... Plate C-6b
SI-6 – Displacement vs. Time (A Direction) ... Plate C-6c
SI-6 – Displacement vs. Time (B Direction) ... Plate C-6d
1. INTRODUCTION

1.1 Authorization

Fugro performed the work summarized in this report in accordance with our contract with the City of Malibu (City) and consistent with the cost estimate document "Exhibit A - FY 2016-2017 Maintenance Cost Estimate" presented in the Annual Assessment Report (Taussig, 2016).

1.2 Background

The Malibu Road Landslide Assessment District (Assessment District) was established in 1981 by the County of Los Angeles (County) following the activation of a landslide on the west end of Malibu Road in 1978 (Plates 1 and 2). The assessment district provides permanent funding to maintain and monitor dewatering facilities with the purpose of stabilizing the landslide to the extent feasible using dewatering methods only. The County administered the assessment district until 1991 when the City incorporated. The Assessment District was reauthorized in May 1998 under Resolution No. 98-036. The City has administered the assessment district, utilizing consultants to maintain and monitor the district facilities.

1.3 Scope of Work

This annual report summarizes the monitoring and maintenance of the geotechnical instrumentation and dewatering facilities within the Malibu Road Assessment District for the period between July 1, 2016, and June 30, 2017 (hereafter, the "monitoring period").

Routine monitoring data collected during the current monitoring period included the following:

- Review of annual rainfall data from a local rain gauge operated by the County of Los Angeles, Department of Public Works - Water Resources Division;
- Monthly groundwater level measurements from nine standpipes;
- Periodic groundwater measurements from nine pneumatic piezometers;
- Monthly dewatering production readings from ten dewatering wells owned by the Assessment District and three wells owned by a private homeowner on Bayshore Drive;
- Monthly dewatering production readings from 23 horizontal drains (hydraugers);
- Monthly, quarterly, and semi-annual ground deformation measurements from 5 slope inclinometers; and
- Periodic maintenance of dewatering and monitoring facilities.

The operating condition of the instrumentation and dewatering facilities were checked during each field monitoring/observation visit and by evaluating preliminary data in the office as they were received. Maintenance was performed as-needed based upon the field observations and preliminary data evaluation, and correspondence from concerned homeowners and tenants.

The scope of services includes monitoring and maintenance of the assessment district facilities. The services provided on an annual basis for the assessment district do not include an engineering evaluation of the stability of the landslide.
1.4 Report Organization

This report summarizes the monitoring data collected during the July 1, 2016 to June 30, 2017, monitoring period and presents conclusions regarding the annual monitoring results. The location of the assessment district is illustrated on Plate 1 - Site Location Map. Locations of the geotechnical instrumentation are shown on Plate 2 - Assessment District Map. Tabulated and graphic summaries of monitoring data are presented in Appendix A through Appendix C, as indicated in the Table of Contents.

1.5 Report Availability

The annual Assessment District reports are available for review at Malibu City Hall. Reports may also be viewed on the City's website at http://www.malibucity.org.
2. MONITORING

2.1 Rainfall Data

A graph of historical monthly rainfall and average annual rainfall from October 1968 through September 30, 2017, is shown on Plate 3 - Rainfall Graph. Monthly rainfall totals from 1968 through 2004 were obtained from County of Los Angeles Department of Public Works (LADPW) Carbon Canyon Rain Station 447C and monthly rainfall totals from 2004 to the present were obtained from LADPW Big Rock Mesa Rain Gauge 1239.

Rainfall data indicate that approximately 21.98 inches of precipitation fell during the monitoring period from July 1, 2016 through June 30, 2017. The average annual rainfall from 1968 to 2017 in the "Malibu Area" for the same months is approximately 15.6 inches.

However, rainfall data are usually analyzed in terms of the annual "rain season" that covers the time period between October 1 through September 30. Rainfall for October 1, 2016 through September 30, 2017, was approximately 22.13 inches. That is approximately 138 percent of the average annual rainfall of 16.0 inches for the "rain seasons" between 1968 and 2017.

Plate 5 – Groundwater Levels, Dewatering, and Rainfall shows the yearly magnitude of deviation of each years’ rainfall relative to the mean annual rainfall. The graphic also shows the average annual dewatering output (gallons per day, gpd). The data illustrates that the average annual dewatering output is generally consistent with average rainfall.

2.2 Groundwater Monitoring

The groundwater level data collected during the current monitoring period are summarized in Appendix A and a summary graph of annual mean high groundwater elevation for the Assessment District is included as part of Plate 5. Groundwater levels fluctuate throughout the year and from year to year in response to natural and man-made influences. The primary natural influence is varying precipitation. Man-made influences include:

- Infiltration from septic systems;
- Infiltration from irrigation;
- Alterations to surface drainage by grading, landscaping, storm drains, and rain gutters;
- Accidental water discharges from leaking utilities such as water, irrigation, sewer, and storm drain lines as well as swimming pools; and
- Dewatering activities including pumping dewatering wells and hydraugers.

Typically, groundwater levels rise relatively quickly following significant rainfall and gradually lower after the wet season ends. Groundwater levels at Malibu Road typically peak around late-March to mid-April and gradually decline through late September to November.
2.2.1 Standpipe Piezometers

Eight standpipe piezometers (W-2A, PZ-A, PZ-B, PZ-C, PZ-D, PZ-E, SI-5, and SI-6) were measured regularly over the monitoring period. Standpipe W-3A cannot be located and is presumed to be buried under soil creeping down the slope on the northern side of Malibu Road. Slope inclinometers/piezometers SI-5 and SI-6 were installed in 1998 along Bayshore Drive. Los Angeles County installed the other piezometers at earlier dates. The locations of the standpipe piezometers are depicted on Plate 2 - Assessment District Map, and groundwater elevation data are presented in Appendix A.

2.2.2 Pneumatic Piezometers

Inclinometer casings installed within the Assessment District after 1998 were typically outfitted with one or two pneumatic piezometer sensors, referred to as ‘Tips’, nested at varying depths along the length of the inclinometer casing. Each sensor records saturated soil pore water pressure by measuring differential air pressure between the instrument sensor and groundwater surface across a flexible bladder. Differential pressure is converted into water head, which is translated to a relative groundwater elevation. Measuring pore pressures at specific elevations along a vertical profile can be used to measure flow gradients for groundwater migrating through the formation above and within the water table and to infer the presence of perched or confined groundwater zones. Pneumatic water levels were monitored intermittently during the 2016-2017 monitoring year. The locations of the piezometers are depicted on Plate 2, and groundwater elevation data are presented in Appendix A.

2.2.3 Groundwater Level Discussion

General. The groundwater data were reviewed by evaluating changes that occurred during the current monitoring period as well as changes in groundwater levels over extended periods. To analyze trends in seasonal groundwater fluctuations, the average (mean) annual and highest annual recorded groundwater elevation for each standpipe piezometer were calculated and compared with those of previous years (Appendix A, Plate A-2).

Malibu Road. Groundwater elevation data for the area along Malibu Road are presented on Plates A-3 and A-4. Groundwater levels for that area are monitored using standpipes PZ-A, -B, -C, -D, -E, W-2A, and W-3A along with pneumatic piezometers installed in inclinometers SI-1, -1A, -2, -3, and -4. In general, groundwater levels increased slightly during the 2016-17 monitoring period. The calculated area average water level increased by 0.3 feet when compared to the area average for the 2015-16 monitoring period and is 2.0 feet below the mean area average for this area for the period of record. Water levels in individual standpipes declined slightly or remained approximately static over the monitoring year with temporary increases in response to rainfall events in January and February. No new data are presented for standpipes W-2A or W-3A because W-2A has been dry since July 2014 and W-3A is buried beneath soil creep from the bluff face. Pneumatic piezometers in inclinometers SI-1A, SI-2, all showed increased pore pressure readings subsequent to the rain events of early 2017. Pneumatic piezometers in inclinometers SI-1 and SI-3 are no longer functioning and no new data are presented.

Bayshore Drive. Groundwater elevation data for the area along Bayshore Drive are presented on Plate A-5. Groundwater levels for that area are monitored using standpipes SI-5 and SI-6 along with the two
pneumatic piezometers installed with each standpipe. In general, groundwater levels declined during the 2016-17 monitoring period. The calculated area average water-level declined by 1 foot when compared to the area average for the 2015-16 monitoring year and is 7.3 feet below the mean area average for this area for the period of record (1991-2017). Water levels in standpipe SI-5 declined steadily during the 2016-17 monitoring year and reached an all-time low for the period of record in February and June 2017. Water levels in standpipe SI-6 remained approximately static over the course of the monitoring year, with fluctuations of less than 1 foot. Readings from both the shallow and deep pneumatic piezometers in standpipes SI-5 and SI-6 continue to record water elevation above the standpipe water levels and showed more of a response to the rainfall events of January and February 2017 than was seen in the standpipes.

The average and highest annual groundwater levels are provided on Plate A-2 and are summarized in Table 1, below. The Malibu Road area average increased by 0.3 feet since the prior monitoring year and the peak groundwater elevation increased by 1.4 feet. The Bayshore Drive average and peak groundwater elevations have decreased since the prior year.

Table 1. Summary of Average Groundwater Elevations by Area

<table>
<thead>
<tr>
<th>Location</th>
<th>Average Groundwater El. 2016-2017</th>
<th>Change from Prior Year Average</th>
<th>Peak Groundwater El. 2016-2017</th>
<th>Change from Prior Year Peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malibu Road</td>
<td>6.1</td>
<td>+0.3</td>
<td>8.2</td>
<td>+1.4</td>
</tr>
<tr>
<td>Bay Shore Drive</td>
<td>18.7</td>
<td>-1.0</td>
<td>19.2</td>
<td>-1.3</td>
</tr>
</tbody>
</table>

Note: All units are in feet.

2.3 Dewatering Production

2.3.1 Total Dewatering Production

A combined graph of the total dewatering rate for the monitored dewatering wells and hydraugers is presented on Plate 4. Total dewatering production data for the measured hydraugers and wells indicates the following:

- The average total dewatering rate during the monitoring period was approximately 1474 gpd. This represents a 103 percent increase in the average rate relative to the 726 gpd average recorded during the previous monitoring period.

2.3.2 Dewatering Well Production

Graphs showing production rates of individual wells are provided in Appendix B. Production data for the dewatering wells indicate the following:

- The average total dewatering well production rate for this monitoring period was approximately 1118 gallons per day (gpd). That represents an increase of about 112 percent from the previous monitoring period production rate of 528 gpd.
- The increase in dewatering well production is due to an increase in annual rainfall.
2.3.3 Hydrauger Production

Graphs of individual production rates for individual hydraugers are included in Appendix B. Data for the hydraugers indicate the following:

- The average production rate for all hydraugers over the monitoring period is approximately 293 gpd. This represents an increase of approximately 48 percent from the average production rate of 198 gpd for the previous monitoring period.

2.4 Slope Inclinometer Measurements

Fugro monitored five slope inclinometers on a quarterly to semi-annual basis to evaluate subsurface ground deformation. Plots of slope inclinometer measurements (four plots for each monitored slope inclinometer) are presented in Appendix C. The first plot shows the cumulative deflection and incremental deflection for the A-direction and the second plot shows the cumulative deflection and incremental deflection for the B-direction. Those two plots show approximately one measurement per year from about 2006 through the current monitoring year. The third and fourth plots show displacement versus time for the same period for all recorded measurements during that period.

The original 6 inclinometers SI-1 through SI-6 were installed in 1998. SI-1A was installed in August 2006 to replace SI-1 and has a baseline reading from September 2006. SI-2A was installed in September of the 2010-2011 monitoring year as a replacement for SI-2 with a baseline reading in November 2010. SI-4A was installed in August 2012 as a replacement for SI-4 and has a baseline reading from September 2012.

The March 2017 survey of the inclinometers along Malibu Road (SI-1A, SI-2A, SI-4A) showed distinct movement of approximately 0.1 to 0.15 inches. SI-1A showed movement of approximately 0.1 inches at a depth of 25 to 30 feet bgs. SI-2A showed movement of approximately 0.15 inches at 30 to 35 feet bgs. SI-4A showed movement of approximately 0.15 inches at 30 to 35 feet bgs. As a result of the interpreted movement, Fugro adjusted the survey frequency for those inclinometers from a quarterly to a monthly basis. After three successive months of no additional detectable movement, survey frequency was switched back to a quarterly basis.

Inclinometers SI-5 and SI-6 are located on Bayshore Drive, upslope and outside the defined limit of the most recent 1998 movement. No detectable movement was observed during this monitoring year in SI-5 or SI-6. Profile changes to the top portion of inclinometer SI-6 are the result of ongoing damage to the casing from construction traffic currently working on Bayshore Drive. The vault and top of the casing have been crushed by heavy equipment.
3. DEWATERING FACILITY MAINTENANCE

3.1 Facility Maintenance

The operating status of each dewatering well and hydrauger was checked monthly. When necessary, repair work was scheduled and undertaken as expeditiously as possible, typically within a matter of a few hours or days. Generally, repairs and maintenance consisted of brush clearance around facilities and fixing broken hydraugers and conveyance lines. Table 2. Summary of Facility Maintenance provides a description of significant maintenance activities that were completed during the current monitoring period.

Table 2. Summary of Facility Maintenance

<table>
<thead>
<tr>
<th>Repair Date</th>
<th>Facility</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/20/16</td>
<td>Hydrauger conveyance line between HD-19 and HD-10</td>
<td>Replaced cracked and clogged PVC line</td>
</tr>
<tr>
<td></td>
<td>Hydrauger conveyance line between HD-19 and HD-18</td>
<td>Flushed with water to ensure flow</td>
</tr>
<tr>
<td></td>
<td>Hydrauger HD-20</td>
<td>Extended additional 6” out of hillside to facilitate conveyance line flow</td>
</tr>
<tr>
<td>9/21/16</td>
<td>Hydrauger conveyance line between HD-15 and HD-16</td>
<td>Realigned conveyance line to ensure better flow</td>
</tr>
<tr>
<td></td>
<td>Hydrauger conveyance line between HD-15 and HD-14</td>
<td>Realigned conveyance line to ensure better flow</td>
</tr>
<tr>
<td></td>
<td>Hydrauger HD-21</td>
<td>Repaired broken riser</td>
</tr>
<tr>
<td>1/13/17</td>
<td>W-11 and W-14</td>
<td>Repaired/replaced drain pipe</td>
</tr>
<tr>
<td>1/20/17</td>
<td>W-12</td>
<td>Repaired/replaced drain pipe</td>
</tr>
<tr>
<td>1/24/17</td>
<td>HD-11</td>
<td>Repaired broken conveyance line</td>
</tr>
<tr>
<td>4/4/17</td>
<td>NW-2</td>
<td>Replace pump saver and install new metal electrical enclosure for pump saver</td>
</tr>
<tr>
<td>6/14/17</td>
<td>W-3</td>
<td>Replace pump</td>
</tr>
</tbody>
</table>

3.2 Capital Improvement Projects

No capital improvements were performed during the current monitoring period.
4. SUMMARY AND CONCLUSIONS

The status of the Malibu Road Landslide Assessment District can be summarized as follows:

- Measured rainfall during the 2016 - 2017 monitoring year (July 1 through June 30) was 22.0 inches of precipitation. Rainfall during that monitoring period was above the "Malibu Area" historical average of 15.6 inches per monitoring year measured from 1968 through 2017.

- Groundwater levels on Bayshore Drive on average declined slightly during the 2016-2017 monitoring period. Groundwater levels on Malibu Road on average increased slightly over the 2016-2017 monitoring period. Water levels in individual wells generally declined with some variability during the year reflecting responses to significant rainfall events in January and February 2017.

- Average daily dewatering production increased 103 percent from the previous monitoring year with dewatering well production increasing by 112 percent and hydrauger production increasing 48 percent. This is likely in response to an above average amount of rainfall for the monitoring period.

- Readings for the three slope inclinometers along Malibu Road showed definable movement of approximately 0.10 to 0.15 inches between December 2016 and March 2107. Subsequent readings indicate that the movement has ceased, and was likely a result of increased rainfall. Readings for the two slope inclinometers along Bayshore Drive show no clearly defined significant movement during the 2016 – 2017 monitoring year.

- Water conservation is encouraged throughout the Malibu Road area to reduce the infiltration of domestic water and the potential for future groundwater level increases. Control of groundwater levels within the landslide area is critical to maintaining the stability of the landslides.

- Groundwater production from existing dewatering wells and hydraugers should be expected to gradually decline over time as the efficiency of the wells and hydraugers decrease due to mineralization and aging of the facilities. This may contribute to reduced rates of groundwater lowering or localized increases in groundwater levels. Periodic maintenance of the existing facilities and replacement of older, worn-out pumps should improve the efficiency of the dewatering systems throughout the year, especially during and immediately following the rainy months.
5. REFERENCES

PLATES
TOTAL DISCHARGE - WELLS AND HYDRAUGERS
Malibu Road Landslide Assessment District
Malibu, California

PLATE 4
*Graph shows the mean value of the highest groundwater elevations recorded for each standpipe piezometer during the monitoring year.

GROUNDWATER LEVELS, DEWATERING, AND RAINFALL

Malibu Road Landslide Assessment District

Malibu, California

PLATE 5
APPENDIX A
GROUNDWATER DATA
MALIBU ROAD LAD - Standpipe Piezometer Information

<table>
<thead>
<tr>
<th>Standpipe ID</th>
<th>Previous Reference Elevation (8/91)</th>
<th>Updated Reference Elevation (4/00)</th>
<th>Casing Depth (ft)</th>
<th>Perforation Interval</th>
<th>Installed By</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>W-2A</td>
<td>22.6</td>
<td>20.6</td>
<td>9.0</td>
<td>Unknown</td>
<td>LA COUNTY</td>
<td>Dry</td>
</tr>
<tr>
<td>W-3A</td>
<td>22.0</td>
<td>20.5</td>
<td>19.8</td>
<td>Unknown</td>
<td>LA COUNTY</td>
<td>Buried</td>
</tr>
<tr>
<td>PZ-A</td>
<td>20.0</td>
<td>19.8</td>
<td>17.2</td>
<td>Unknown</td>
<td>LA COUNTY</td>
<td></td>
</tr>
<tr>
<td>PZ-B</td>
<td>20.0</td>
<td>19.1</td>
<td>27.9</td>
<td>Unknown</td>
<td>LA COUNTY</td>
<td></td>
</tr>
<tr>
<td>PZ-C</td>
<td>20.0</td>
<td>19.4</td>
<td>29.7</td>
<td>Unknown</td>
<td>LA COUNTY</td>
<td></td>
</tr>
<tr>
<td>PZ-D</td>
<td>20.0</td>
<td>19.2</td>
<td>24.7</td>
<td>Unknown</td>
<td>LA COUNTY</td>
<td></td>
</tr>
<tr>
<td>PZ-E</td>
<td>20.0</td>
<td>21.4</td>
<td>15.8</td>
<td>Unknown</td>
<td>LA COUNTY</td>
<td></td>
</tr>
<tr>
<td>SI-5*</td>
<td>59.0</td>
<td>59.3</td>
<td>78.0</td>
<td>-19.0 to -14.0</td>
<td>BYA</td>
<td></td>
</tr>
<tr>
<td>SI-6**</td>
<td>57.0</td>
<td>58.0</td>
<td>78.0</td>
<td>-21.0 to -16.0</td>
<td>BYA</td>
<td></td>
</tr>
</tbody>
</table>

Note: * Formerly designated as MR-5

++ Formerly designated as MR-6

MALIBU ROAD LAD - Pneumatic Piezometer Information

<table>
<thead>
<tr>
<th>Well Identification</th>
<th>Previous Reference Elevation (8/91)</th>
<th>Updated Reference Elevation (4/00)</th>
<th>Tip Depth (ft.)</th>
<th>Tip El. (ft)</th>
<th>Installed By</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SI-1*</td>
<td>20.0</td>
<td>20.1</td>
<td>34.6</td>
<td>-14.6</td>
<td>BYA</td>
<td>leaking</td>
</tr>
<tr>
<td>SI-2</td>
<td>20.0</td>
<td>19.7</td>
<td>65.1</td>
<td>-45.1</td>
<td>BYA</td>
<td></td>
</tr>
<tr>
<td>SI-3*</td>
<td>20.0</td>
<td>20.3</td>
<td>49.8</td>
<td>-29.8</td>
<td>BYA</td>
<td>clogged</td>
</tr>
<tr>
<td>SI-4</td>
<td>22.0</td>
<td>18.9</td>
<td>43.9</td>
<td>-21.9</td>
<td>BYA</td>
<td></td>
</tr>
<tr>
<td>SI-5 Tip 1</td>
<td>59.0</td>
<td>59.3</td>
<td>60</td>
<td>-1</td>
<td>BYA</td>
<td></td>
</tr>
<tr>
<td>SI-5 Tip 2**</td>
<td>59.0</td>
<td>59.3</td>
<td>40</td>
<td>19</td>
<td>BYA</td>
<td></td>
</tr>
<tr>
<td>SI-6 Tip 1</td>
<td>57.0</td>
<td>58.0</td>
<td>60</td>
<td>-3</td>
<td>BYA</td>
<td></td>
</tr>
<tr>
<td>SI-6 Tip 2**</td>
<td>57.0</td>
<td>58.0</td>
<td>60</td>
<td>-3</td>
<td>BYA</td>
<td></td>
</tr>
<tr>
<td>SI-1A</td>
<td>20.0</td>
<td>20.0</td>
<td>50</td>
<td>-30</td>
<td>FUGRO</td>
<td></td>
</tr>
</tbody>
</table>

Note: SI-1 thru SI-4 were previously designated MR98-1 thru MR98-4

SI-5 and SI-6 were previously designated MR-5 and MR-6

* Peizometer not functioning
Summary of Groundwater Data

Malibu Road Landslide Assessment District - Standpipe Piezometers

<table>
<thead>
<tr>
<th>Area</th>
<th>Mean El.</th>
<th>Highest El.</th>
<th>Change vs. Prior</th>
</tr>
</thead>
<tbody>
<tr>
<td>W-2A</td>
<td>8.5</td>
<td>13.7</td>
<td>5.2</td>
</tr>
<tr>
<td>W-3A</td>
<td>14.5</td>
<td>15.7</td>
<td>1.2</td>
</tr>
<tr>
<td>PZ-A</td>
<td>8.6</td>
<td>9.5</td>
<td>-0.9</td>
</tr>
<tr>
<td>PZ-B</td>
<td>14.4</td>
<td>15.1</td>
<td>0.7</td>
</tr>
<tr>
<td>PZ-C</td>
<td>4.4</td>
<td>5.8</td>
<td>1.4</td>
</tr>
<tr>
<td>PZ-D</td>
<td>5.8</td>
<td>6.7</td>
<td>0.9</td>
</tr>
<tr>
<td>PZ-E</td>
<td>13.0</td>
<td>14.3</td>
<td>1.3</td>
</tr>
<tr>
<td>SI-5</td>
<td>7.0</td>
<td>8.6</td>
<td>1.6</td>
</tr>
<tr>
<td>SI-6</td>
<td>8.5</td>
<td>11.0</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Bayshore Drive - Standpipe Piezometers

<table>
<thead>
<tr>
<th>Area</th>
<th>Mean El.</th>
<th>Highest El.</th>
<th>Change vs. Prior</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1-6</td>
<td>35.5</td>
<td>35.7</td>
<td>0.2</td>
</tr>
<tr>
<td>S1-6</td>
<td>37.8</td>
<td>36.4</td>
<td>-1.4</td>
</tr>
<tr>
<td>S1-7</td>
<td>38.8</td>
<td>37.2</td>
<td>-1.6</td>
</tr>
<tr>
<td>S1-8</td>
<td>42.4</td>
<td>42.9</td>
<td>0.5</td>
</tr>
<tr>
<td>Area</td>
<td>Mean El.</td>
<td>Highest El.</td>
<td>Change vs. Prior</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>-------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>S1-6</td>
<td>37.2</td>
<td>37.5</td>
<td>0.3</td>
</tr>
<tr>
<td>S1-7</td>
<td>40.1</td>
<td>40.4</td>
<td>0.3</td>
</tr>
<tr>
<td>S1-8</td>
<td>54.1</td>
<td>54.4</td>
<td>0.3</td>
</tr>
</tbody>
</table>

MALIBU ROAD - Pneumatic Piezometers

<table>
<thead>
<tr>
<th>Area</th>
<th>Mean El.</th>
<th>Highest El.</th>
<th>Change vs. Prior</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1-5</td>
<td>34.2</td>
<td>34.7</td>
<td>0.5</td>
</tr>
<tr>
<td>S1-6</td>
<td>34.8</td>
<td>34.8</td>
<td>0.0</td>
</tr>
<tr>
<td>S1-7</td>
<td>35.6</td>
<td>35.6</td>
<td>0.0</td>
</tr>
<tr>
<td>S1-8</td>
<td>42.4</td>
<td>42.4</td>
<td>0.0</td>
</tr>
</tbody>
</table>

SUMMARY OF GROUNDWATER DATA

Malibu Road Landslide Assessment District
Malibu, California

PLATE A-2
Note: W-3A uncovered in Jan.'99

GROUNDWATER LEVEL INFORMATION
Malibu Road (West End)
Malibu Road Landslide Assessment District
Malibu, California

PLATE A-3
GROUNDWATER HYDROGRAPH
LEVEL INFORMATION
Malibu Road Landslide Assessment District
Malibu, California

PLATE A-5
APPENDIX B
DEWATERING DATA
MALIBU ROAD LAD - Dewatering Well Information

<table>
<thead>
<tr>
<th>Well ID</th>
<th>Vault Elevation (ft.)</th>
<th>Bottom Elevation (ft.)</th>
<th>Pump Elevation (ft.)</th>
<th>Pump Size (hp)</th>
<th>2016-2017 Mean Pumping Rate (gpd)</th>
<th>% of Total Well Production</th>
<th>Installed By</th>
</tr>
</thead>
<tbody>
<tr>
<td>W-3</td>
<td>19.5</td>
<td>-4.0</td>
<td>Unknown</td>
<td>1/2</td>
<td>169</td>
<td>15%</td>
<td>LA Co.</td>
</tr>
<tr>
<td>W-4</td>
<td>20.0</td>
<td>-9.0</td>
<td>Unknown</td>
<td>1/2</td>
<td>15</td>
<td>1%</td>
<td>LA Co.</td>
</tr>
<tr>
<td>W-5</td>
<td>19.0</td>
<td>-9.5</td>
<td>Unknown</td>
<td>1/2</td>
<td>480</td>
<td>42%</td>
<td>LA Co.</td>
</tr>
<tr>
<td>W-6</td>
<td>20.0</td>
<td>-4.5</td>
<td>Unknown</td>
<td>1/2</td>
<td>25</td>
<td>2%</td>
<td>LA Co.</td>
</tr>
<tr>
<td>W-8</td>
<td>27.5</td>
<td>11.0</td>
<td>Unknown</td>
<td>1/2</td>
<td>6</td>
<td>1%</td>
<td>LA Co.</td>
</tr>
<tr>
<td>W-9</td>
<td>20.0</td>
<td>-40.0</td>
<td>-35.0</td>
<td>1/3</td>
<td>11</td>
<td>1%</td>
<td>LA Co.</td>
</tr>
<tr>
<td>W-10</td>
<td>19.0</td>
<td>-40.0</td>
<td>-35.0</td>
<td>1/3</td>
<td>73</td>
<td>6%</td>
<td>LA Co.</td>
</tr>
<tr>
<td>W-11</td>
<td>61.0</td>
<td>1.0</td>
<td>13.0</td>
<td>1/3</td>
<td>128</td>
<td>11%</td>
<td>BYA</td>
</tr>
<tr>
<td>W-12</td>
<td>58.0</td>
<td>-2.0</td>
<td>8.0</td>
<td>1/3</td>
<td>81</td>
<td>7%</td>
<td>BYA</td>
</tr>
<tr>
<td>W-14</td>
<td>60.0</td>
<td>-20.0</td>
<td>Unknown</td>
<td>1/3</td>
<td>106</td>
<td>9%</td>
<td>Fugro West</td>
</tr>
<tr>
<td>NW-1</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>24</td>
<td>2%</td>
<td>Homeowner</td>
</tr>
<tr>
<td>NW-2</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>15</td>
<td>1%</td>
<td>Homeowner</td>
</tr>
<tr>
<td>NW-3</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>9</td>
<td>1%</td>
<td>Homeowner</td>
</tr>
</tbody>
</table>

MALIBU ROAD LAD- Hydrauger Information

<table>
<thead>
<tr>
<th>Hydrauger ID</th>
<th>Installed Length (ft.)</th>
<th>Bearing</th>
<th>Functional Length* (ft)</th>
<th>2016-2017 Mean Flow Rate (gpd)</th>
<th>% of Total Production</th>
<th>Installed By</th>
</tr>
</thead>
<tbody>
<tr>
<td>HD-1**</td>
<td>Unknown</td>
<td>N05E</td>
<td>74</td>
<td>0</td>
<td>0%</td>
<td>LA County</td>
</tr>
<tr>
<td>HD-2**</td>
<td>Unknown</td>
<td>N21E</td>
<td>34</td>
<td>0</td>
<td>0%</td>
<td>LA County</td>
</tr>
<tr>
<td>HD-3**</td>
<td>Unknown</td>
<td>N06E</td>
<td>13</td>
<td>0</td>
<td>0%</td>
<td>LA County</td>
</tr>
<tr>
<td>HD-4</td>
<td>Unknown</td>
<td>N29E</td>
<td>53</td>
<td>0</td>
<td>0%</td>
<td>LA County</td>
</tr>
<tr>
<td>HD-5</td>
<td>Unknown</td>
<td>N13E</td>
<td>41</td>
<td>0</td>
<td>0%</td>
<td>LA County</td>
</tr>
<tr>
<td>HD-6</td>
<td>Unknown</td>
<td>N08W</td>
<td>55</td>
<td>34</td>
<td>11%</td>
<td>LA County</td>
</tr>
<tr>
<td>HD-7</td>
<td>Unknown</td>
<td>N26E</td>
<td>87</td>
<td>0</td>
<td>0%</td>
<td>LA County</td>
</tr>
<tr>
<td>HD-8</td>
<td>Unknown</td>
<td>N19E</td>
<td>92</td>
<td>1</td>
<td>0%</td>
<td>LA County</td>
</tr>
<tr>
<td>HD-9</td>
<td>Unknown</td>
<td>N34E</td>
<td>76</td>
<td>26</td>
<td>9%</td>
<td>LA County</td>
</tr>
<tr>
<td>HD-10</td>
<td>Unknown</td>
<td>N19E</td>
<td>55</td>
<td>0</td>
<td>0%</td>
<td>LA County</td>
</tr>
<tr>
<td>HD-11</td>
<td>Unknown</td>
<td>N11E</td>
<td>78</td>
<td>0</td>
<td>0%</td>
<td>LA County</td>
</tr>
<tr>
<td>HD-12</td>
<td>Unknown</td>
<td>N08E</td>
<td>70</td>
<td>0</td>
<td>0%</td>
<td>LA County</td>
</tr>
<tr>
<td>HD-13</td>
<td>Unknown</td>
<td>N09E</td>
<td>79</td>
<td>0</td>
<td>0%</td>
<td>LA County</td>
</tr>
<tr>
<td>HD-14</td>
<td>Unknown</td>
<td>N08E</td>
<td>80</td>
<td>0</td>
<td>0%</td>
<td>LA County</td>
</tr>
<tr>
<td>HD-15</td>
<td>Unknown</td>
<td>N14E</td>
<td>82</td>
<td>0</td>
<td>0%</td>
<td>LA County</td>
</tr>
<tr>
<td>HD-16</td>
<td>Unknown</td>
<td>N15E</td>
<td>69</td>
<td>0</td>
<td>0%</td>
<td>LA County</td>
</tr>
<tr>
<td>HD-17**</td>
<td>150</td>
<td>N15E</td>
<td>150</td>
<td>0</td>
<td>0%</td>
<td>BYA</td>
</tr>
<tr>
<td>HD-18</td>
<td>150</td>
<td>N18E</td>
<td>150</td>
<td>47</td>
<td>16%</td>
<td>BYA</td>
</tr>
<tr>
<td>HD-19</td>
<td>150</td>
<td>N10E</td>
<td>150</td>
<td>1</td>
<td>0%</td>
<td>BYA</td>
</tr>
<tr>
<td>HD-20</td>
<td>150</td>
<td>N09W</td>
<td>150</td>
<td>114</td>
<td>38%</td>
<td>BYA</td>
</tr>
<tr>
<td>HD-21</td>
<td>150</td>
<td>N22E</td>
<td>150</td>
<td>30</td>
<td>10%</td>
<td>BYA</td>
</tr>
<tr>
<td>HD-22</td>
<td>180</td>
<td>N13E</td>
<td>180</td>
<td>0</td>
<td>0%</td>
<td>Fugro West</td>
</tr>
<tr>
<td>HD-23</td>
<td>160</td>
<td>N01E</td>
<td>160</td>
<td>49</td>
<td>16%</td>
<td>Fugro West</td>
</tr>
</tbody>
</table>

*Measured on 4/1/98 (except HD-22 and HD-23 installed 1/22/05)
**buried/unable to locate
DEWATERING WELL DISCHARGE RATE GRAPH

Malibu Road
Malibu Road Landslide Assessment District

PLATE B-2a
APPENDIX C
SLOPE INCLINOMETER DATA
MALIBU ROAD LAD - Slope Inclinometer Interpretation Summary

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation Details</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Previous Ref.Elev.(8/91)</td>
<td>20.0</td>
<td>20.0</td>
<td>20.0</td>
<td>20.0</td>
<td>22.0</td>
<td>N/A</td>
</tr>
<tr>
<td>Updated Ref.Elev.(4/00)</td>
<td>20.1</td>
<td>20.0</td>
<td>19.7</td>
<td>19.7</td>
<td>20.3</td>
<td>18.9</td>
</tr>
<tr>
<td>Depth (ft.)</td>
<td>34</td>
<td>50</td>
<td>64</td>
<td>64</td>
<td>49</td>
<td>43</td>
</tr>
<tr>
<td>Install Date</td>
<td>Apr-98</td>
<td>Aug-96</td>
<td>Apr-98</td>
<td>Sep-10</td>
<td>Apr-98</td>
<td>Apr-98</td>
</tr>
<tr>
<td>A+ Axis orientation (deg)</td>
<td>184</td>
<td>197</td>
<td>201</td>
<td>200</td>
<td>190</td>
<td>204</td>
</tr>
<tr>
<td>Casing</td>
<td>RST</td>
<td>SI</td>
<td>RST</td>
<td>RST</td>
<td>RST</td>
<td>SI</td>
</tr>
<tr>
<td>Installer</td>
<td>BYA</td>
<td>Fugro</td>
<td>BYA</td>
<td>Fugro</td>
<td>BYA</td>
<td>Fugro</td>
</tr>
<tr>
<td>Interpreted Rupture Depth (ft)</td>
<td>30-32</td>
<td>23-30</td>
<td>28-32</td>
<td>28-32</td>
<td>35-38</td>
<td>32-34</td>
</tr>
<tr>
<td>Status</td>
<td>D</td>
<td>F</td>
<td>D</td>
<td>F</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>Reading Interval</td>
<td>Quarterly</td>
<td>Quarterly</td>
<td>Quarterly</td>
<td>Quarterly</td>
<td>Quarterly</td>
<td>Quarterly</td>
</tr>
</tbody>
</table>

| **Interpretation Movement (inches)** |
2016-2017	NR	0.1	NR	0.15	NR	NR	0.15	--	--
2015-2016	NR	--	NR	--	NR	NR	--	--	--
2014-2015	NR	<0.1	NR	--	NR	NR	--	--	--
2013-2014	NR	0.1	NR	--	NR	NR	--	--	--
2012-2013	NR	<0.1	NR	<0.1	NR	NR	--	0.1	0.1
2011-2012	NR	<0.1	NR	--	NR	--	NR	--	<0.1
2010-2011	NR	<0.1	NR	--	NR	0.6	NR	--	<0.1
2009-2010	NR	<0.1	NR	--	NR	--	NR	--	<0.1
2008-2009	NR	<0.1	<0.1	NR	NR	--	NR	--	<0.1
2007-2008	NR	<0.1	--	NR	NR	--	NR	--	<0.1
2006-2007	NR	NR	--	NR	NR	--	NR	--	0.1
2004-2005	0.5 (3)	NR	0.4	NR	>1(a)	0.4 to 0.5	NR	~ 0.2 *	--
2003-2004 (4)	--	NR	--	NR	--	--	NR	--	--
2002-2003	~ 0.2 *	NR	~ 0.1 *	NR	--	--	NR	--	--
2001-2002	--	NR	--	NR	--	--	NR	--	--
2000-2001	0.5	NR	0.4	NR	0.3	0.6	NR	--	--
1999-2000	--	NR	--	NR	--	--	NR	--	--
1998-1999	3.1	NR	1.5	NR	4.1	1.3	NR	--	--

NOTES:
- D Destroyed
- F Functioning
- NI No information
- 1 Readings only through March 2004
- 2 Readings are through 2000, although majority of movement occurred in 1998
- 3 Inclinometer sheared off in January, 2005.
- 4 Inclinometer sheared off winter of 2009.
- NR No reading
- -- No clearly defined interpreted movement.
- ~ 0.1 * Indicated displacement is less than reliable instrument accuracy. Interpreted movement is theoretical.

SUMMARY OF SLOPE INCLINOMETERS
Malibu Road Landslide Assessment District
Malibu, California
PLATE C-1
Assessment District 98-3, Inclinometer SI-1A
City of Malibu

Sets marked * include zero shift and/or rotation corrections.
Assessment District 98-3, Inclinometer SI-1A
City of Malibu

Sets marked * include zero shift and/or rotation corrections.
Displacements shown are in the A Direction

Assessment District 98-3, Inclinometer SI-1A

City of Malibu
Displacements shown are in the B Direction

Assessment District 98-3, Inclinometer SI-1A

City of Malibu
Assessment District 98-3, Inclinometer SI-2A
City of Malibu

Sets marked * include zero shift and/or rotation corrections.
Assessment District 98-3, Inclinometer SI-2A
City of Malibu

Sets marked * include zero shift and/or rotation corrections.
Displacements shown are in the A Direction

Assessment District 98-3, Inclinometer SI-2A

City of Malibu
Displacements shown are in the B Direction

Assessment District 98-3, Inclinometer SI-2A

City of Malibu
LEGEND

Initial 6 Sep 2012
27 Feb 2013*
13 Mar 2014*
25 Jun 2014*
2 Sep 2014*
16 Feb 2015*
1 Jun 2015*
7 Aug 2015*
6 Nov 2015*
4 Jan 2016*
1 Jun 2016*
6 Dec 2016*
22 Mar 2017*
26 Apr 2017*
25 May 2017*
20 Jun 2017*

Cumulative Deflection
Direction B

Incremental Deflection
Direction B

Assessment District 98-3, Inclinometer SI-4A
City of Malibu

Sets marked * include zero shift and/or rotation corrections.
Displacements shown are in the A Direction

21/35 ft
9/35 ft
3/35 ft

Assessment District 98-3, Inclinometer SI-4A
City of Malibu

PLATE C-4c
Displacements shown are in the B Direction

Assessment District 98-3, Inclinometer SI-4A

City of Malibu
Assessment District 98-3, Inclinometer SI-5
City of Malibu

Sets marked * include zero shift and/or rotation corrections.
Assessment District 98-3, Inclinometer SI-5
City of Malibu

Sets marked * include zero shift and/or rotation corrections.
Displacements shown are in the A Direction

Assessment District 98-3, Inclinometer SI-5

City of Malibu
Displacements shown are in the B Direction

Assessment District 98-3, Inclinometer SI-5

City of Malibu
Assessment District 98-3, Inclinometer SI-6
City of Malibu

Sets marked * include zero shift and/or rotation corrections.

CITY OF MALIBU
ANNUAL REPORT, JULY 2016 THROUGH JUNE 2017
MALIBU, CALIFORNIA

Fugro USA Land, Inc. - Ventura, CA

Cumulative Deflection Direction A

Incremental Deflection Direction A

LEGEND
Initial 28 Nov 2006*
6 Nov 2007*
26 May 2011*
7 Mar 2012*
20 Nov 2012*
27 Feb 2013*
13 Mar 2014*
25 Jun 2014*
2 Sep 2014*
16 Feb 2015*
1 Jun 2015*
7 Aug 2015*
6 Nov 2015*
4 Jan 2016*
14 Jun 2016*
6 Dec 2016*
22 Mar 2017

Ref. Elevation ft

Depth (ft)

Deflection (in)

Cumulative Deflection Direction A

Incremental Deflection Direction A

Depth (ft)

Deflection (in)
Assessment District 98-3, Inclinometer SI-6
City of Malibu

Sets marked * include zero shift and/or rotation corrections.
Displacements shown are in the A Direction

Assessment District 98-3, Inclinometer SI-6

City of Malibu
Displacements shown are in the B Direction

Assessment District 98-3, Inclinometer SI-6

City of Malibu