Rancho Malibu Hotel Project

Public Draft
Environmental Impact Report
State Clearinghouse No. 2012051035

Prepared by:
City of Malibu
23825 Stuart Ranch Road
Malibu, CA 90265

Prepared with the assistance of:
amec
104 West Anapamu Street, Suite 204A
Santa Barbara, CA 93101

October 2013
This document printed using 100% post-consumer recycled paper
EXECUTIVE SUMMARY

OVERVIEW

This Environmental Impact Report (EIR) evaluates the proposed Rancho Malibu Hotel Project (Project), in the City of Malibu (City), in the County of Los Angeles, California. The EIR was prepared by AMEC Environment & Infrastructure, Inc. under the authority of the City, as the Lead Agency for purposes of the California Environmental Quality Act (CEQA). The proposed Project would include a 274,775 square-foot (sf) hotel complex with a total of 146 rooms developed on approximately 16.5 acres of a 27.8-acre site. Development would consist of:

- a Main Hotel Building and spa complex with 12 hotel rooms, retail, restaurant, bar, ballroom, meeting rooms, adjacent swimming pool, and other facilities
- 19 two-story Secondary Hotel Buildings\(^1\)
- two single-story Secondary Hotel Buildings

A total of 543 parking spaces would be provided, primarily in a four-level, 166,827 sf parking structure consisting of three subterranean levels and a ground level employee parking lot providing 40 spaces. The Project site, addressed as 4000 Malibu Canyon Road, Malibu, California, occupies a location at the intersection of two of the City’s major roadways, Pacific Coast Highway (PCH) and Malibu Canyon Road, and is bounded on the east by Civic Center Way. The site is one of the largest remaining undeveloped sites within the Malibu Civic Center area and as such, its development is central to the future visual character and economic vitality of the City’s center.

The City includes 27 miles of scenic coastline with multiple state and county beach parks and is a nationally recognized destination. However, there are only approximately 115 hotel rooms in the City to accommodate visitors to the community’s many attractions. While the City’s adopted Local Coastal Program (LCP) policies strongly emphasize preservation of the community’s rural character and important scenic and environmentally-sensitive resources, the LCP also recognizes the importance of visitor-serving commercial developments by giving them priority over other non-coastal dependent developments. In particular, the LCP identifies the Civic Center as an appropriate location for such uses. The LCP Land Use Plan (LUP) Map designates the Civic Center area for Community Commercial, General Commercial, and Visitor-Serving

\(^1\) The Applicant’s plans refer to the secondary hotel buildings as “casitas”; however, these guest room-containing structures will be referred to as “Secondary Hotel Buildings” throughout this document.
EXECUTIVE SUMMARY

Commercial uses. The Project site is one of a very small number of properties in the City designated to permit higher intensity visitor-serving uses, through the application of the Commercial Visitor-Serving 2 (CV-2) zoning designation, such as hotels. However, the LCP also requires such projects to be designed to be consistent with the community’s rural character and natural environmental setting.

Developers have been attempting to permit a hotel at the Project site for many years, and efforts to date have included obtaining California Coastal Commission (CCC) approval for a 300-room hotel in 1986, completion of a certified EIR in 1997 and approval of a previous 146-room hotel design by the City Council in 1998, and, most recently in 2007, a 146 room design was submitted by the same applicants putting forth the proposed Project, yet the application was later withdrawn. In 2002, the City Council found that the revised project plans were in substantial conformance to the requirements set forth in the Resolution dated March 1998. The City’s approval of the 1997 project was kept active until 2006 through annual time extensions issued by the City. The CCC’s 1986 approval remains active after the issuance of 26 consecutive annual extensions. Given the substantial changes in the regulatory and environmental setting since approval of the 1986 project, subsequent certification of the 1997 EIR, the passing of time, and the differences in the design of the currently proposed hotel, a new EIR was deemed necessary by the City Council to provide City staff, decision-makers and the public with an up-to-date and complete analysis to ensure timely project processing and completion of a legally sustainable document.

PROJECT DESCRIPTION

Project Location

The proposed Project site is located at 4000 Malibu Canyon Road within the Civic Center area of the City of Malibu, California. The site encompasses an elevated level coastal terrace and surrounding slopes immediately south and east of Pepperdine University and is bordered by Malibu Canyon Road to the north and west, Pacific Coast Highway (PCH) to the south, and Civic Center Way to the east. The site consists of three parcels (Assessor’s Parcel Numbers [APNs] 4458-030-007, 4458-028-015, and 4458-028-019) totaling approximately 27.8 acres located within the Commercial Visitor-Serving 2 (CV-2) zoning district. These parcels comprise one of the largest remaining undeveloped sites within the Malibu Civic Center area.
Project Objectives

The underlying purpose of the proposed Project is to provide visitor serving, full-service accommodations consistent with the City’s LCP and the land use designation for the Project site. The proposed Project includes six major objectives:

1. Provide a high-quality hotel and supporting facilities consistent with allowable uses within the CV-2 zoning district designation;
2. Ensure that all new development is sited and designed in a manner that respects the site’s rural character and natural environmental setting;
3. Increase the City’s supply of full-service hotel rooms, with supporting spa, banquet, meeting and special event facilities available for both hotel guests and community members (e.g., weddings, holiday parties, non-profit fundraisers, business functions, etc.);
4. Enhance the City of Malibu’s Civic Center commercial core, developing its only full service hotel with supporting high quality facilities;
5. Improve the City’s tax revenue base through generation of substantial transient occupancy and sales taxes; and
6. Comply with Los Angeles Regional Water Quality Control Board (RWQCB) requirements for wastewater treatment and disposal.

The underlying purpose of the proposed Project is to provide visitor serving, full-service accommodations consistent with the City’s LCP and the land use designation for the Project site. As required in Section 15124(b) of the State Guidelines for Implementation of the California Environmental Quality Act, the statement of objectives includes the underlying purpose of the project. Implementation of the proposed Project would meet the six major objectives described above and therefore achieve the underlying purpose of the Project.

Project Characteristics

The Project Applicant, Green Acres LLC, proposes to develop a 274,775 sf hotel complex consisting of 146 rooms and supporting facilities on approximately 16.5 acres of the 27.8-acre site. Development would consist of a main hotel building, 15 two-story detached secondary hotel buildings, 4 two-story secondary hotel buildings with basements, 2 single-story secondary hotel buildings, and supporting full-service spa, fitness center, retail, restaurant, bar, ballroom facilities along with three swimming pools, a playground, meeting rooms and other facilities.
Proposed structures would be organized around a central axis, which would consist of a series of courtyards, patios, and the central pool complex and lawn that would run from the motor court at the Project entry on the west through the hotel and pool complex to a second event lawn and scenic overlook on the eastern site bluff top. Located north of this central axis would be an 11,000 sf lawn for events, a hotel ballroom, the spa, 11 secondary hotel buildings and an employee parking lot. Located to the south of the axis would be a subsurface parking structure, street level and subterranean retail, and 10 secondary hotel buildings.

The main two-story hotel building of 58,258-sf above ground would contain a restaurant, bar, retail space, library, sundries store and other facilities on the ground floor with 12 guest rooms and patios located on the second floor. The two hotel basement levels would support 82,644 sf of spa, retail and support facilities, including the kitchen, administration and mechanical facilities. The two-story secondary hotel buildings would range in size from approximately 1,378 sf to more than 8,750 sf in size and would provide the majority of hotel accommodations with 134 guest rooms.

Primary site access would be provided via a main entrance and exit driveways centrally located along the site’s frontage with Malibu Canyon Road approximately 680 feet north of the intersection of PCH and Malibu Canyon Road, with a secondary fire and service access road proposed approximately 200 feet north of this main access driveway. A total of 543 parking spaces would be provided, primarily in a four-level, 166,827 sf parking structure with three subterranean levels and a surface level employee lot consisting of 40 spaces and a 14 space registration surfacing parking area outside the main entrance to the hotel.

Project development is limited to a maximum of two stories above finished grade. When viewed from surrounding roads and neighborhoods, the Project would appear to consist of two-story structures, with some roof top gardens and patios atop the second level of the main hotel building. However, because a large portion of the main hotel building would be constructed below grade, development of the hotel, spa, ballroom, retail and service uses would generally consist of three levels of services, with the spa, gym, pool complex and basement retail on a subterranean floors located 10 to 15 feet in elevation below the hotel lobby and surrounding grounds and secondary hotel buildings. Near the east end of the site, the first floor of most proposed secondary hotel buildings would be on the same level as the pool, lawn area and overlook.
Sewage disposal would be provided by an advanced OWTS facility to serve the proposed use. The OWTS would be located beneath the proposed employee parking lot in the northwest portion of the site. Approximately nine acres (32% of site) around the north, east and southern site perimeter would be converted to tall fescue turf lawn interspersed with sycamore, cottonwood and olive trees. These areas and associated landscaping, particularly tall fescue lawn, are intended for the disposal of treated wastewater via evapotranspiration, as well as landscaping. Three acres (11% of site) of primarily dense coastal sage scrub occurring on steep slopes would remain along the eastern hillsides of the Project site, as well as the hillsides above PCH along the site’s southern boundary. These areas would not be irrigated.

The Project proposes a tentative tract map to create an airspace subdivision to allow each hotel room, as well as two retail spaces, to be sold individually as commercial condominiums. The use of the condominium units would be limited to no greater than 30 consecutive calendar days, in order to still maintain the transient use of the hotel as defined by Malibu Municipal Code (M.M.C.) Section 3.24.020, and no more than 180 days per calendar year. When the unit owner is not staying at the hotel, the unit would be placed into the normal pool of hotel rooms to be used by the public.

ALTERNATIVES

Two Project alternatives, in addition to two scenarios for the “No-Project” Alternative, were selected for evaluation. The analysis of each alternative considers the ways in which they would substantially reduce or eliminate significant environmental impacts associated with the proposed Project while still meeting its basic objectives. In particular, this EIR includes the following alternatives:

- **Reduced Development/ Garden Hotel Alternative:** This alternative would result in a reduction in the overall level of development, including the building footprint as well as the size and scale of the proposed structures. Similar to the proposed Project, this alternative would include development of a full service hotel, spa, and supporting facilities on portions of the project site’s level mesa. Approximately 14 acres of the 27.8-acre site would be developed as a garden hotel and resort while the remaining 14 acres would serve as an irrigated fire buffer and an enhanced habitat area which could also be used for disposal of treated wastewater. This design would consist of the development of a 146-room luxury garden hotel that would shift rooms from secondary hotel buildings to the main hotel buildings, increase the number of rooms within each detached building, and reduce the room size in order to reduce the overall number of the
detached buildings and structural square footage. In addition, this alternative would entail a reduction in the scale of other planned facilities (e.g., reduced spa). This alternative’s centralized “clustered” site design and reduced development footprint would allow for a substantial increase in garden and landscape space, ponds, and increased setbacks from hillsides.

- **Commercial Use Alternative:** Development of the Project site under the Commercial Use Alternative would include siting of development atop the level mesa portion of the 27.8-acre Project site. However, under this Alternative, development would be limited to approximately 14 acres of the site, with increased development setbacks from the steep and visually prominent slopes overlooking Winter Canyon and PCH. Under this Alternative, development would also be set back from existing hillside coastal sage scrub habitats and high fire hazard area, with approximately 14 acres of the site retained as hillside open space. Parking would generally front Malibu Canyon Road with structures located primarily in the central and southern portions of the site. The central development would include internal pedestrian circulation improvements and an open space area, as well as perimeter landscaping and parking lot planters with trees.

- **No-Project Alternative:** as required by California Environmental Quality Act (CEQA), this alternative assumes that existing conditions would continue. However, from a regulatory perspective, “existing conditions” and “existing state” of the site may be interpreted to include the continuation of past approval of a modified version of the 1998 EIR (project plans finalized in 2001) for a hotel on the Project site, or the continuation of existing physical conditions (vacant site). Each of these is considered as a No-Project “Scenario” in this EIR.

1. **No Project/ Approved Hotel Alternative:** Similar to the proposed Project, the No-Project/Approved Hotel Alternative would include development of a full service hotel, spa, and supporting facilities on portions of the Project site’s level mesa. Approximately nine acres of the 27.8-acre site would be developed with hotel uses while the remaining 18 acres would provide landscaped grounds and open natural hillside areas, which could be used for reuse of treated wastewater. The site would be developed with the approved version of a luxury hotel assessed as Alternative F in the 1998 EIR, as modified to reflect conditions of approval imposed by the City in 2001. This Alternative would entail development of the site with an 181,793 sf hotel and associated uses with a 0.15 F.A.R. The luxury hotel developed under this Alternative would include up to 146 guest rooms developed in two phases with 106 guest rooms in Phase I and up to an additional 40 guest rooms in Phase 2. As was set forth in City Council Resolution No. 98-001, which certified the 1998 EIR, Phase 2 would be subject to approval by the City only
if all impacts are demonstrated to have been mitigated upon completion and operation of the 106-room hotel.

2. No Project/No Build Alternative: The No-Project/No-Build Alternative assumes continuation of the existing setting. Under this Alternative, no development would occur and the Project site would continue to be vacant.

Alternatives which were considered and discarded include a business park/office complex; construction of a budget hotel; construction of a campground; and alternative locations within the City for the construction of the proposed Project including the Crummer Property and an alternative site along Civic Center Way.

Environmentally Superior Alternative

The No Project/Approved Hotel Alternative has been selected as the environmentally superior alternative because it would reduce identified significant unavoidable long-term impacts to traffic and transportation and noise, to the maximum extent feasible. The project may still result in adverse impacts from changes in the visual character, wildfire evacuation hazards, and air quality, but the severity of such impacts would be greatly reduced.

SUMMARY OF IMPACTS AND MITIGATION MEASURES

Tables ES-1 through ES-4 summarize the environmental impacts associated with the proposed Project, proposed mitigation measures, and residual impacts. The impacts are organized by the level of impact (i.e., Class I, Class II, Class III, or Class IV impacts). Class I impacts are defined as significant, unavoidable adverse impacts that require a statement of overriding considerations to be issued per Section 15093 of the Guidelines for Implementation of the California Environmental Quality Act (CEQA Guidelines) if the Project is approved. Class II impacts are significant adverse impacts that can be feasibly mitigated to less-than-significant levels and that require findings to be made under Section 15091 of the CEQA Guidelines. Class III impacts are considered less than significant and do not require mitigation. Class IV impacts are beneficial and do not require mitigation. A summary of cumulative environmental impacts is presented in Table ES-5.
Table ES-1. Class I Impacts - Significant, Unavoidable Impacts That May Not Be Fully Mitigated to Less Than Significant Level

<table>
<thead>
<tr>
<th>Impacts</th>
<th>Mitigation Measures Text</th>
<th>Residual Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.12 Noise</td>
<td>NO-1 Project construction would create potentially significant short-term impacts to nearby sensitive receptors over the approximately two-year construction period (Class I).</td>
<td>MM NO-1a No operation of tools or equipment used in construction, drilling, repair, alteration, or demolition work shall occur on Monday through Friday between the hours of 7:00 P.M. and 7:00 A.M., Saturday before 8:00 A.M. or after 5:00 P.M., or any time on Sundays or City-designated holidays, such that the sound creates a noise disturbance across a residential or commercial property line (M.M.C. Section 8.24.050(G)). MM NO-1b The Applicant shall prepare and submit a Construction Noise Management Plan that addresses noise issues related to construction timing, traffic routing, construction in Winter Canyon and methods to reduce construction noise. Noise attenuation techniques shall be employed as needed to ensure that noise levels are maintained within levels allowed by the City’s General Plan and Municipal Code Chapter 8.24 (Noise). For construction-related noise issues, the plan shall include: • Designation of acceptable construction traffic routes, including a prohibition of heavy haul trucks using Civic Center Way; • Requirement that sound blankets are placed on noise-generating equipment; • All diesel equipment should be operated with closed engine doors and shall be equipped with factory-recommended mufflers; and • Hauling schedules, the use of large trucks and movement of construction-related vehicles, with the exception of passenger vehicles, along roadways adjacent to sensitive receptors shall be limited to the hours between 7:00 A.M. and 7:00 P.M., Monday through Saturday. No movement of heavy equipment shall occur on Sundays or City-designated holidays (e.g., Thanksgiving, Labor Day).</td>
</tr>
</tbody>
</table>
Table ES-2. Class II Impacts - Significant Impacts That Can Be Mitigated To Less Than Significant Levels

<table>
<thead>
<tr>
<th>Impact Text</th>
<th>Mitigation Measures Text</th>
<th>Residual Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Aesthetics and Visual Resources</td>
<td>MM VIS-2a In order to reduce visibility of proposed structures from scenic roads and to “break up” building massing on the top of the hillsides along the perimeter of the proposed development envelope, design review shall consider the relocation of structures away from the southern and eastern edges of the development envelope toward the center of the site. Additional measures to reduce visual prominence would include potential reduction in the number of stories or the total height of secondary hotel buildings located along the perimeter of the Project site. MM VIS-2b Scrub Garden Component of Landscape Plan: The landscape and native habitat enhancement plan (refer to MM BIO-2a) shall provide an area for native scrub landscaping to preserve the natural visual appearance of the site to the extent feasible, with the limitation of site development and onsite disposal of treated effluent. A minimum of one acre of scrub habitat shall be included within the landscape plan. For maximum visual effect, scrub landscaping is encouraged along the margins of the site, along the public pathway along the slope on the north side of the site, and along steep slopes below structures on the north, east, and southeast slopes of the site. The landscape maintenance plan shall provide for regular thinning of scrub landscaping to minimize fuel supply and resulting fire danger. MM VIS-2c Large blank areas of building facades visible by the general public from outside the Project shall not be permitted. Such facades shall be “broken up” by architectural features, such as decorative sculptural panels, setbacks, windows, columns, textured surfaces or other architectural details as appropriate. Building facades should reflect a common...</td>
<td>Implementation of MM Vis-2a through -2c would reduce impacts to less than significant.</td>
</tr>
</tbody>
</table>
Table ES-2. Class II Impacts - Significant Impacts That Can Be Mitigated To Less Than Significant Levels

<table>
<thead>
<tr>
<th>Impact Text</th>
<th>Mitigation Measures Text</th>
<th>Residual Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>theme throughout the Project, and should show common patterns and rhythms of fenestration, structural details, etc.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.2 Air Quality

AQ-1 The proposed Project would result in potentially significant short-term construction-related air quality impacts from dust and air pollutant emissions generated by grading and construction equipment operation (Class II).

MM AQ-1a The following standard regulatory conditions shall be implemented during construction activities at the Project site, consistent with SCAQMD Rule 403:
- Minimization of Disturbance. Construction contractors should minimize the area disturbed by clearing, grading, earth moving, or excavation operations to prevent excessive amounts of dust.
- Soil Treatment. Construction contractors should treat all graded and excavated material, exposed soil areas, and active portions of the construction site, including unpaved onsite roadways to minimize fugitive dust. Treatment shall include, but not necessarily be limited to, periodic watering, application of environmentally safe soil stabilization materials, and/or roll compaction as appropriate. Watering shall be done as often as necessary, and at least twice daily, preferably in the late morning and after work is done for the day.
- Soil Stabilization. Construction contractors should monitor all graded and/or excavated inactive areas of the construction site at least weekly for dust stabilization. Soil stabilization methods, such as water and roll compaction, and environmentally safe dust control materials, shall be applied to portions of the construction site that are inactive for over four days. If no further grading or excavation operations are planned for the area, the area shall be seeded and watered until landscape growth is evident, or periodically treated with environmentally safe dust suppressants, to prevent

Compliance with standard regulatory conditions, which include adherence to SCAQMD Rule 403 mandatory measures to reduce fugitive dust emissions, and incorporation of MM AQ-1a through -1f, would reduce construction emission impacts to less than significant levels.
Table ES-2. Class II Impacts - Significant Impacts That Can Be Mitigated To Less Than Significant Levels

<table>
<thead>
<tr>
<th>Impact Text</th>
<th>Mitigation Measures Text</th>
<th>Residual Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>excessive fugitive dust.</td>
<td>• No Grading During High Winds. Construction contractors should stop all clearing, grading, earth moving, and excavation operations during periods of high winds (20 miles per hour or greater, as measured continuously over a one-hour period). • Street Sweeping. Construction contractors should sweep all onsite driveways and adjacent streets and roads at least once per day, preferably at the end of the day, if visible soil material is carried over to adjacent streets and roads. • Dust Accumulation: In the event that substantial accumulation of dust in the air over the grading operations is observed and a combination of low wind speed and high stability results in substantial dust concentrations at the schools or condominium complexes for a continuous period of more than one hour, one or more of the following additional mitigation measures shall be put in place as appropriate until the wind conditions change to make these measures unnecessary: grading shall be halted, or; grading shall be moved to a location on the site more distant or such that substantial dust is no longer carried toward the schools or condominium complexes; or; water trucks shall spray continuously behind or in to grading vehicles to substantially reduce the amount of dust raised into the air.</td>
<td></td>
</tr>
<tr>
<td>MM AQ-1b Soil Hauling Tarp Requirement. All trucks hauling dirt, sand, soil, or other loose materials should be tarped with a fabric cover and maintain a freeboard height of 12 inches.</td>
<td>MM AQ-1c On-Road NOx Emission Control Technologies. All trucks hauling dirt, sand, soil, or other loose materials should be equipped with CARB verified Level 3 Plus off-road engine emission control</td>
<td></td>
</tr>
</tbody>
</table>
Table ES-2. Class II Impacts - Significant Impacts That Can Be Mitigated To Less Than Significant Levels

<table>
<thead>
<tr>
<th>Impact Text</th>
<th>Mitigation Measures Text</th>
<th>Residual Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>technologies.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MM AQ-1d Off-Road NOx Emission Control Technologies. All mobile off-road equipment used during the site preparation and grading phases of project construction should meet Tier 4 standards.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MM AQ-1e Soil Hauling Daily Trip Limit. Truck trips hauling soil export from the project site should be limited to a maximum of 130 trips per day.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MM AQ-1f Mobile Source Emission Reduction Credits. Pursuant to SCAQMD Rule 2022, the project applicant shall reduce NOx emissions by purchasing MSERCs from SCAQMD for each pound of NOx emissions in excess of the daily SCAQMD regional NOx threshold of 100 pounds per day (lbs/day) during project construction. The total amount of MSERCs required to mitigate NOx emissions during the site preparation phase of project construction would be 2,661.7 (30.95 lbs/day * 86 days).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.3 Cultural Resources

CR-1 Construction of the employee parking lot, onsite wastewater treatment system, fire service road, and main hotel and secondary hotel buildings would result in potentially significant impacts to prehistoric archaeological site CA-LAN-266 (Class II).

MM CR-1a Impacts to site CA-LAN-266 shall be avoided by reducing the size of the development envelope to prohibit development and any attendant disturbance to the area within the most sensitive site boundary, identified as Area A within the 2007 CRMP.

MM CR-1b Archaeological site CA-LAN-266, shall be incorporated into the Project design as unbuildable open space where no grading, construction, utility placement, landscaping, or other ground disturbance or development can occur. This area shall be seeded with shallow-rooted native vegetation to protect the site from erosion, discovery, etc. The Applicant shall post a performance bond with the City to establish and maintain plantings for a two year period from seeding in order to establish shallow-rooted native vegetation.

Implementation of MM CR-1a through -1c would require avoidance of the archaeologically sensitive area. Implementation of measures to identify and avoid disturbance in less sensitive areas that may contain resources would reduce impacts to less than significant.
<table>
<thead>
<tr>
<th>Impact Text</th>
<th>Mitigation Measures Text</th>
<th>Residual Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>During construction, the archaeological site and 50-foot buffer area shall</td>
<td>The final plans shall include a notation designating the known archaeological site as unbuildable area where no grading, construction, utility placement, landscaping, or other ground disturbance or development can occur. The area shall not be identified as a sensitive resource area on the plans. This site, plus the 50 foot buffer shall be fenced during grading. The grading plan shall be modified to provide for a gradual grade transition from this sensitive area to surrounding developed areas.</td>
<td>Residual Impact</td>
</tr>
<tr>
<td>be temporarily fenced with chain link flagged with color or other material authorized by the City.</td>
<td>MM CR-1c</td>
<td></td>
</tr>
<tr>
<td>MM CR-1c The final plans shall include a notation designating the known</td>
<td>In the event archaeological remains are encountered during grading or other earth disturbance, work must immediately cease until a qualified archaeologist can provide an evaluation of the nature and significance of the resources, and until the Planning Director can review this information. Where, as a result of this evaluation, the Director determines that the Project may have an adverse impact on cultural resources, a Phase II Evaluation of cultural resources must be required pursuant to M.M.C. Section 17.54.040.D, funded by the Applicant. If remains are found to be significant, they shall be subject to a Phase III mitigation program consistent with City procedures included in the City Planning Department’s Archaeological Evaluation and Inventory Information document and funded by the Applicant. If human bone or any other human remains are discovered, the procedures described in Section 7050.5 of the Health and Safety Code must be followed. The property owner or his/her representatives (i.e. architect, engineer, contractor,</td>
<td></td>
</tr>
<tr>
<td>Impact Text</td>
<td>Mitigation Measures Text</td>
<td>Residual Impact</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>etc.) must notify of the Los Angeles County coroner. If the coroner determines that the remains are those of a Native American, the applicant must notify the Native American Heritage Commission by phone within 24 hours. Following notification of that organization, the procedures described in Section 5097.94 and 5097.98 of the Public Resources Code must be followed.</td>
<td></td>
<td>CR-2 Construction of a secondary hotel building and fire access road would result in potentially significant impacts to the prehistoric archaeological site CA-LAN-1715 (Class II).</td>
</tr>
<tr>
<td>MM CR-2a The Applicant shall retain a qualified archaeologist and a qualified Chumash cultural resources monitor to monitor all earth disturbances within 50 feet of site CA-LAN-1715 to ensure that previously unidentified buried archaeological deposits are not inadvertently exposed and damaged. In the event archaeological remains are encountered during grading or other earth disturbance, work must immediately cease until a qualified archaeologist can provide an evaluation of the nature and significance of the resources, and until the Planning Director can review this information. Where, as a result of this evaluation, the Director determines that the project may have an adverse impact on cultural resources, a Phase II Evaluation of cultural resources must be required pursuant to M.M.C. Section 17.54.040.D, funded by the Applicant. If remains are found to be significant, they shall be subject to a Phase III mitigation program consistent with City procedures included in the City Planning Department’s Archaeological Evaluation and Inventory Information document and funded by the Applicant. If human bone or any other human remains are discovered, the procedures described in Section 7050.5 of the Health and Safety Code must be followed. The property owner or his/her representatives (i.e. architect, engineer, contractor, etc.) must notify of the Los Angeles County coroner. If the coroner determines</td>
<td>Implementation of MM CR-2a would reduce potential impacts to site CA-LAN-1715 to less than significant.</td>
<td></td>
</tr>
<tr>
<td>Table ES-2. Class II Impacts - Significant Impacts That Can Be Mitigated To Less Than Significant Levels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Impact Text</td>
<td>Mitigation Measures Text</td>
<td>Residual Impact</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>that the remains are those of a Native American, the applicant must notify the Native American Heritage Commission by phone within 24 hours. Following notification of that organization, the procedures described in Section 5097.94 and 5097.98 of the Public Resources Code must be followed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4 Biological Resources</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIO-1 The proposed Project would result in the direct removal of/or damage to approximately eight to 10 acres of Dense, Intact Coastal Sage Scrub (Class II).</td>
<td>MM BIO-1 No additional mitigation is required.</td>
<td>The previously required 30-acre conservation easement would lead to replacement of the impacted 10.75 acres habitat at a 2.7:1 ratio, which exceeds the 2:1 ratio previously required by the City. Therefore, the loss of 10.75 acres of intact coastal sage scrub habitat, while potentially significant, has been successfully mitigated.</td>
</tr>
<tr>
<td>BIO-2 The proposed Project would result in the direct removal of/or damage to sensitive vegetative communities and sensitive plant species listed by the California Native Plant Society (Class II).</td>
<td>MM BIO-2a The Applicant shall prepare and implement a landscape and native habitat enhancement plan to design remaining and disturbed hillside open spaces on the Project site to support native plant communities and sensitive plant species habitat. This plan shall emphasize restoration of disturbed hillside with appropriate native habitats and species that are consistent with fire safety and potential use of hillsides for effluent disposal. At a minimum, these plans shall include planting of Southern California black walnut, foothill needle grassland, saltgrass- fasciculed tarplant fields, coastal sage scrub species, and oak woodland species and those more adapted to a higher moisture regimen, such as California sycamores. In addition, Southern California black walnut shall be planted along the banks of the onsite stormwater detention basins, as well as along the any open drainage within the Project site to the satisfaction of the City Biologist. MM BIO-2b The fuel modification plan shall limit the removal of the foothill needlegrass. In these areas,</td>
<td>Implementation of MM BIO-2a and -2b would reduce potential impacts to sensitive vegetation to less than significant.</td>
</tr>
</tbody>
</table>
Table ES-2. Class II Impacts - Significant Impacts That Can Be Mitigated To Less Than Significant Levels

<table>
<thead>
<tr>
<th>Impact Text</th>
<th>Mitigation Measures Text</th>
<th>Residual Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>fire risk shall be abated via the thinning of native vegetation rather than the complete removal and replanting of native vegetation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIO-3 The proposed Project would potentially result in direct and indirect impacts to wildlife, including sensitive species, during Project construction and operation (Class II).</td>
<td>MM BIO-3a Night lighting from exterior and interior sources shall be minimized. All exterior light shall be low intensity and shielded so it is directed downward and inward to eliminate offsite glare or lighting of natural habitat areas. Up-lighting of landscape trees shall be prohibited.</td>
<td>The prior purchase of the 30-acre Francisco property mitigated the direct loss of habitat onsite. Incorporation of mitigation measures would further reduce direct and indirect impacts to species potentially present on the site. Additionally, as special status wildlife species have not been documented on or adjacent to the Project, this impact is potentially significant, but feasibly mitigated.</td>
</tr>
<tr>
<td>BIO-4 The proposed Project may directly or indirectly impact adjacent riparian/wetland habitat via trenching, vegetation removal, erosion and alterations in hydrology (Class II).</td>
<td>MM BIO-4a The Applicant shall prepare a riparian protection and restoration plan to ensure that the riparian and wetland vegetation in Winter Creek is protected and restored to mitigate the impacts of Project-related drainage improvements. The plans shall limit the removal of native riparian and other vegetation, include replacement plantings for any riparian vegetation removed, set forth erosion control measures, as well as short-term measures to minimize construction-related impacts to on- and offsite areas that may be affected by Project-related drainage improvements.</td>
<td>Implementation of MM BIO-4a would reduce potential impacts to adjacent riparian/wetland habitat to less than significant.</td>
</tr>
</tbody>
</table>

3.5 Geology and Soils

| GEO-1 The proposed Project would expose people or structures to adverse effects from seismicity or seismically induced hazards including surface rupture or ground shaking (Class II). | MM GEO-1a The Project shall comply with the site-specific recommendations, put forth in the approved geotechnical engineering report, which are in accordance with applicable sections of the CBC and City of Malibu Building Code, which is a compilation of building standards adopted by state agencies, adopted and adapted from the national model code standards, and authorized by the California legislature (see Appendix C). The preliminary recommendations for grading, backfill, and foundations developed | Through the incorporation of proper engineering measures in accordance with existing regulations, building codes, and the application of the engineering recommendations provided in the approved geotechnical investigation and MM GEO-1b, risks to life and property would be minimized. Therefore, the impacts potentially resulting from seismic shaking are considered to be potentially significant, but subject to feasible mitigation. |
Table ES-2. Class II Impacts - Significant Impacts That Can Be Mitigated To Less Than Significant Levels

<table>
<thead>
<tr>
<th>Impact Text</th>
<th>Mitigation Measures Text</th>
<th>Residual Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>GE-2 The proposed Project would expose people or structures to adverse effects resulting from slopes that do not meet the safety standards for slope stability and may be subject to future landslides (Class II).</td>
<td>MM GEO-2a The Project shall comply with site-specific recommendations in accordance with the applicable sections of the CBC and Title 15 of the Malibu Municipal Code which adopts the California Building Code. The recommendations for grading, backfill, and the construction of the retaining walls developed during the preparation of the approved site-specific geotechnical investigation shall be incorporated into the Project design, unless additional measures are deemed necessary based on the results of structural and chemical testing of the final grade samples. Specific applicable measures outlined in the approved geotechnical report include but are not limited to the following:</td>
<td>Through the incorporation of proper engineering measures in accordance with existing regulations and the application of the engineering recommendations provided in the approved geotechnical investigation as well as MM GEO-2a, risks to life and property would be minimized. Therefore, the impacts potentially resulting from geologic and soils hazards are considered to be potentially significant, but subject to feasible mitigation.</td>
</tr>
<tr>
<td>Impact Text</td>
<td>Mitigation Measures Text</td>
<td>Residual Impact</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>• Fill slopes and cut slopes shall have a maximum slope ratio no greater than 2:1 (horizontal to vertical).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• The reinforced concrete piles used to support the retaining walls shall be designed to extend below the critical failure surface on the slopes along the northern perimeter of the Project site.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• In addition to grading and compaction requirements, deepened foundations, as described by GeoSoils Consultants Inc. (2011), shall be required for support of retaining walls along the tops of slopes, as well as for the piles that are necessary to increase the safety factor along the north-facing slope area.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Spray of effluent shall not occur on slopes with a gradient greater than 2:1 (horizontal to vertical), nor shall it occur on the eastern area of the Project site in the zone of instability north of Pacific Coast Highway.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Subdrains shall be provided in all stabilization fills prior to fill placement.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Surface water shall not be allowed to pond or seep into the ground, or flow over slopes in a concentrated manner, as it may locally have an adverse affect on surficial slope stability.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEO-3 The proposed Project would expose people or structures to adverse effects as a result of Project development on expansive soils or soils subject to liquefaction (Class II).</td>
<td>MM GEO-3a Soil engineering design recommendations addressing expansive soils and differential settlement in the site-specific geotechnical engineering report shall be incorporated into the Project design in accordance with applicable sections of the CBC and the Malibu Municipal Code.</td>
<td>Implementation of MM GEO-3a and geotechnical engineering measures outlined in the approved geotechnical report, the impacts related to development on expansive soils are considered to be potentially significant, but subject to feasible mitigation.</td>
</tr>
<tr>
<td></td>
<td>• All relevant grading recommendations provided by GeoSoils Consultants Inc. (2011) shall be incorporated into the Project design.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• In order to minimize the potential effects of</td>
<td></td>
</tr>
</tbody>
</table>
Table ES-2. Class II Impacts - Significant Impacts That Can Be Mitigated To Less Than Significant Levels

<table>
<thead>
<tr>
<th>Impact Text</th>
<th>Mitigation Measures Text</th>
<th>Residual Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEO-4 The proposed Project would result in increased erosion and/or decreased soil stability as a result of the proposed onsite wastewater treatment system (Class II).</td>
<td>MM GEO-4b Storm drainage improvements shall be required to mitigate increased runoff generated by property development. The Applicant shall have the choice of one method specified within LIP Section 17.3.2.B.2.</td>
<td>Implementation of MM GEO-4b in addition to standard conditions of approval, impacts to slope stability associated with disposal of Project generated wastewater would be potentially significant, but subject to feasible mitigation.</td>
</tr>
<tr>
<td>GEO-5 The proposed Project would result in short- and long-term increased soil erosion and/or the loss of topsoil associated with site alteration, grading and construction (Class II).</td>
<td>MM GEO-5a Grading and Drainage Plans and Erosion and Sediment Control Plans shall include the following:</td>
<td>With the incorporation of standard erosion control requirements, the risk of erosion and adverse impacts resulting in the loss of topsoil due to grading activities would be reduced to less than significant.</td>
</tr>
<tr>
<td></td>
<td>• The Applicant shall limit grading of slopes with a gradient greater than 25% to the dry season of the year (i.e., March 31 to November 1); grading permits shall not be issued for these areas between November 1 and March 31. All exposed graded surfaces shall be reseeded with native ground cover vegetation following grading to minimize erosion.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Grading on slopes with a gradient of less than 25% during the wet season shall require a wet weather erosion and sediment control plan. The following elements shall be included:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>o Locations of where the concentrated runoff will occur;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>o Plans for the stabilization of disturbed areas of the property, landscaping, and hardscape, along with the proposed schedule for the installation of protective measures;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>o Location and sizing criteria for silt basins, sandbag barriers, and silt fencing; and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>o Stabilized construction entrance and a monitor</td>
<td></td>
</tr>
</tbody>
</table>
EXECUTIVE SUMMARY

<table>
<thead>
<tr>
<th>Impact Text</th>
<th>Mitigation Measures Text</th>
<th>Residual Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>program for the sweeping of material tracked offsite.</td>
<td>• Methods such as geotextile fabrics, erosion control blankets, retention basins, drainage diversion structures, siltation basins and spot grading shall be used to reduce erosion and siltation into adjacent drainages during grading and construction activities.</td>
<td></td>
</tr>
<tr>
<td>• Any soil exported from the site shall be taken to the County Landfill or to a site with an active grading permit and the ability to accept the material in compliance with the LIP Section 8.3.</td>
<td>• Grading on slopes steeper than 2:1 (horizontal to vertical) shall be designed to minimize surface water runoff.</td>
<td></td>
</tr>
<tr>
<td>• Prior to major storm events a pre-storm site inspection will be conducted to assess the integrity of all erosion control measures. Repairs shall be made to all erosion control structures concurrently with or immediately following the pre-storm site inspection. Additional repairs shall be made to any affected structures following the storm event.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.6 Fire Protection and Hazardous Materials

<table>
<thead>
<tr>
<th>Item</th>
<th>Impact Text</th>
<th>Mitigation Measures Text</th>
<th>Residual Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>FMH-1</td>
<td>Onsite abandoned septic tanks and former nursery land uses at the Project site may create adverse, but not significant impacts during construction activities due to hazards associated with potential presence of contaminated soil and groundwater (Class II).</td>
<td>MM FPHM-1a During removal of the septic tanks the surrounding soils shall be examined for potential soil contamination prior to excavation and removal of soils from the site.</td>
<td>Implementation of MM FPHM-1a would reduce impacts associated with abandoned septic tanks to less than significant.</td>
</tr>
<tr>
<td>FPHM-2</td>
<td>The operation of construction equipment would result in potentially significant adverse impacts associated with hazardous materials spills and other safety hazards during construction activities on the Project site (Class II).</td>
<td>MM FPHM-2a The Applicant shall prepare and submit a Construction Impact Management Plan to the City prior to the issuance of grading permits for the proposed Project. The Plan shall include:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• A list of all heavy equipment necessary for construction operations associated with the</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EXECUTIVE SUMMARY

<table>
<thead>
<tr>
<th>Impact Text</th>
<th>Mitigation Measures Text</th>
<th>Residual Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>proposed Project;</td>
<td>• Identification of a designated onsite location(s) for fueling and vehicle storage at least 100 feet from steep slopes and drainage areas;</td>
<td></td>
</tr>
<tr>
<td>• A list of standard construction best management practices to be implemented, such as the use of drip pans, etc.; and</td>
<td>• A monthly heavy equipment inspection and maintenance schedule that shall be implemented throughout the duration of construction.</td>
<td></td>
</tr>
<tr>
<td>MM FPHM-2b Prior to issuance of grading permits, the Applicant shall submit an Emergency Spill Response Plan to address the potential sources of hazardous spills as well as the subsequent remedial activities. The Plan shall include:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Standard best management practices for avoiding heavy equipment spills, including those listed in the work plan associated with MM FPHM-1a;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Standards for a spill response personnel training program that would be required for all heavy equipment operators prior to commencement of work on the Project site;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Requirements for the Applicant to provide appropriate provisions to remediate any small, accidental spills; and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• A list of emergency response agencies to be contacted in the event of a significant hazardous materials spill.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPHM-3 The proposed Project would create potentially significant adverse impacts associated with the construction of the proposed hotel in a Very High Fire Hazard Severity Zone, resulting in an increased potential for wildfire ignition (Class II).</td>
<td>MM FPHM-3a The Applicant shall designate smoking areas for both guests and employees, located away from onsite fire hazards areas. Additionally the Applicant shall prohibit smoking near areas of high fire hazard zones (e.g., along the perimeter of the hotel property).</td>
<td>Implementation of MM FPHM-3a and MM FPHM-3b, the potential for wildfire ignition on the Project site would be reduced to levels that are less than significant.</td>
</tr>
<tr>
<td>Impact Text</td>
<td>Mitigation Measures Text</td>
<td>Residual Impact</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------------------</td>
<td>-----------------</td>
</tr>
</tbody>
</table>
| FPHM-4 The proposed Project would create potentially significant adverse impacts to fire safety associated with the construction of the Project in a VHFHSZ, resulting in an increased potential for structural damage, injuries, or loss of life due to wildfires (Class II). | MM FPHM-4a The Applicant shall prepare and submit a comprehensive Wildfire Emergency Management Plan for review by the LACFD and the City. The Plan shall consist of measures to reduce the potential for structural damage to the proposed development including:
 - A detailed description and map of fire protection apparatus and staging locations, the locations of the electric and gas shut off controls, emergency meeting locations, and emergency supply locations;
 - Relevant building design specifications that would qualify the building for identification as a safe refuge during a wildfire; and,
 - Training requirements for front-desk hotel staff and any other staff routinely interacting with the public shall include First Aid and First Responder certification as well as annual requirements for wildfire emergency management training scenario exercises with the LACFD and Los Angeles County Sheriff’s Department (LASD) prior to the onset of fire season.
MM FPHM-4b The Applicant shall include the water system upgrades required by the LADPW will-serve letter in the construction plans prior to the issuance of building permits.
MM FPHM-4c The hotel grounds shall be inspected annually by the LACFD in order to ensure compliance with the fuel modification plan. This shall include an inspection of the deadwood and leaf litter, which shall be removed annually prior to the beginning of fire season.
MM FPHM-4d Each hotel room and each room within the individual secondary hotel buildings shall be required to have an emergency evacuation plan posted in a visible location. Additionally each room | Implementation of listed mitigation measures, including MM FPHM-4a and MM FPHM-5a, which require the development and implementation of a Wildfire Emergency Management Plan, would reduce the level of impacts related to fire protection and hazardous materials to levels that are less than significant. |
<table>
<thead>
<tr>
<th>Impact Text</th>
<th>Mitigation Measures Text</th>
<th>Residual Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>shall have a Wildfire Emergency Procedures binder, which shall include relevant information from the Wildfire Emergency Management Plan, such as the locations of safe refuges, locations of First Aid and emergency supplies, and emergency contacts within the hotel. Further, the home channel on the television within each hotel room shall have a two-minute program regarding wildfire hazards. The program shall summarize emergency evacuation and shelter-in-place procedures, and shall refer to the information in the Wildfire Emergency Procedures binder. Additionally, during high fire danger days as determined by the LACFD daily fire danger analysis forecasts, a news ticker will continuously run along the bottom of the home channel indicating high fire hazard. MM FPHM-4e The final plant selections for the Fuel Modification Plan shall be limited to fire-resistant native species per LUP Policy 4.45. Non-native species shall not be included in the final landscaping plan.</td>
<td>Implementation of listed mitigation measures, including MM FPHM-4a and MM FPHM-5a, which require the development and implementation of a Wildfire Emergency Management Plan, would reduce the level of impacts related to fire protection and hazardous materials to levels that are less than significant.</td>
<td></td>
</tr>
</tbody>
</table>
Table ES-2. Class II Impacts - Significant Impacts That Can Be Mitigated To Less Than Significant Levels

<table>
<thead>
<tr>
<th>Impact Text</th>
<th>Mitigation Measures Text</th>
<th>Residual Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>responsibilities of hotel staff in the event of a wildfire or related emergency, including detailed procedures for hotel staff regarding implementation of shelter-in-place procedures; • A description of the chain of command at the hotel during a wildfire, including a communication/coordination plan for hotel staff and the City’s Emergency Operations Center as well as other emergency service providers (i.e., LACFD and LASD); • Designated employee building marshals to assist in the communication of evacuation procedures and to perform a headcount of guests and employees assigned to the building; • Designated emergency assembly areas where building occupants should gather immediately following an evacuation signal (i.e., fire alarm) to await further instructions; • Details regarding procedures for hotel staff distribution of emergency supplies (e.g., insulin, inhalers, approved oxygen canisters, burn salves, etc.). Appropriate staff shall be trained and prepared administer First Aid/CPR; • Information regarding the specific locations of LACFD-approved shelter-in-place areas; • Details regarding how the hotel staff would communicate critical emergency information to hotel guests; • Strategies for hotel staff to maintain order within a shelter-in-place environment. This shall include specific measures associated with communication and the distribution of food, water, medical aid and supplies; • Details regarding how the hotel would coordinate with the LACFD and LASD to accommodate additional residents in need of safe refuge. The plan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impact Text</td>
<td>Mitigation Measures Text</td>
<td>Residual Impact</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>shall include specific measures regarding how cars would be accepted into the hotel. It shall also include specific measures to ensure that the accommodation of cars into the parking structure does not result in queuing on Malibu Canyon Road; and • Details regarding how the hotel staff would coordinate with LACFD and LASD should the hotel reach maximum capacity for safe refuge.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.7 Hydrology and Water Quality

HYD-1 The proposed Project would result in short-term, potentially significant impacts to surface water quality from increased erosion, sedimentation and polluted runoff during construction activities (Class II).

- **MM HYD-1a** Notice of Intent. Prior to beginning construction, the Applicant shall file a Notice of Intent (NOI) to the RWQCB for discharge from the proposed development site.
- **MM HYD-1b** Storm Water Pollution Prevention Plan. The Applicant shall require the building contractor to prepare and submit a Storm Water Pollution Prevention Plan (SWPPP) to the City Public Works Department prior to the issuance of grading permits. The contractor is responsible for understanding the State General Permit and implementing the SWPPP during construction. A SWPPP for site construction shall be developed prior to the initiation of grading and implemented for all construction activities on the Project site in excess of one acre, or where the area of disturbance is less than one acre but is part of the Project’s plan of development that in total disturbs one or more acres. The SWPPP shall include specific BMPs to control the discharge of material from the site. BMP methods may include, but would not be limited to, the use of temporary detention basins, straw bales, sand bagging, mulching, erosion control blankets, silt fencing, and soil stabilizers. Additional BMPs should be implemented for any fuel storage or fuel handling that could occur onsite during the proposed construction activities.

Implementation of standard regulatory conditions, MM GEO-5a and -5b, and MM HYD-1a through -1d, impact would be reduced to less than significant.
Table ES-2. Class II Impacts - Significant Impacts That Can Be Mitigated To Less Than Significant Levels

<table>
<thead>
<tr>
<th>Impact Text</th>
<th>Mitigation Measures Text</th>
<th>Residual Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>construction. The SWPPP must be prepared in accordance with the guidelines adopted by the State Water Resources Control Board (SWRCB). The SWPPP shall be submitted to the City along with grading/development plans for review and approval. MM HYD-1c Notice of Termination of Construction. The Applicant shall file a notice of termination of construction of the development with the RWQCB, identifying how pollution sources were controlled during the construction of the Project and implementing a closure SWPPP for the site. MM HYD-1d All required actions shall be implemented pursuant to a Standard Urban Storm Water Mitigation Plan per M.M.C. Section 13.04.110 and a Storm Water Management Plan per M.M.C. Section 13.04.100 submitted to the City and the RWQCB under the NPDES Phase II program.</td>
<td>The Project would have residual impacts to surface water quality; however, the proposed mitigation measures, MM HYD-2a and MM UT-1a, would reduce the toxicity of pesticides and fertilizers used for landscaping and ensure no deep percolation of wastewater during disposal, thereby reducing the potential impact to impaired water bodies that receive runoff or wastewater from the Project site to less than significant.</td>
<td></td>
</tr>
<tr>
<td>HYD-2 Operation of the Project may result in potentially significant impacts to water quality associated with increased storm water runoff, drainage capacity, erosion, sedimentation, effects that degrade water quality (Class II).</td>
<td>MM HYD-2a In order to protect downstream water quality at Amarillo Beach and Malibu Lagoon, the Applicant shall prepare and submit an Integrated Landscape Management Plan (ILMP) to the City for review and approval. The ILMP shall identify all appropriate pest management options including, but not limited to, the judicious use of pesticides. The goal of the ILMP shall be to manage site grounds with a minimum use of chemical fertilizers, pesticides and herbicides. The ILMP shall consist of a range of controls for both weeds and insect pests, options for fertilizer application (e.g., natural mulching), and set forth standards for pest management and fertilizer application evaluations, decisions and controls, including the follow general approaches: • Identification of the approach for weed and pest control and fertilizer application, including the range of pest control and fertilizer actions.</td>
<td></td>
</tr>
<tr>
<td>Impact Text</td>
<td>Mitigation Measures Text</td>
<td>Residual Impact</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>permissible under the ILMP, including organic techniques or fertilizers, mechanical control methods, low toxicity pesticides and herbicides and onsite mulching and reuse of landscape trimming as mulch and fertilizer; • Establishment of an action threshold, the point at which pest or weed populations or environmental conditions indicate that pest control action must be taken, as well as a schedule for the typical anticipated frequency and type of fertilizer application, and the non-chemical natural fertilizer options anticipated to be employed; • Monitoring and identification of standards for pest populations and fertilizer application so that appropriate control and application decisions would be made in conjunction with action thresholds. The goal of the monitoring and identification program shall be to reduce the potential for pesticides to be used when they are not actually needed, when use of the wrong kind of pesticide can be avoided, and when employment of chemical fertilizers can be minimized; • Prevention Methods to manage the developed landscaped areas prevent pests from becoming a threat and to minimize the need to apply chemical fertilizers; and • Once monitoring, identification, and action thresholds indicate that pest control is required, and preventive methods are no longer effective or available, identification of the range of proper control method both for effectiveness and risk. Effective, less risky pest controls are chosen first, including highly targeted chemicals, such as pheromones to disrupt pest mating, or mechanical control, such as trapping or weeding. Similarly, use of mulching and natural fertilizers that are better controlled...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table ES-2. Class II Impacts - Significant Impacts That Can Be Mitigated To Less Than Significant Levels

<table>
<thead>
<tr>
<th>Impact Text</th>
<th>Mitigation Measures Text</th>
<th>Residual Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>retained onsite and not mobilized as runoff into the watershed would be the first choice for fertilization.</td>
<td>MM HYD-2b The Applicant shall prepare a plan for disposing of any excess reclaimed water prior to reaching storage capacity as part of the OWTS Operations and Maintenance Plan (refer to MM UT-1a). The plan can include any combination of measures to meet the performance criteria of zero wastewater balance and zero runoff and address any potential wastewater excess. These measures may include measures to dispose of excess wastewater such as specification or/and commitment to other users for the project’s reclaimed water, use of dual plumbing, provisions to hook-up to the Civic Center Wastewater Treatment Facility when available, procuring a permit to dispose of excess reclaimed water in Las Virgenes or other regional facilities, using off-site laundry service for the hotel, or methods to reduce wastewater generation such as plumbing retrofits. The plan shall include appropriate penalties for failure to meet the performance objectives, to the satisfaction of the City Attorney.</td>
<td></td>
</tr>
<tr>
<td>UT-2 The proposed Project would result potentially significant impacts on the City’s potable water supply and water supply infrastructure (Class II).</td>
<td>MM UT-2a Prior to the issuance of building permits, the Applicant shall be responsible for funding the installation of all water systems detailed in the conditional will-serve letter, which include: • 1,800 feet of 16-inch water main in Malibu Canyon Road; • 1,200 feet of water main in PCH; • One pressure reducing station (812 foot pressure zone to 472 foot pressure zone); • Eight fire hydrant assemblies; • Adequate size Reduced Pressure Principle detector assemblies;</td>
<td>Implementation of MM UT-2a would reduce impacts to less than significant.</td>
</tr>
<tr>
<td>Impact Text</td>
<td>Mitigation Measures Text</td>
<td>Residual Impact</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>• Easement(s) granted to Los Angeles County Waterworks District No. 29 as required; and</td>
<td>Inclusion of suggested mitigation measures would reduce impacts associated with</td>
</tr>
<tr>
<td></td>
<td>• Interconnections to the existing water system and all other necessary appurtenances.</td>
<td>increased demand for police and fire protection services to less than significant.</td>
</tr>
<tr>
<td></td>
<td>3.9 Public Services</td>
<td></td>
</tr>
<tr>
<td>PS-1</td>
<td>Implementation of the proposed Project would incrementally increase demand for police</td>
<td></td>
</tr>
<tr>
<td></td>
<td>protection services, particularly during and after special events (Class II).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MM PS-2a Prior to construction, the final and Fuel Modification Plan shall be submitted</td>
<td></td>
</tr>
<tr>
<td></td>
<td>to the Fire Prevention Bureau, Forestry Division of the LACFD for review and approval.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The Applicant shall incorporate all site design features required by the LACFD, ensuring</td>
<td></td>
</tr>
<tr>
<td></td>
<td>provision of:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Adequate fire department access;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Proper placement of street numbers and emergency signage;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Water supply capable of providing adequate fire flow;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Knox boxes at all vehicular gates;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Installation of fire protection systems and equipment (i.e., sprinkler systems and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>additional fire hydrants);</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Implementation of fire safety measures during construction;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Portable fire extinguishers;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Brush thinning and maintenance;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Buffer zones between development and native vegetation;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Low ignition landscaping;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Fire-resistant construction materials;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• First-aid station located on-site;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Underground shelter in place facility.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inclusion of suggested mitigation measures would reduce impacts associated with increased</td>
<td></td>
</tr>
<tr>
<td></td>
<td>demand for police and fire protection services to less than significant.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.11 Transportation and Traffic</td>
<td></td>
</tr>
<tr>
<td>TT-1</td>
<td>Construction of the proposed Project would create potentially significant adverse</td>
<td>Implementation of MM TT-1a and 1-b would reduce impacts to less than significant.</td>
</tr>
<tr>
<td></td>
<td>short-term impacts to intersection operation and safety in the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MM TT-1a The Applicant shall prepare a Construction Management Plan to mitigate site</td>
<td></td>
</tr>
<tr>
<td></td>
<td>access and safety impacts along Civic Center Way for review</td>
<td></td>
</tr>
</tbody>
</table>
Table ES-2. Class II Impacts - Significant Impacts That Can Be Mitigated To Less Than Significant Levels

<table>
<thead>
<tr>
<th>Impact Text</th>
<th>Mitigation Measures Text</th>
<th>Residual Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project vicinity associated with the operation of thousands of heavy haul truck and construction vehicle trips (Class II).</td>
<td>and approval by City staff and Caltrans prior to the issuance of grading permits or Caltrans hauling permit.</td>
<td>Implementation of MM TT-1b would reduce impacts to less than significant.</td>
</tr>
<tr>
<td>TT-4 Increases in long-term operational traffic generated by the proposed Project along Civic Center Way would result in a potentially significant impact to public safety of pedestrians using this road (Class II).</td>
<td>MM TT-4a The Applicant shall install frontage improvements along Civic Center Way between Malibu Canyon Road and the existing sidewalk segment at the south end of the Project site frontage along Civic Center Way opposite the Civic Center Way/Winter Canyon road intersection. These improvements shall include frontage improvements consistent with City standards, including a minimum five foot-wide appropriately surfaced trail as well as low-level lighting and a curb as deemed appropriate by the City, consistent with the City’s adopted Parkland and Trails System Map. Alternately, as determined appropriate by the City, the Applicant shall fund such improvements along the eastside of Civic Center Way, where the majority of the uses (e.g., schools) are located.</td>
<td>Implementation of MM TT-4a would reduce impacts to less than significant.</td>
</tr>
<tr>
<td>TT-5 Project generated increases in pedestrian traffic would result in potentially significant impacts to pedestrian safety associated with pedestrians moving along or across the high speed segment of Malibu Canyon Road (Class II).</td>
<td>MM TT-5a The Applicant shall install frontage improvements along Malibu Canyon Road between the Project’s northern driveway and the intersection of Seaver Drive/Civic Center Way. These improvements shall include frontage improvements consistent with City standards, including a minimum five foot-wide appropriately surfaced trail as well as low-level lighting and curbs as deemed appropriate by the City and consistent with the City’s adopted Parkland and Trails System Map.</td>
<td>Implementation of MM TT-5a would reduce impacts to less than significant.</td>
</tr>
<tr>
<td>Impact Text</td>
<td>Mitigation Measures Text</td>
<td>Residual Impact</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>3.12 Noise</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NO-3 Long-term operational noise impacts associated with the Project, particularly large outdoor events, would result in less than significant impacts to sensitive receptors with implementation of mitigation (Class II).

MM NO-3a The Applicant shall prepare a Special Event Management Plan, which shall include, but is not limited to, establishment of procedures to limit noise generated by hotel operations, particularly for outdoor events. This Plan shall address notification requirements and coordination and noise incident response protocols with the City and Los Angeles County Sheriff’s Department (LASD). The Plan shall also detail the hours of event operation, event capacity, allowable noise levels, and appropriate staff response procedures for violation of noise restrictions. Limitations on outdoor events shall include prohibiting the use of amplification systems for outdoor events after 10:00 p.m. and review of the proposed sound system by a qualified acoustical consultant subsequent to Project construction to ensure that design would meet acceptable noise criteria.

The Plan shall be updated and submitted annually for City review. Annual Plan updates shall detail the total number of events during the previous year, noise complaints received, and any changes to event operations that resulted from noise non-performance issues. During annual review of the Plan, the City shall retain the ability to modify the conditions in the Plan to address any concerns or non-performance issues that may arise. This would potentially include, but not be limited to, a reduction in the number of events, restrictions on attendance at outdoor events, and a reduction in the time period allowed for outdoor amplified music.

MM NO-3b Deliveries from heavy-duty trucks, including refrigerator trucks, trash and recycling pick-ups and parking lot sweeping, shall be restricted to Long-term operational noise levels associated with outdoor events would result in a significant increase in noise levels at nearby sensitive receptors that would exceed City standards. Adoption of MM NO-3a would reduce, but not eliminate disturbances and impacts to nearby sensitive receptors. Additional measures, such as requiring high levels of hotel management and City staff to monitor and enforce noise restrictions at outdoor events, including use of decibel monitors, were rejected as infeasible due to difficulty of enforcement. Eliminating use of any outdoor amplification was also considered, but rejected as being inconsistent with basic Project design and objectives, which emphasize accommodating large special events, including use of the proposed Project’s ample outdoor event lawns and pool area for such events. With implementation of a Special Event Management Plan, which is subject to annual review, modification, and approval by the City, noise impacts from outdoor events would be reduced to less than significant.
<table>
<thead>
<tr>
<th>Impact Text</th>
<th>Mitigation Measures Text</th>
<th>Residual Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>daytime operating hours (7:00 a.m. to 10:00 p.m.); idling longer than 10 minutes in the same period shall be prohibited.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.13 Paleontological Resources

PR-1 Project development could result in potentially significant impacts to paleontological resources (Class II).

MM PR-1a All excavations and grading activities into the older Quaternary alluvium and/or Sespe Formation, or below a depth of five feet, shall be monitored by a qualified paleontologist. The onsite monitor shall be equipped and permitted to salvage fossils and samples of sediments as they are unearthed. If unearthed paleontological resources determined to be significant by the onsite paleontologist are discovered during Project construction activities, all work should halt within 50 feet of the find until it can be fully evaluated and excavated by a qualified paleontologist.

Recovered specimens shall be prepared to a point of identification and permanent preservation, including washing of sediments to recover small invertebrates and vertebrates. Specimens shall be curated into a professional, accredited museum repository with permanent retrievable storage, unless the City deems it appropriate for excavated resources to be curated and displayed within a designated area of the proposed hotel.

A report of findings, with an appended itemized inventory of specimens, shall be prepared and submitted to the City. The report and inventory, when submitted to the City, will signify completion of the program to mitigate impacts on paleontological resources.

With the incorporation of specified mitigation measures, paleontological resource impacts will be reduced to less than significant levels. If previously unknown sites are discovered during construction, however, MM PR-1a may not reduce impacts to less than significant levels if the impacts are extensive and/or if the types of discovered sites are unique, unusual, or uncommon in the region.
<table>
<thead>
<tr>
<th>Impact Text</th>
<th>Mitigation Measures Text</th>
<th>Residual Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Aesthetics and Visual Resources</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIS-1 The proposed Project would result in an adverse temporary, less than significant degradation of public views during Project construction (Class III).</td>
<td>MM-VIS-1 No mitigation measures are required.</td>
<td>Impacts would be less than significant.</td>
</tr>
<tr>
<td>VIS-3 The proposed Project would partially obstruct and potentially degrade public views of the Santa Monica Mountains and/or Pacific Ocean from major public view points (Class III).</td>
<td>MM-VIS-3 No mitigation measures are required.</td>
<td>Impacts would be less than significant.</td>
</tr>
<tr>
<td>VIS-4 The proposed Project would result in an increase in glare as well as vicinity nighttime lighting, which would have adverse, but not significant impacts to the character of quality of the nighttime sky, including within adjacent parklands (Class III).</td>
<td>MM-VIS-4 No mitigation measures are required.</td>
<td>Impacts would be less than significant.</td>
</tr>
<tr>
<td>3.2 Air Quality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AQ-2 Release of toxic diesel emissions during initial construction and long-term hotel operation could expose nearby sensitive receptors to such emissions (Class III).</td>
<td>MM AQ-2a The Applicant shall implement the following Best Available Control Technology (BACT) for diesel-fueled construction equipment, where feasible, to minimize the exposure of diesel exhaust to sensitive receptors. BACT implementation could include, but is not limited to, maximizing use of equipment that meets the CARB’s 2003 or newer certification standards, install and use approved emission reduction retrofit devices, develop and implement a Diesel Emission Control Plan, limit idling to no more than three minutes and substituting gasoline for diesel powered equipment.</td>
<td>Impacts would be less than significant.</td>
</tr>
<tr>
<td>AQ-3 Increased energy use and traffic generated by operation of the proposed Project would result in adverse, but not significant impacts due to increases in generation of criteria pollutant emissions and odors (Class III).</td>
<td>MM AQ-3 No mitigation measures would be required.</td>
<td>Impacts would be less than significant.</td>
</tr>
<tr>
<td>Impact Text</td>
<td>Mitigation Measures Text</td>
<td>Residual Impact</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>AQ-4 Construction and operation of the proposed Project would not result in significant impacts to global climate change from the emissions of greenhouse gases (Class III).</td>
<td>MM AQ-4a The Applicant shall include the implementation of the following Green building techniques: • Installation of photovoltaic panels; • Installation of energy efficient appliances and energy efficient building installations; • Installation of alternative heating and cooling systems; and/or • Use of skylights, energy saving lighting, such as LEDs etc.</td>
<td>Impacts would be less than significant.</td>
</tr>
<tr>
<td>AQ-5 Construction and operation of the proposed Project is consistent with the 2007 Air Quality Management Plan (Class III).</td>
<td>MM AQ-5 No mitigation measures would be required.</td>
<td>Impacts would be less than significant.</td>
</tr>
</tbody>
</table>

3.7 Hydrology and Water Quality

<table>
<thead>
<tr>
<th>Impact Text</th>
<th>Mitigation Measures Text</th>
<th>Residual Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>HYD-3 Wastewater disposal and irrigation at the Project site would have a less potentially significant impact on Winter Canyon Groundwater Basin in terms of water table and groundwater quality (Class III).</td>
<td>No mitigation measures required.</td>
<td>Impacts would be less than significant.</td>
</tr>
<tr>
<td>HYD-4 The Project would result in a less than significant contribution to the cumulative exceedance of the remaining Winter Canyon Groundwater Basin capacity (Class III).</td>
<td>No mitigation measures required.</td>
<td>Impacts would be less than significant.</td>
</tr>
</tbody>
</table>

3.8 Utilities

<table>
<thead>
<tr>
<th>Impact Text</th>
<th>Mitigation Measures Text</th>
<th>Residual Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>UT-1 The disposal of Project generated wastewater would result in potentially significant impacts related to potential exceedance of RWQCB requirements and/or impacts to wastewater treatment systems that could result in adverse environmental effects (Scenario A - Class II; Scenario B – Class III).</td>
<td>MM UT-1a Prior to the issuance of building permits the Applicant shall submit an OWTS Operations and Maintenance Plan for the review by the City. The plan shall include a description of all OWTS monitoring systems and precautions to safeguard against system overload or exceedance of water quality standards. MM UT-1b The Applicant shall submit biannual reports to the City that describe the operation of the OWTS, including any system failures or near misses.</td>
<td>Impacts would be less than significant.</td>
</tr>
</tbody>
</table>
Table ES-3. Class III Impacts - Impacts That Are Adverse But Less Than Significant

<table>
<thead>
<tr>
<th>Impact Text</th>
<th>Mitigation Measures Text</th>
<th>Residual Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>UT-3 The proposed Project would consume energy resources resulting in a less than significant impact to service provider capacity levels (Class III).</td>
<td>MM UT-3a If additional natural gas and/or electrical energy services are required to accommodate the proposed Project, the Applicant would be required to pay a mitigation fee to SoCalGas prior to the issuance of building permits by the City.</td>
<td>Impacts would be less than significant.</td>
</tr>
<tr>
<td>UT-4 The proposed Project would incrementally contribute to an increase in potable water demand that could strain potable water supply and water supply infrastructure capacity (Class III).</td>
<td>No mitigation measures required.</td>
<td>Impacts would be less than significant.</td>
</tr>
</tbody>
</table>

3.9 Public Services

<table>
<thead>
<tr>
<th>Impact Text</th>
<th>Mitigation Measures Text</th>
<th>Residual Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS-2 The Project would incrementally increase the demand for LACFD services through increased demand for both emergency and non-emergency fire and protection services, particularly during major wildfire events (Class III).</td>
<td>No mitigation measures would be required.</td>
<td>Impacts would be less than significant.</td>
</tr>
<tr>
<td>PS-3 The proposed Project would potentially increase the number of school-aged children served by SMMUSD Malibu area schools (Class III).</td>
<td>No mitigation measures required.</td>
<td>Impacts would be less than significant.</td>
</tr>
<tr>
<td>PS-4 Solid waste generated by the proposed Project would not exceed the capacity of existing facilities used by the City (Class III).</td>
<td>MM PS-4a Pursuant to the City’s Construction and Demolition Debris Recycling Program, an affidavit and certification to implement a Waste Reduction and Recycling Plan for the proposed Project shall be completed and submitted to the City Environmental Sustainability Department prior to building permit issuance. The Plan shall include plans to recycle at a minimum 50% of discarded materials, such as concrete, sheetrock, wood, and metals, from proposed construction. Upon completion of the Project, a Summary Report must be submitted to the Environmental Sustainability Director for approval. MM PS-4b Pursuant to the City’s Integrated Waste Management Program, the Project shall provide a plan for the disposal, storage, and collection of solid waste material for the Project. The development of the plan</td>
<td>Impacts would be less than significant.</td>
</tr>
</tbody>
</table>
Table ES-3. Class III Impacts - Impacts That Are Adverse But Less Than Significant

<table>
<thead>
<tr>
<th>Impact Text</th>
<th>Mitigation Measures Text</th>
<th>Residual Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>shall be coordinated with City-permitted solid waste collection and disposal firms. MM PS-4c Convenient facilities for interior and exterior onsite recycling shall be established at the Project site. MM PS-4d Recycled-content materials shall be used in structural and decorative building components and in surfacing wherever feasible.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS-5 The proposed Project would result in a less than significant increase in use of adjacent parks and recreational facilities that would not exceed the capacity of existing facilities (Class III).</td>
<td>No mitigation measures required.</td>
<td>Impacts would be less than significant.</td>
</tr>
<tr>
<td>PS-6 The proposed Project would result in a less than significant contribution to cumulative impacts to public services in the region (Class III).</td>
<td>No mitigation measures required.</td>
<td>Impacts would be less than significant.</td>
</tr>
<tr>
<td>3.11 Transportation and Traffic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TT-2 Under the Existing Year (2012) Plus Project Conditions, the proposed Project would result in adverse, but less than significant impacts to levels of service (LOS) at each of the study intersections (Class III).</td>
<td>No mitigation measures required.</td>
<td>Impacts would be less than significant.</td>
</tr>
<tr>
<td>TT-3 The proposed Project would result in a less than significant impact on parking capacity and associated demand (Class III).</td>
<td>No mitigation measures required.</td>
<td>Impacts would be less than significant.</td>
</tr>
<tr>
<td>3.12 Noise</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO-2 Long-term Project-generated traffic would contribute to elevated noise levels on PCH, Malibu Canyon Road, and Civic Center Way, and would create adverse, but not significant impacts to adjacent sensitive receptors (Class III).</td>
<td>No mitigation measures required.</td>
<td>Impacts would be less than significant.</td>
</tr>
<tr>
<td>NO-4 The proposed Project would result in a potentially significant increase in cumulative noise levels from short-term construction, as well as long-term operation and traffic (Class III).</td>
<td>No mitigation measures required.</td>
<td>Impacts would be less than significant.</td>
</tr>
</tbody>
</table>
Table ES-4. Cumulative Impacts

<table>
<thead>
<tr>
<th>Impact Text</th>
<th>Mitigation Measures Text</th>
<th>Residual Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLASS I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.11 Traffic and Transportation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TT-6 Construction of the proposed Project would contribute considerably to significant short-term cumulative construction impacts due to activities such as lane closures and potential obstruction of turn lanes by large trucks and construction vehicles (Class I).</td>
<td>MM TT-6a The Construction Management Plan (refer to MM T-1a) shall be developed and implemented in coordination with Caltrans, the City, and the MTA. The final Construction Management Plan for the proposed Project shall ensure that transportation mitigation measures set forth therein do not conflict with the implementation of transportation mitigation measures associated with the projects in the Civic Center Area.</td>
<td>Implementation of MM TT-1a and TT-6a would require coordination between the various agencies overseeing the development of the aforementioned projects. However, given the volume of construction traffic and the potential for road closures and detours cumulative construction impacts would remain significant and unavoidable.</td>
</tr>
<tr>
<td>CLASS II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1 Aesthetics and Visual Resources</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIS-5 The proposed Project impact associated with degradation of views from scenic PCH would be considered cumulatively considerable when combined with other proposed projects in and adjacent to the Civic Center area, particularly the Crummer Project, but would be less than significant with mitigation (Class II).</td>
<td>MM-VIS-5 No mitigation measures are required.</td>
<td>Implementation of MM Vis-2a through -2c would reduce impacts to less than significant.</td>
</tr>
<tr>
<td>3.2 Air Quality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AQ-6 The proposed Project would contribute to significant cumulative air quality impacts (Class II).</td>
<td>MM-AQ-6 Traffic improvement measures identified in Section 3.11, Traffic and Transportation, would result in reduced traffic and lessen cumulative air quality impacts associated with CO. In particular, MM TT-4a, TT-4b, and TT-5a would apply to this impact.</td>
<td>Implementation of MM TT-4a, TT-4b, and TT-5a would reduce impacts to less than significant.</td>
</tr>
<tr>
<td>3.3 Cultural Resources</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR-3 Construction of the proposed Project would result in cumulatively potentially significant impacts to cultural resources on the Malibu Coast</td>
<td>MM CR-3a The Applicant shall fund additional consultations with the Santa Ynez Tribal Elders Council, the archaeology expert on the City’s Environmental Review Board, and other interested.</td>
<td>Ddditional Native American consultation (MM CR-3a) and preparation of an enthnohistory and descendant genealogy of the archaeological sites (MM CR-3b) would provide regional cultural</td>
</tr>
<tr>
<td>Impact Text</td>
<td>Mitigation Measures Text</td>
<td>Residual Impact</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>(Class II).</td>
<td>Native American representatives to ensure their concerns are taken into account during the course of the Project. MM CR-3b The Applicant shall fund a qualified ethnohistorian to prepare an ethnohistory and descendant genealogy of the archaeological site area.</td>
<td>resources overviews and research designs, and synthetic analysis and interpretation of cultural resources in regional perspective. Implementation of these measures would lessen the proposed Project’s contribution to cumulative degradation of the regional resource base. With implementation of individual site protection mitigation measures and MM CR-3a and CR-3b, the Project’s contribution to cumulative effects on Native American cultural resources would be significant, but subject to feasible mitigation.</td>
</tr>
</tbody>
</table>

3.4 Biological Resources

<table>
<thead>
<tr>
<th>Impact Text</th>
<th>Mitigation Measures Text</th>
<th>Residual Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO-5 The proposed Project, in combination with pending projects, would result in a cumulatively considerable contribution to loss of natural open habitat linkages between habitats within Malibu Bluffs State Park and those within the Santa Monica Mountains (Class II).</td>
<td>MM BIO-5a In order to protect native hillside habitats within Winter Canyon and ensure their retention as undeveloped native habitats and open space, the Applicant shall record an offer to dedicate an easement include deed restrictions that surrender any development rights. MM BIO-5b The Applicant shall prepare and submit a hillside open space management plan which prioritizes continuation and restoration of native habitats on undeveloped hillsides overlooking Winter Canyon and undeveloped onsite areas southwest of the intersection of Malibu Canyon Road and Civic Center Way. These undeveloped areas shall be managed as an open space and a wildlife corridor management zone with native habitat to facilitate continued passage of wildlife between the Santa Monica Mountains and Malibu Bluffs Park (refer to Figure 3.4-4). This open space area would be located adjacent to the roadside trail required by LUP Policy 2.49 and MM T-4a. To the extent feasible, dense, intact coastal sage scrub within this area shall be protected and restored as</td>
<td>The Project’s contribution to the loss of connectivity between the Santa Monica Mountains and Malibu Bluffs Park that would result from development of the Project site, the nearby Crummer Property, and the Towing Site, would be cumulatively significant, but the Project’s contribution to these impacts would be feasibly mitigated through the implementation of onsite measures to provide and protect native habitats that could function as a stepping stone between ESHA and larger open space areas (MM BIO-5).</td>
</tr>
</tbody>
</table>
Table ES-4. Cumulative Impacts

<table>
<thead>
<tr>
<th>Impact Text</th>
<th>Mitigation Measures Text</th>
<th>Residual Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>specified under MM BIO-2b. Management of this area shall also include transitioning of appropriate portions of this area to native oak and riparian woodlands, such as the area at the intersection of Malibu Canyon Road and Civic Center Way and the hillsides being used for sewage effluent disposal. To the maximum extent feasible, removal or modification of vegetation within this area for fuel management purposes shall be performed in accordance with its management as a wildlife corridor. MM BIO-5c Undeveloped areas in the northern portion of the Project site near the intersection of Malibu Canyon Road and Civic Center Way shall be restored to a native woodland adjacent to the roadside trail required by LUP Policy 2.49 and MM T-4a. Restoration of a native woodland may be more appropriate than other types of native vegetation due to its fire retardant nature, potential changes in the water regime, and the enhanced aesthetic qualities provided.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.5 Geology and Soils

| GEO-6 | The proposed Project would result in potentially cumulatively considerable erosion and sedimentation impacts (Class II). | MM -4b and MM-5a would apply. | The Project’s contribution to the cumulative impact of erosion and sedimentation would be cumulatively considerable and significant, but subject to feasible mitigation through adherence to mitigation measures MM-4b and -5a as well as standard regulatory conditions. |

3.6 Fire Protection and Hazardous Materials

| FPHM-6 | Project construction and increased population in a VHFHSZ, in combination with past and pending projects in the Civic Center and the greater Malibu area, would result in a considerable contribution to cumulatively significant wildfire. | The Project would also contribute incrementally to cumulative emergency evacuation impacts. If hotel occupants choose to evacuate rather than shelter in-place, hotel guests, event patrons, and potentially employees fleeing the site during a |
evacuation hazards and impacts (Class II).

<table>
<thead>
<tr>
<th>Impact Text</th>
<th>Mitigation Measures Text</th>
<th>Residual Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>major wildfire event would contribute to congestion and hazards along evacuation routes. Implementation of mitigation measures would increase the potential for successful implementation of hazard reduction and safety measures during a major wildfire event, such as training for hotel staff to manage more than 1,000 untrained transient hotel guests and event patrons to ensure that the majority of guests and patrons utilize shelter-in-place facilities. During periods of maximum occupancy (i.e., up to 2,000 hotel guests, event patrons, and employees), if the majority of hotel guests and event patrons are responsive to shelter-in-place direction, 800 people above the estimated comfortable capacity of the hotel’s safe areas would temporarily forego personal comfort and amenities during a potential wildfire emergency requiring shelter in-place for durations of one to 24 hours. Despite these measures, this potential increase in evacuees in combination with existing evacuation congestion and the additional proposed developments in the Civic Center and the greater Malibu area would constitute an incremental adverse contribution to evacuation congestion and hazards; however, implementation of the City of Malibu Emergency Operations Plan and proposed mitigation measures would reduce residual impacts to less than significant.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.11 Transportation and Traffic

TT-7 Under the cumulative Future Year (2016) Plus Project conditions the proposed Project would result in potentially significant impacts to operations and levels of service (LOS) at three of

| MM TT-7a The Applicant shall submit a restriping and/or widening plan for impacted intersections to the City and Caltrans for review and approval prior to the issuance of a building permit. Concurrently, the Applicant shall apply for a design exception and | The Project TIA recommends traffic mitigation measures to reduce potential impacts to affected intersections to less than significant. While these measures are physically feasible, many lie under the permitting authority of Caltrans and may have |
Table ES-4. Cumulative Impacts

<table>
<thead>
<tr>
<th>Impact Text</th>
<th>Mitigation Measures Text</th>
<th>Residual Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>the study intersections (Class II).</td>
<td>encroachment permit from Caltrans for restriping non-standard width lanes on PCH at the intersections of Cross Creek Road and Webb Way with PCH. MM TT-7b Prior to the issuance of a building permit, the Applicant shall provide sufficient funds to Caltrans to restripe the south leg of the Malibu Canyon Road & PCH intersection to include a left turn lane, one through-lane, and one right turn lane. MM TT-7c Prior to the issuance of a building permit, the Applicant shall provide sufficient funds to Caltrans to install a northbound right turn overlap phase to run concurrently with the westbound left turn phase at the Malibu Canyon Road & PCH intersection. MM TT-7d Following the approval of a design exception and encroachment permit by Caltrans, but prior to the issuance of a building permit, the Applicant shall provide sufficient funds to Caltrans to install non-standard width eastbound dual left turn lanes at the intersection of Webb Way and PCH. Alternatively, should the design exception not be approved, the Applicant shall provide sufficient funds to Caltrans to widen the southern side of PCH at this intersection. MM TT-7e Following the approval of a design exception and encroachment permit by Caltrans, but prior to the issuance of a building permit, the Applicant shall provide sufficient funds to Caltrans to restripe PCH at the Cross Creek Road & PCH intersection, to include a non-standard width right turn lane. Alternatively, should the encroachment permit not be approved, the Applicant shall provide sufficient funds to Caltrans to widen the southern side of PCH at this intersection and install a new right turn lane.</td>
<td>secondary impacts to the surrounding vicinity.</td>
</tr>
<tr>
<td>Impact Text</td>
<td>Mitigation Measures Text</td>
<td>Residual Impact</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>TT-8 Under the Congestion Management Program (CMP) Future Year (2030) Plus Project Conditions the proposed Project would result in a potentially significant contribution to cumulative impacts to levels of service (LOS) at CMP intersections (Class II).</td>
<td>No mitigation measures required.</td>
<td>The Project TIA recommends traffic mitigation measures to reduce potential impacts to affected intersections to less than significant. While these measures are physically feasible, many lie under the permitting authority of Caltrans and may have secondary impacts to the surrounding vicinity.</td>
</tr>
<tr>
<td>TT-9 The proposed Project would result in a considerable, but mitigable, contribution to significant cumulative impacts at the unsignalized intersection at Webb Way & Civic Center Way (Class II).</td>
<td>MM TT-9a Prior to the issuance of building permits, the Applicant shall implement a mitigation funding mechanism with the City through a fair share process to mitigate the cumulative traffic impacts created by a group of development projects by enabling the installation of a traffic signal at Webb Way & Civic Center Way.</td>
<td>The Project TIA recommends traffic mitigation measures to reduce potential impacts to affected intersections to less than significant. While these measures are physically feasible, many lie under the permitting authority of Caltrans and may have secondary impacts to the surrounding vicinity.</td>
</tr>
<tr>
<td>3.13 Paleontological Resources</td>
<td>MM PR-2a If regionally significant specimens are discovered within the Project site, excavated resources shall be curated and displayed within a designated area of the proposed hotel, if deemed appropriate by a City-approved paleontologist and City staff. The display shall include artifact curation and educational material about the paleontology and prehistoric fauna of the Project vicinity. The display</td>
<td>With the incorporation of specified mitigation measures, paleontological resource impacts will be reduced to less than significant levels. If previously unknown sites are discovered during construction, however, MM PR-1a may not reduce impacts to less than significant levels if the impacts are extensive and/or if the types of discovered sites are unique, unusual, or</td>
</tr>
</tbody>
</table>
Table ES-4. Cumulative Impacts

<table>
<thead>
<tr>
<th>Impact Text</th>
<th>Mitigation Measures Text</th>
<th>Residual Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>shall be designed and installed by a professional with expertise in historical interpretation and museum display.</td>
<td>uncommon in the region.</td>
<td></td>
</tr>
<tr>
<td>CLASS III</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.7 Hydrology and Water Quality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HYD-4 The Project would result in a less than significant contribution to the cumulative exceedance of the remaining Winter Canyon Groundwater Basin capacity (Class III).</td>
<td>No mitigation measures required.</td>
<td>Impacts would be less than significant.</td>
</tr>
<tr>
<td>3.8 Utilities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UT-4 The proposed Project would incrementally contribute to an increase in potable water demand that could strain potable water supply and water supply infrastructure capacity (Class III).</td>
<td>No mitigation measures required.</td>
<td>Impacts would be less than significant.</td>
</tr>
<tr>
<td>3.9 Public Services</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS-6 The proposed Project would result in a less than significant contribution to cumulative impacts to public services in the region (Class III).</td>
<td>No mitigation measures required.</td>
<td>Impacts would be less than significant.</td>
</tr>
<tr>
<td>3.12 Noise</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO-4 The proposed Project would result in a potentially significant increase in cumulative noise levels from short-term construction, as well as long-term operation and traffic (Class III).</td>
<td>No mitigation measures required.</td>
<td>Impacts would be less than significant.</td>
</tr>
</tbody>
</table>
RANCHO MALIBU HOTEL PROJECT
ENVIRONMENTAL IMPACT REPORT

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXECUTIVE SUMMARY</td>
<td>...</td>
<td>ES-1</td>
</tr>
<tr>
<td>LIST OF ACRONYMS AND ABBREVIATIONS</td>
<td>..</td>
<td>xv</td>
</tr>
<tr>
<td>1.0 INTRODUCTION</td>
<td>...</td>
<td>1-1</td>
</tr>
<tr>
<td>1.1 OVERVIEW</td>
<td>..</td>
<td>1-1</td>
</tr>
<tr>
<td>1.2 PROJECT OBJECTIVES</td>
<td>..</td>
<td>1-2</td>
</tr>
<tr>
<td>1.3 PROJECT BACKGROUND AND PREVIOUSLY PREPARED DOCUMENTS</td>
<td>..........................</td>
<td>1-3</td>
</tr>
<tr>
<td>1.3.1 Area Wastewater Disposal</td>
<td>..</td>
<td>1-5</td>
</tr>
<tr>
<td>1.4 PURPOSE AND LEGAL AUTHORITY</td>
<td>..</td>
<td>1-6</td>
</tr>
<tr>
<td>1.5 PUBLIC REVIEW AND COMMENTS</td>
<td>..</td>
<td>1-6</td>
</tr>
<tr>
<td>1.6 REQUIRED APPROVALS / RESPONSIBLE AGENCIES</td>
<td>.........................</td>
<td>1-7</td>
</tr>
<tr>
<td>1.7 PROJECT APPLICANT AND PROJECT DESIGNERS</td>
<td>...........................</td>
<td>1-8</td>
</tr>
<tr>
<td>1.8 SCOPE OF THE EIR</td>
<td>...</td>
<td>1-9</td>
</tr>
<tr>
<td>1.9 AREAS OF KNOWN PUBLIC CONTROVERSY</td>
<td>......................................</td>
<td>1-9</td>
</tr>
<tr>
<td>1.10 ORGANIZATION OF THE EIR</td>
<td>...</td>
<td>1-9</td>
</tr>
<tr>
<td>2.0 PROJECT DESCRIPTION</td>
<td>...</td>
<td>2-1</td>
</tr>
<tr>
<td>2.1 INTRODUCTION</td>
<td>...</td>
<td>2-1</td>
</tr>
<tr>
<td>2.2 PROJECT LOCATION</td>
<td>..</td>
<td>2-1</td>
</tr>
<tr>
<td>2.3 EXISTING SETTING</td>
<td>..</td>
<td>2-3</td>
</tr>
<tr>
<td>2.3.1 Project Vicinity</td>
<td>..</td>
<td>2-3</td>
</tr>
<tr>
<td>2.4 PROJECT OVERVIEW</td>
<td>...</td>
<td>2-8</td>
</tr>
<tr>
<td>2.4.1 Hotel Main Building</td>
<td>...</td>
<td>2-13</td>
</tr>
<tr>
<td>2.4.2 Secondary Hotel Buildings</td>
<td>...</td>
<td>2-20</td>
</tr>
<tr>
<td>2.4.3 Landscaping and Open Space</td>
<td>..</td>
<td>2-22</td>
</tr>
<tr>
<td>2.4.4 Drainage and Grading</td>
<td>...</td>
<td>2-24</td>
</tr>
<tr>
<td>2.4.5 Parking and Circulation</td>
<td>..</td>
<td>2-27</td>
</tr>
<tr>
<td>2.4.6 Utilities/Services</td>
<td>..</td>
<td>2-28</td>
</tr>
<tr>
<td>2.4.7 Proposed Wastewater Disposal</td>
<td>.......................................</td>
<td>2-30</td>
</tr>
<tr>
<td>2.5 PROJECT OPERATION</td>
<td>...</td>
<td>2-31</td>
</tr>
<tr>
<td>2.5.1 Hotel Operations</td>
<td>..</td>
<td>2-31</td>
</tr>
<tr>
<td>2.5.2 Staffing</td>
<td>..</td>
<td>2-32</td>
</tr>
<tr>
<td>2.5.3 Events</td>
<td>...</td>
<td>2-33</td>
</tr>
<tr>
<td>2.6 CONSTRUCTION ACTIVITIES</td>
<td>..</td>
<td>2-34</td>
</tr>
<tr>
<td>2.6.1 Phasing and Timing</td>
<td>..</td>
<td>2-34</td>
</tr>
<tr>
<td>2.6.2 Site Preparation (Phases I and II)</td>
<td>..................................</td>
<td>2-34</td>
</tr>
<tr>
<td>2.6.3 Construction (Phase III)</td>
<td>...</td>
<td>2-35</td>
</tr>
<tr>
<td>2.6.4 Offsite Improvements (Phase IV)</td>
<td>......................................</td>
<td>2-36</td>
</tr>
</tbody>
</table>
Table of Contents

Section

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6.5</td>
<td>Traffic Control Plan</td>
<td>2-36</td>
</tr>
</tbody>
</table>

3.0 Environmental Impact Analysis and Mitigation Measures

3.1 Aesthetics and Visual Resources

<table>
<thead>
<tr>
<th>3.1.1</th>
<th>Existing Setting</th>
<th>3.1-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.1.1</td>
<td>Regional Setting</td>
<td>3.1-1</td>
</tr>
<tr>
<td>3.1.1.2</td>
<td>Visual Character of the Project Site Vicinity</td>
<td>3.1-3</td>
</tr>
<tr>
<td>3.1.1.3</td>
<td>Visual Character of the Project Site</td>
<td>3.1-5</td>
</tr>
<tr>
<td>3.1.1.4</td>
<td>Existing Views of the Proposed Project Site</td>
<td>3.1-6</td>
</tr>
</tbody>
</table>

3.1.2 Regulatory Setting

<table>
<thead>
<tr>
<th>3.1.2.1</th>
<th>Federal Regulations</th>
<th>3.1-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.2.2</td>
<td>State Regulations</td>
<td>3.1-10</td>
</tr>
<tr>
<td>3.1.2.3</td>
<td>Local Regulations</td>
<td>3.1-11</td>
</tr>
</tbody>
</table>

3.1.3 Environmental Impacts

<table>
<thead>
<tr>
<th>3.1.3.1</th>
<th>Thresholds for Determining Significance</th>
<th>3.1-18</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.3.2</td>
<td>Impact Assessment Methodology</td>
<td>3.1-19</td>
</tr>
<tr>
<td>3.1.3.3</td>
<td>Visual Impact Analysis</td>
<td>3.1-22</td>
</tr>
<tr>
<td>3.1.3.4</td>
<td>1986 and 1998 Project Environmental Review Findings</td>
<td>3.1-32</td>
</tr>
<tr>
<td>3.1.3.5</td>
<td>Project Impacts and Mitigation Measures</td>
<td>3.1-33</td>
</tr>
<tr>
<td>3.1.3.6</td>
<td>Cumulative Impacts</td>
<td>3.1-40</td>
</tr>
</tbody>
</table>

3.2 Air Quality

<table>
<thead>
<tr>
<th>3.2.1</th>
<th>Existing Setting</th>
<th>3.2-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.1.1</td>
<td>Regional Climate and Meteorology</td>
<td>3.2-2</td>
</tr>
<tr>
<td>3.2.1.2</td>
<td>Regional Air Quality</td>
<td>3.2-2</td>
</tr>
<tr>
<td>3.2.1.3</td>
<td>Local Air Quality</td>
<td>3.2-3</td>
</tr>
<tr>
<td>3.2.1.4</td>
<td>Sensitive Receptors</td>
<td>3.2-4</td>
</tr>
<tr>
<td>3.2.1.5</td>
<td>Odors</td>
<td>3.2-5</td>
</tr>
<tr>
<td>3.2.1.6</td>
<td>Greenhouse Gases and Global Climate Change</td>
<td>3.2-5</td>
</tr>
</tbody>
</table>

3.2.2 Regulatory Setting

<table>
<thead>
<tr>
<th>3.2.2.1</th>
<th>Federal Regulations</th>
<th>3.2-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.2.2</td>
<td>State Policies and Regulations</td>
<td>3.2-8</td>
</tr>
<tr>
<td>3.2.2.3</td>
<td>Local and Regional Policies and Regulations</td>
<td>3.2-10</td>
</tr>
</tbody>
</table>

3.2.3 Environmental Impacts

<table>
<thead>
<tr>
<th>3.2.3.1</th>
<th>Thresholds for Determining Significance</th>
<th>3.2-11</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.3.2</td>
<td>Impact Assessment Methodology</td>
<td>3.2-13</td>
</tr>
<tr>
<td>3.2.3.3</td>
<td>1986 and 1998 Project Environmental Review Findings</td>
<td>3.2-14</td>
</tr>
<tr>
<td>3.2.3.4</td>
<td>Project Impacts and Mitigation Measures</td>
<td>3.2-15</td>
</tr>
<tr>
<td>3.2.3.5</td>
<td>Cumulative Impacts</td>
<td>3.2-26</td>
</tr>
<tr>
<td>3.2.3.6</td>
<td>Residual Impacts</td>
<td>3.2-28</td>
</tr>
<tr>
<td>SECTION</td>
<td>TITLE</td>
<td>PAGE</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>3.3</td>
<td>CULTURAL RESOURCES</td>
<td>3.3-1</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Existing Setting</td>
<td>3.3-1</td>
</tr>
<tr>
<td>3.3.1.1</td>
<td>Prehistoric Setting</td>
<td>3.3-2</td>
</tr>
<tr>
<td>3.3.1.2</td>
<td>Ethnohistory</td>
<td>3.3-4</td>
</tr>
<tr>
<td>3.3.1.3</td>
<td>Historical Setting</td>
<td>3.3-6</td>
</tr>
<tr>
<td>3.3.1.4</td>
<td>Site Characterization</td>
<td>3.3-7</td>
</tr>
<tr>
<td>3.3.1.5</td>
<td>Documented Cultural Resources</td>
<td>3.3-11</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Regulatory Setting</td>
<td>3.3-13</td>
</tr>
<tr>
<td>3.3.2.1</td>
<td>Federal Policies and Regulations</td>
<td>3.3-13</td>
</tr>
<tr>
<td>3.3.2.2</td>
<td>State Policies and Regulations</td>
<td>3.3-14</td>
</tr>
<tr>
<td>3.3.2.3</td>
<td>Local Policies and Regulations</td>
<td>3.3-15</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Environmental Impacts</td>
<td>3.3-19</td>
</tr>
<tr>
<td>3.3.3.1</td>
<td>Thresholds for Determining Significance</td>
<td>3.3-19</td>
</tr>
<tr>
<td>3.3.3.2</td>
<td>Impact Assessment Methodology</td>
<td>3.3-19</td>
</tr>
<tr>
<td>3.3.3.3</td>
<td>1986 and 1998 Project Environmental Review Findings</td>
<td>3.3-20</td>
</tr>
<tr>
<td>3.3.3.4</td>
<td>Project Impacts and Mitigation Measures</td>
<td>3.3-22</td>
</tr>
<tr>
<td>3.3.3.5</td>
<td>Cumulative Impacts</td>
<td>3.3-28</td>
</tr>
<tr>
<td>3.3.3.6</td>
<td>Residual Impacts</td>
<td>3.3-32</td>
</tr>
<tr>
<td>3.4</td>
<td>BIOLOGICAL RESOURCES</td>
<td>3.4-1</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Existing Conditions</td>
<td>3.4-1</td>
</tr>
<tr>
<td>3.4.1.1</td>
<td>Regional Setting</td>
<td>3.4-1</td>
</tr>
<tr>
<td>3.4.1.2</td>
<td>Local Setting</td>
<td>3.4-2</td>
</tr>
<tr>
<td>3.4.1.3</td>
<td>Project Site Setting</td>
<td>3.4-3</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Regulatory Framework</td>
<td>3.4-16</td>
</tr>
<tr>
<td>3.4.2.1</td>
<td>Federal Regulations</td>
<td>3.4-16</td>
</tr>
<tr>
<td>3.4.2.2</td>
<td>State Regulations</td>
<td>3.4-17</td>
</tr>
<tr>
<td>3.4.2.3</td>
<td>Local Policies and Regulations</td>
<td>3.4-19</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Environmental Impacts</td>
<td>3.4-23</td>
</tr>
<tr>
<td>3.4.3.1</td>
<td>Thresholds of Significance</td>
<td>3.4-23</td>
</tr>
<tr>
<td>3.4.3.2</td>
<td>Impact Assessment Methodology</td>
<td>3.4-23</td>
</tr>
<tr>
<td>3.4.3.3</td>
<td>1986 and 1998 Project Environmental Review Findings</td>
<td>3.4-24</td>
</tr>
<tr>
<td>3.4.3.4</td>
<td>Project Impacts and Mitigation Measures</td>
<td>3.4-25</td>
</tr>
<tr>
<td>3.4.3.5</td>
<td>Cumulative Impacts</td>
<td>3.4-33</td>
</tr>
<tr>
<td>3.4.3.6</td>
<td>Residual Impacts</td>
<td>3.4-40</td>
</tr>
<tr>
<td>3.5</td>
<td>GEOLOGY AND SOILS</td>
<td>3.5-1</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Existing Setting</td>
<td>3.5-1</td>
</tr>
<tr>
<td>3.5.1.1</td>
<td>Regional Geologic Setting</td>
<td>3.5-1</td>
</tr>
<tr>
<td>3.5.1.2</td>
<td>Local Setting</td>
<td>3.5-2</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Regulatory Setting</td>
<td>3.5-9</td>
</tr>
<tr>
<td>3.5.2.1</td>
<td>Federal Regulations</td>
<td>3.5-9</td>
</tr>
<tr>
<td>3.5.2.2</td>
<td>State Policies and Regulations</td>
<td>3.5-9</td>
</tr>
<tr>
<td>SECTION</td>
<td>TITLE</td>
<td>PAGE</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>3.5.2.3</td>
<td>Local Policies and Regulations</td>
<td>3.5-10</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Environmental Impacts</td>
<td>3.5-14</td>
</tr>
<tr>
<td>3.5.3.1</td>
<td>Thresholds for Determining Significance</td>
<td>3.5-14</td>
</tr>
<tr>
<td>3.5.3.2</td>
<td>Impact Assessment Methodology</td>
<td>3.5-15</td>
</tr>
<tr>
<td>3.5.3.3</td>
<td>California Coastal Commission 1986 Approval of a 300-Room Hotel</td>
<td>3.5-15</td>
</tr>
<tr>
<td>3.5.3.4</td>
<td>Findings of the 1998 Project EIR</td>
<td>3.5-16</td>
</tr>
<tr>
<td>3.5.3.5</td>
<td>Project Impacts and Mitigation Measures</td>
<td>3.5-16</td>
</tr>
<tr>
<td>3.5.3.6</td>
<td>Cumulative Impacts</td>
<td>3.5-16</td>
</tr>
<tr>
<td>3.5.3.7</td>
<td>Residual Impacts</td>
<td>3.5-27</td>
</tr>
<tr>
<td>3.6</td>
<td>Fire Protection and Hazardous Materials</td>
<td>3.6-1</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Existing Conditions</td>
<td>3.6-2</td>
</tr>
<tr>
<td>3.6.1.1</td>
<td>Regional Wildfire Conditions and Hazards</td>
<td>3.6-2</td>
</tr>
<tr>
<td>3.6.1.2</td>
<td>Regional Hazardous Materials</td>
<td>3.6-7</td>
</tr>
<tr>
<td>3.6.1.3</td>
<td>Fire Hazards at the Project Site</td>
<td>3.6-7</td>
</tr>
<tr>
<td>3.6.1.4</td>
<td>Hazardous Materials at the Project Site</td>
<td>3.6-17</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Regulatory Setting</td>
<td>3.6-18</td>
</tr>
<tr>
<td>3.6.2.1</td>
<td>Federal Regulations</td>
<td>3.6-18</td>
</tr>
<tr>
<td>3.6.2.2</td>
<td>State Regulations</td>
<td>3.6-20</td>
</tr>
<tr>
<td>3.6.2.3</td>
<td>Local Regulations</td>
<td>3.6-21</td>
</tr>
<tr>
<td>3.6.3</td>
<td>Environmental Impacts</td>
<td>3.6-25</td>
</tr>
<tr>
<td>3.6.3.1</td>
<td>Thresholds for Determining Significance</td>
<td>3.6-25</td>
</tr>
<tr>
<td>3.6.3.2</td>
<td>Impact Assessment Methodology</td>
<td>3.6-25</td>
</tr>
<tr>
<td>3.6.3.3</td>
<td>1986 and 1998 Project Environmental Review Findings</td>
<td>3.6-26</td>
</tr>
<tr>
<td>3.6.3.4</td>
<td>Project Impacts and Mitigation Measures</td>
<td>3.6-27</td>
</tr>
<tr>
<td>3.6.3.5</td>
<td>Cumulative Impacts</td>
<td>3.6-44</td>
</tr>
<tr>
<td>3.6.3.6</td>
<td>Residual Impacts</td>
<td>3.6-45</td>
</tr>
<tr>
<td>3.7</td>
<td>Hydrology and Water Quality</td>
<td>3.7-1</td>
</tr>
<tr>
<td>3.7.1</td>
<td>Existing Conditions</td>
<td>3.7-1</td>
</tr>
<tr>
<td>3.7.1.1</td>
<td>Regional Setting</td>
<td>3.7-1</td>
</tr>
<tr>
<td>3.7.1.2</td>
<td>Vicinity Setting</td>
<td>3.7-3</td>
</tr>
<tr>
<td>3.7.1.3</td>
<td>Site Setting</td>
<td>3.7-9</td>
</tr>
<tr>
<td>3.7.2</td>
<td>Regulatory Setting</td>
<td>3.7-11</td>
</tr>
<tr>
<td>3.7.2.1</td>
<td>Federal Regulations</td>
<td>3.7-11</td>
</tr>
<tr>
<td>3.7.2.2</td>
<td>State Regulations</td>
<td>3.7-12</td>
</tr>
<tr>
<td>3.7.2.3</td>
<td>Regional and Local Regulations</td>
<td>3.7-13</td>
</tr>
<tr>
<td>3.7.3</td>
<td>Environmental Impacts</td>
<td>3.7-16</td>
</tr>
<tr>
<td>3.7.3.1</td>
<td>Thresholds for Determining Significance</td>
<td>3.7-16</td>
</tr>
<tr>
<td>3.7.3.2</td>
<td>Impact Assessment Methodology</td>
<td>3.7-17</td>
</tr>
<tr>
<td>3.7.3.3</td>
<td>1986 and 1998 Project Environmental Review Findings</td>
<td>3.7-17</td>
</tr>
<tr>
<td>3.7.3.4</td>
<td>Project Impacts and Mitigation Measures</td>
<td>3.7-18</td>
</tr>
<tr>
<td>SECTION</td>
<td>TITLE</td>
<td>PAGE</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>3.7.3.5</td>
<td>Cumulative Impacts</td>
<td>3.7-31</td>
</tr>
<tr>
<td>3.7.3.6</td>
<td>Residual Impacts</td>
<td>3.7-32</td>
</tr>
<tr>
<td>3.8</td>
<td>UTILITIES</td>
<td>3.8-1</td>
</tr>
<tr>
<td>3.8.1</td>
<td>Existing Conditions</td>
<td>3.8-1</td>
</tr>
<tr>
<td>3.8.1.1</td>
<td>Wastewater Treatment</td>
<td>3.8-1</td>
</tr>
<tr>
<td>3.8.1.2</td>
<td>Potable Water</td>
<td>3.8-5</td>
</tr>
<tr>
<td>3.8.1.3</td>
<td>Energy Services</td>
<td>3.8-8</td>
</tr>
<tr>
<td>3.8.2</td>
<td>Regulatory Setting</td>
<td>3.8-8</td>
</tr>
<tr>
<td>3.8.2.1</td>
<td>Federal Regulations</td>
<td>3.8-8</td>
</tr>
<tr>
<td>3.8.2.2</td>
<td>State Regulations</td>
<td>3.8-9</td>
</tr>
<tr>
<td>3.8.2.3</td>
<td>Local and Regional Regulations</td>
<td>3.8-11</td>
</tr>
<tr>
<td>3.8.3</td>
<td>Environmental Impacts</td>
<td>3.8-14</td>
</tr>
<tr>
<td>3.8.3.1</td>
<td>Thresholds for Determining Significance</td>
<td>3.8-14</td>
</tr>
<tr>
<td>3.8.3.2</td>
<td>Impact Assessment Methodology</td>
<td>3.8-15</td>
</tr>
<tr>
<td>3.8.3.3</td>
<td>1986 and 1998 Project Environmental Review Findings</td>
<td>3.8-15</td>
</tr>
<tr>
<td>3.8.3.4</td>
<td>Project Impacts and Mitigation Measures</td>
<td>3.8-16</td>
</tr>
<tr>
<td>3.9</td>
<td>PUBLIC SERVICES</td>
<td>3.9-1</td>
</tr>
<tr>
<td>3.9.1</td>
<td>Existing Conditions</td>
<td>3.9-1</td>
</tr>
<tr>
<td>3.9.1.1</td>
<td>Police and Fire Protection Services</td>
<td>3.9-1</td>
</tr>
<tr>
<td>3.9.1.2</td>
<td>Schools and Education Facilities</td>
<td>3.9-6</td>
</tr>
<tr>
<td>3.9.1.3</td>
<td>Recreation</td>
<td>3.9-7</td>
</tr>
<tr>
<td>3.9.1.4</td>
<td>Libraries</td>
<td>3.9-10</td>
</tr>
<tr>
<td>3.9.1.5</td>
<td>Solid Waste and Recycling Services</td>
<td>3.9-10</td>
</tr>
<tr>
<td>3.9.1.6</td>
<td>Other Public Services</td>
<td>3.9-12</td>
</tr>
<tr>
<td>3.9.2</td>
<td>Regulatory Setting</td>
<td>3.9-12</td>
</tr>
<tr>
<td>3.9.2.1</td>
<td>Federal Regulations</td>
<td>3.9-12</td>
</tr>
<tr>
<td>3.9.2.2</td>
<td>State Regulations</td>
<td>3.9-12</td>
</tr>
<tr>
<td>3.9.2.3</td>
<td>Local Policies and Regulations</td>
<td>3.9-16</td>
</tr>
<tr>
<td>3.9.3</td>
<td>Environmental Impacts</td>
<td>3.9-18</td>
</tr>
<tr>
<td>3.9.3.1</td>
<td>Thresholds for Determining Significance</td>
<td>3.9-18</td>
</tr>
<tr>
<td>3.9.3.2</td>
<td>Impact Assessment Methodology</td>
<td>3.9-19</td>
</tr>
<tr>
<td>3.9.3.3</td>
<td>1986 and 1998 Project Environmental Review Findings</td>
<td>3.9-19</td>
</tr>
<tr>
<td>3.9.3.4</td>
<td>Project Impacts and Mitigation Measures</td>
<td>3.9-20</td>
</tr>
<tr>
<td>3.9.3.5</td>
<td>Cumulative Impacts</td>
<td>3.9-28</td>
</tr>
<tr>
<td>3.9.3.6</td>
<td>Residual Impacts</td>
<td>3.9-29</td>
</tr>
<tr>
<td>3.10</td>
<td>LAND USE</td>
<td>3.10-1</td>
</tr>
<tr>
<td>3.10.1</td>
<td>Existing Setting</td>
<td>3.10-1</td>
</tr>
<tr>
<td>3.10.1.1</td>
<td>Regional Setting</td>
<td>3.10-1</td>
</tr>
<tr>
<td>3.10.1.2</td>
<td>Local Setting</td>
<td>3.10-2</td>
</tr>
<tr>
<td>3.10.1.3</td>
<td>Project Vicinity</td>
<td>3.10-4</td>
</tr>
<tr>
<td>3.10.2</td>
<td>Regulatory Setting</td>
<td>3.10-4</td>
</tr>
<tr>
<td>SECTION</td>
<td>TITLE</td>
<td>PAGE</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td>3.10.2.1 Federal Regulations</td>
<td>3.10-4</td>
</tr>
<tr>
<td></td>
<td>3.10.2.2 State Policies and Regulations</td>
<td>3.10-5</td>
</tr>
<tr>
<td></td>
<td>3.10.2.3 Regional and Local Policies and Regulations</td>
<td>3.10-5</td>
</tr>
<tr>
<td>3.10.3</td>
<td>Environmental Impacts</td>
<td>3.10-9</td>
</tr>
<tr>
<td></td>
<td>3.10.3.1 Thresholds for Determining Significance</td>
<td>3.10-9</td>
</tr>
<tr>
<td></td>
<td>3.10.3.2 Impact Assessment Methodology</td>
<td>3.10-9</td>
</tr>
<tr>
<td></td>
<td>3.10.3.3 1986 and 1998 Project Environmental Review</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Findings</td>
<td>3.10-11</td>
</tr>
<tr>
<td></td>
<td>3.10.3.4 Land Use Impact Analysis</td>
<td>3.10-12</td>
</tr>
<tr>
<td></td>
<td>3.10.3.5 Project Impacts, Mitigation Measures, and Residual Impacts</td>
<td>3.10-12</td>
</tr>
<tr>
<td></td>
<td>3.10.3.6 Residual Impacts</td>
<td>3.10-28</td>
</tr>
<tr>
<td>3.11</td>
<td>TRANSPORTATION AND TRAFFIC</td>
<td>3.11-1</td>
</tr>
<tr>
<td></td>
<td>3.11.1 Existing Conditions</td>
<td>3.11-3</td>
</tr>
<tr>
<td></td>
<td>3.11.1.1 Area Roadway Network</td>
<td>3.11-3</td>
</tr>
<tr>
<td></td>
<td>3.11.1.2 Traffic Safety and Operations on PCH</td>
<td>3.11-7</td>
</tr>
<tr>
<td></td>
<td>3.11.1.3 Intersection Traffic Counts</td>
<td>3.11-8</td>
</tr>
<tr>
<td></td>
<td>3.11.1.4 Intersection Operations</td>
<td>3.11-9</td>
</tr>
<tr>
<td></td>
<td>3.11.1.5 Transit Services</td>
<td>3.11-10</td>
</tr>
<tr>
<td></td>
<td>3.11.1.6 Bicycle Facilities</td>
<td>3.11-12</td>
</tr>
<tr>
<td></td>
<td>3.11.1.7 Pedestrian Facilities</td>
<td>3.11-13</td>
</tr>
<tr>
<td></td>
<td>3.11.1.8 Future Transportation Network Improvements</td>
<td>3.11-15</td>
</tr>
<tr>
<td></td>
<td>3.11.2 Regulatory Setting</td>
<td>3.11-15</td>
</tr>
<tr>
<td></td>
<td>3.11.2.1 Federal Regulations</td>
<td>3.11-15</td>
</tr>
<tr>
<td></td>
<td>3.11.2.2 State Regulations</td>
<td>3.11-16</td>
</tr>
<tr>
<td></td>
<td>3.11.2.3 Local Regulations</td>
<td>3.11-16</td>
</tr>
<tr>
<td></td>
<td>3.11.3 Environmental Impacts</td>
<td>3.11-19</td>
</tr>
<tr>
<td></td>
<td>3.11.3.1 Thresholds for Determining Significance</td>
<td>3.11-19</td>
</tr>
<tr>
<td></td>
<td>3.11.3.2 Impact Assessment Methodology</td>
<td>3.11-21</td>
</tr>
<tr>
<td></td>
<td>3.11.3.3 1986 and 1998 Project Environmental Review</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Findings</td>
<td>3.11-24</td>
</tr>
<tr>
<td></td>
<td>3.11.3.4 Project Impacts and Mitigation Measures</td>
<td>3.11-24</td>
</tr>
<tr>
<td></td>
<td>3.11.3.5 Cumulative Impacts</td>
<td>3.11-39</td>
</tr>
<tr>
<td></td>
<td>3.11.3.6 Residual Impacts</td>
<td>3.11-54</td>
</tr>
<tr>
<td>3.12</td>
<td>NOISE</td>
<td>3.12-1</td>
</tr>
<tr>
<td></td>
<td>3.12.1 Existing Conditions</td>
<td>3.12-2</td>
</tr>
<tr>
<td></td>
<td>3.12.1.1 Sensitive Receptors</td>
<td>3.12-3</td>
</tr>
<tr>
<td></td>
<td>3.12.2 Regulatory Setting</td>
<td>3.12-6</td>
</tr>
<tr>
<td></td>
<td>3.12.2.1 Federal Regulations</td>
<td>3.12-6</td>
</tr>
<tr>
<td></td>
<td>3.12.2.2 State Regulations</td>
<td>3.12-7</td>
</tr>
<tr>
<td></td>
<td>3.12.2.3 Local Regulations</td>
<td>3.12-7</td>
</tr>
<tr>
<td></td>
<td>3.12.3 Environmental Impacts</td>
<td>3.12-9</td>
</tr>
<tr>
<td></td>
<td>3.12.3.1 Thresholds for Determining Significance</td>
<td>3.12-9</td>
</tr>
<tr>
<td>SECTION</td>
<td>TITLE</td>
<td>PAGE</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>3.12.3.2</td>
<td>Impact Assessment Methodology</td>
<td>3.12-10</td>
</tr>
<tr>
<td>3.12.3.3</td>
<td>1986 and 1998 Project Environmental Review Findings</td>
<td>3.12-10</td>
</tr>
<tr>
<td>3.12.3.4</td>
<td>Project Impacts, Mitigation Measures, and Residual Impacts</td>
<td>3.12-11</td>
</tr>
<tr>
<td>3.12.3.5</td>
<td>Cumulative Impacts</td>
<td>3.12-23</td>
</tr>
<tr>
<td>3.13</td>
<td>PALEONTOLOGICAL RESOURCES</td>
<td>3.13-1</td>
</tr>
<tr>
<td>3.13.1</td>
<td>Existing Setting</td>
<td>3.13-1</td>
</tr>
<tr>
<td>3.13.1.1</td>
<td>Regional Paleontological Resources</td>
<td>3.13-1</td>
</tr>
<tr>
<td>3.13.1.2</td>
<td>Project Site</td>
<td>3.13-2</td>
</tr>
<tr>
<td>3.13.2</td>
<td>Regulatory Setting</td>
<td>3.13-3</td>
</tr>
<tr>
<td>3.13.2.1</td>
<td>Federal Policies and Regulations</td>
<td>3.13-4</td>
</tr>
<tr>
<td>3.13.2.2</td>
<td>State Policies and Regulations</td>
<td>3.13-4</td>
</tr>
<tr>
<td>3.13.2.3</td>
<td>Local Policies and Regulations</td>
<td>3.13-5</td>
</tr>
<tr>
<td>3.13.3</td>
<td>Environmental Impacts</td>
<td>3.13-7</td>
</tr>
<tr>
<td>3.13.3.1</td>
<td>Thresholds for Determining Significance</td>
<td>3.13-7</td>
</tr>
<tr>
<td>3.13.3.2</td>
<td>Impact Assessment Methodology</td>
<td>3.13-8</td>
</tr>
<tr>
<td>3.13.3.3</td>
<td>1986 and 1998 Project Environmental Review Findings</td>
<td>3.13-8</td>
</tr>
<tr>
<td>3.13.3.4</td>
<td>Project Impacts and Mitigation Measures</td>
<td>3.13-8</td>
</tr>
<tr>
<td>3.13.3.5</td>
<td>Cumulative Impacts</td>
<td>3.13-10</td>
</tr>
<tr>
<td>3.13.3.6</td>
<td>Residual Impacts</td>
<td>3.13-11</td>
</tr>
<tr>
<td>4.0</td>
<td>OTHER CEQA SECTIONS</td>
<td>4-1</td>
</tr>
<tr>
<td>4.1</td>
<td>IRREVERSIBLE ENVIRONMENTAL IMPACTS</td>
<td>4-1</td>
</tr>
<tr>
<td>4.2</td>
<td>GROWTH-INDUCING IMPACTS</td>
<td>4-2</td>
</tr>
<tr>
<td>4.3</td>
<td>EFFECTS FOUND NOT TO BE SIGNIFICANT</td>
<td>4-4</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Agriculture and Forestry Resources</td>
<td>4-4</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Mineral Resources</td>
<td>4-5</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Population and Housing</td>
<td>4-5</td>
</tr>
<tr>
<td>4.4</td>
<td>UNAVOIDABLE SIGNIFICANT ENVIRONMENTAL EFFECTS</td>
<td>4-9</td>
</tr>
<tr>
<td>5.0</td>
<td>CUMULATIVE PROJECTS</td>
<td>5-1</td>
</tr>
<tr>
<td>5.1</td>
<td>INTRODUCTION</td>
<td>5-1</td>
</tr>
<tr>
<td>5.2</td>
<td>AFFECTED ENVIRONMENT</td>
<td>5-1</td>
</tr>
<tr>
<td>6.0</td>
<td>ALTERNATIVES</td>
<td>6-1</td>
</tr>
<tr>
<td>6.1</td>
<td>INTRODUCTION</td>
<td>6-1</td>
</tr>
<tr>
<td>6.2</td>
<td>PROJECT OBJECTIVES</td>
<td>6-2</td>
</tr>
<tr>
<td>6.3</td>
<td>SUMMARY OF POTENTIALLY SIGNIFICANT UNAVOIDABLE PROJECT IMPACTS</td>
<td>6-3</td>
</tr>
<tr>
<td>6.4</td>
<td>ALTERNATIVES ANALYSIS</td>
<td>6-4</td>
</tr>
</tbody>
</table>
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4.1</td>
<td>Alternatives Considered but Discarded</td>
<td>6-4</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Reduced Development/Garden Hotel Alternative</td>
<td>6-10</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Commercial Use Alternative</td>
<td>6-23</td>
</tr>
<tr>
<td>6.4.4</td>
<td>No Project Alternatives</td>
<td></td>
</tr>
<tr>
<td>6.4.4.1</td>
<td>No Project/Approved Hotel Alternative</td>
<td>6-36</td>
</tr>
<tr>
<td>6.4.4.2</td>
<td>No-Project/No-Build Alternative</td>
<td>6-45</td>
</tr>
<tr>
<td>6.5</td>
<td>Identification of Environmentally Superior Alternative</td>
<td>6-46</td>
</tr>
<tr>
<td>7.0</td>
<td>LIST OF PREPARERS</td>
<td>7-1</td>
</tr>
<tr>
<td>8.0</td>
<td>REFERENCES AND PERSONS OR ORGANIZATIONS CONTACTED</td>
<td>8-1</td>
</tr>
</tbody>
</table>

List of Appendices

(Under Separate Cover)

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Notice of Preparation (NOP) and Comments on NOP</td>
</tr>
<tr>
<td>B</td>
<td>Air Quality and Greenhouse Gas Studies</td>
</tr>
<tr>
<td>C</td>
<td>Geology and Soils Reports</td>
</tr>
<tr>
<td>D</td>
<td>Hydrology, Water Quality, and Onsite Wastewater Treatment System Reports</td>
</tr>
<tr>
<td>E</td>
<td>Noise Study</td>
</tr>
<tr>
<td>F</td>
<td>Traffic Study</td>
</tr>
<tr>
<td>G</td>
<td>Biological Inventory Reports</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1</td>
<td>Regional Setting and Project Location</td>
<td>2-2</td>
</tr>
<tr>
<td>2-2</td>
<td>Project Site and Civic Center Area</td>
<td>2-4</td>
</tr>
<tr>
<td>2-3</td>
<td>Rancho Malibu Hotel Overall Site Plan</td>
<td>2-9</td>
</tr>
<tr>
<td>2-4</td>
<td>Main Hotel - Building Elevations and Basement Sections</td>
<td>2-15</td>
</tr>
<tr>
<td>2-5</td>
<td>Main Hotel - Second and First Basement Levels</td>
<td>2-17</td>
</tr>
<tr>
<td>2-6</td>
<td>Main Hotel - First Floor/Ground Level</td>
<td>2-18</td>
</tr>
<tr>
<td>2-7</td>
<td>Main Hotel - Second Floor Level and Rooftop Gardens</td>
<td>2-21</td>
</tr>
<tr>
<td>2-8</td>
<td>Secondary Hotel Buildings</td>
<td>2-23</td>
</tr>
<tr>
<td>2-9</td>
<td>Landscaping Plan</td>
<td>2-25</td>
</tr>
<tr>
<td>2-10</td>
<td>Parking Garage</td>
<td>2-29</td>
</tr>
<tr>
<td>3.1-1</td>
<td>Vicinity Visual Resources and Key Viewing Locations</td>
<td>3.1-21</td>
</tr>
<tr>
<td>3.1-2</td>
<td>Conceptual Massing Study KVL A: Westbound PCH at Malibu Colony Plaza; View toward the Project Site</td>
<td>3.1-25</td>
</tr>
<tr>
<td>3.1-3</td>
<td>Conceptual Massing Study KVL B: Eastbound PCH at Malibu Canyon Road; View of the Project Site</td>
<td>3.1-27</td>
</tr>
<tr>
<td>3.1-4</td>
<td>Cumulative Massing Study KVL C: Southbound Malibu Canyon Road; View of the Project Site</td>
<td>3.1-29</td>
</tr>
<tr>
<td>3.1-5</td>
<td>Mitigation of Visual Impacts</td>
<td>3.1-36</td>
</tr>
<tr>
<td>3.1-6</td>
<td>Conceptual Massing Study KVL D: Westbound PCH at Civic Center; View of Cumulative Impacts</td>
<td>3.1-43</td>
</tr>
<tr>
<td>3.4-1</td>
<td>Vegetative Communities at the Project Site</td>
<td>3.4-4</td>
</tr>
<tr>
<td>3.4-2</td>
<td>Biological Resources within the Vicinity of the Project Site</td>
<td>3.4-14</td>
</tr>
<tr>
<td>3.4-3</td>
<td>Habitat Connectivity and Cumulative Development</td>
<td>3.4-35</td>
</tr>
<tr>
<td>3.4-4</td>
<td>Open Space/ Wildlife Corridor Management Zone</td>
<td>3.4-37</td>
</tr>
<tr>
<td>3.5-1</td>
<td>Regional Faults within the Vicinity of the Project Site</td>
<td>3.5-3</td>
</tr>
<tr>
<td>3.5-2</td>
<td>Geologic Hazards at the Proposed Rancho Malibu Hotel Project Site</td>
<td>3.5-6</td>
</tr>
<tr>
<td>3.6-1</td>
<td>Mean Fire Return Interval, 1925-2010</td>
<td>3.6-3</td>
</tr>
<tr>
<td>3.6-2</td>
<td>Wildfire Hazards</td>
<td>3.6-9</td>
</tr>
<tr>
<td>3.6-3</td>
<td>Regional Wildfire Response and Management</td>
<td>3.6-13</td>
</tr>
<tr>
<td>3.6-4</td>
<td>Proposed Fire Protection Plan</td>
<td>3.6-33</td>
</tr>
<tr>
<td>3.7-1</td>
<td>Watersheds in the Project Vicinity</td>
<td>3.7-4</td>
</tr>
<tr>
<td>3.8-1</td>
<td>Civic Center Prohibition Area and Groundwater Basins</td>
<td>3.8-3</td>
</tr>
<tr>
<td>3.9-1</td>
<td>Public Service Facilities within the Project Site Vicinity</td>
<td>3.9-5</td>
</tr>
<tr>
<td>3.10-1</td>
<td>City of Malibu Existing Land Use within the Project Site Vicinity</td>
<td>3.10-3</td>
</tr>
<tr>
<td>3.11-1</td>
<td>Study Area Intersections and Existing Transportation Facilities</td>
<td>3.11-5</td>
</tr>
<tr>
<td>3.11-2</td>
<td>Future Year (2016) Impacts to Study Intersections in the Proposed Project Area</td>
<td>3.11-43</td>
</tr>
<tr>
<td>3.11-3</td>
<td>Non-Standard Width Restriping at Cross Creek Road and PCH and Webb Way and PCH</td>
<td>3.11-46</td>
</tr>
<tr>
<td>3.11-4</td>
<td>CMP Future Year (2030) Hotel Project Significant Impacts to Study Intersections</td>
<td>3.11-51</td>
</tr>
<tr>
<td>3.11-5</td>
<td>Civic Center Way and Webb Way/Stuart Ranch Road Vehicles per Hour (Future Cumulative)</td>
<td>3.11-53</td>
</tr>
</tbody>
</table>
LIST OF FIGURES
(continued)

<table>
<thead>
<tr>
<th>SECTION</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.12-1</td>
<td>CNEL Noise Contours in the Project Vicinity</td>
</tr>
<tr>
<td>5-1</td>
<td>Cumulative Projects</td>
</tr>
<tr>
<td>5-2</td>
<td>Major Civic Center Vicinity Pending and Approved Projects</td>
</tr>
<tr>
<td>6-1</td>
<td>Reduced Development/Garden Hotel Alternative Conceptual Site Plan</td>
</tr>
<tr>
<td>6-2</td>
<td>Commercial Use Alternative Conceptual Site Plan</td>
</tr>
<tr>
<td>6-3</td>
<td>No-Project/Approved Hotel Alternative</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES-1</td>
<td>Class I Impacts - Significant, Unavoidable Impacts That May Not Be</td>
<td>ES-8</td>
</tr>
<tr>
<td></td>
<td>Fully Mitigated to Less Than Significant Level</td>
<td></td>
</tr>
<tr>
<td>ES-2</td>
<td>Class II Impacts - Significant Impacts That Can Be Mitigated To Less</td>
<td>ES-9</td>
</tr>
<tr>
<td></td>
<td>Than Significant Levels</td>
<td></td>
</tr>
<tr>
<td>ES-3</td>
<td>Class III Impacts - Impacts That Are Adverse But Less Than Significant</td>
<td>ES-8</td>
</tr>
<tr>
<td>ES-4</td>
<td>Cumulative Impacts</td>
<td>ES-12</td>
</tr>
<tr>
<td>2-1</td>
<td>Proposed Project Area Summary</td>
<td>2-8</td>
</tr>
<tr>
<td>2-2</td>
<td>Project Details</td>
<td>2-12</td>
</tr>
<tr>
<td>2-3</td>
<td>Hotel Services and Operation</td>
<td>2-32</td>
</tr>
<tr>
<td>2-4</td>
<td>Proposed Project Employment</td>
<td>2-33</td>
</tr>
<tr>
<td>3.2-1</td>
<td>Ambient Air Quality Data</td>
<td>3.2-4</td>
</tr>
<tr>
<td>3.2-2</td>
<td>Sensitive Receptors in the Vicinity of the Project Site</td>
<td>3.2-5</td>
</tr>
<tr>
<td>3.2-3</td>
<td>Current Federal and State Ambient Air Quality Standards</td>
<td>3.2-7</td>
</tr>
<tr>
<td>3.2-4</td>
<td>SCAQMD Air Quality Significance Thresholds</td>
<td>3.2-12</td>
</tr>
<tr>
<td>3.2-5</td>
<td>SCAQMD LSTs for Construction</td>
<td>3.2-12</td>
</tr>
<tr>
<td>3.2-6</td>
<td>Estimated Construction Maximum Daily Air Pollutant Emissions (lbs/day)</td>
<td>3.2-17</td>
</tr>
<tr>
<td>3.2-7</td>
<td>Project Operational Emissions</td>
<td>3.2-22</td>
</tr>
<tr>
<td>3.2-8</td>
<td>Estimated Construction Emissions of Greenhouse Gases</td>
<td>3.2-23</td>
</tr>
<tr>
<td>3.2-9</td>
<td>Estimated Annual Emissions from Operation</td>
<td>3.2-24</td>
</tr>
<tr>
<td>3.3-1</td>
<td>Known Cultural Resources within 1/2 Mile of Project Site</td>
<td>3.3-10</td>
</tr>
<tr>
<td>3.3-2</td>
<td>Cultural Resources within the Project Site</td>
<td>3.3-11</td>
</tr>
<tr>
<td>3.3-3</td>
<td>Cultural Resource Impacts and Mitigation Measures</td>
<td>3.3-23</td>
</tr>
<tr>
<td>3.4-1</td>
<td>Summary of Vegetative Community Coverage</td>
<td>3.4-5</td>
</tr>
<tr>
<td>3.4-2</td>
<td>Wildlife Species Documented on the Project Site</td>
<td>3.4-8</td>
</tr>
<tr>
<td>3.4-3</td>
<td>CDFW Species of Special Concern with the Potential to Occur within</td>
<td>3.4-11</td>
</tr>
<tr>
<td></td>
<td>the Project Site</td>
<td></td>
</tr>
<tr>
<td>3.6-1</td>
<td>Historic Wildfire Occurrence in the Santa Monica Mountains Region</td>
<td>3.6-6</td>
</tr>
<tr>
<td>3.6-2</td>
<td>Potential for Fire Fighting Success and Tactics</td>
<td>3.6-10</td>
</tr>
<tr>
<td>3.7-1</td>
<td>Impaired Water Bodies in the Project Vicinity</td>
<td>3.7-6</td>
</tr>
<tr>
<td>3.7-2</td>
<td>Groundwater Quality Objectives</td>
<td>3.7-7</td>
</tr>
<tr>
<td>3.7-3</td>
<td>Peak Runoff Rates from the Project Site under Existing Conditions</td>
<td>3.7-9</td>
</tr>
<tr>
<td>3.7-4</td>
<td>Title 22 Recycled Water Quality Standards</td>
<td>3.7-14</td>
</tr>
<tr>
<td>3.7-5</td>
<td>Peak Runoff Rates from the Project Site with the Proposed Project</td>
<td>3.7-24</td>
</tr>
<tr>
<td>3.8-1</td>
<td>Projected Population Growth and Connection Increases</td>
<td>3.8-5</td>
</tr>
<tr>
<td>3.8-2</td>
<td>Projected Wholesale Water Supply and Demand during Normal Years</td>
<td>3.8-7</td>
</tr>
<tr>
<td>3.8-3</td>
<td>Estimated Water Consumption for the Proposed Hotel Development</td>
<td>3.8-20</td>
</tr>
<tr>
<td>3.8-4</td>
<td>Estimated Natural Gas Usage for the Proposed Hotel Development</td>
<td>3.8-24</td>
</tr>
<tr>
<td>3.8-5</td>
<td>Estimated Electricity Usage for the Proposed Hotel Development</td>
<td>3.8-25</td>
</tr>
</tbody>
</table>
LIST OF TABLES
(continued)

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.8-6</td>
<td>Estimated Cumulative Water Consumption for Pending, Approved, and</td>
<td>3.8-27</td>
</tr>
<tr>
<td></td>
<td>Proposed Development in the Civic Center Vicinity</td>
<td></td>
</tr>
<tr>
<td>3.9-1</td>
<td>LASD Average Response Times within the City of Malibu</td>
<td>3.9-2</td>
</tr>
<tr>
<td>3.9-2</td>
<td>Malibu Area Fire Station Staffing Levels</td>
<td>3.9-4</td>
</tr>
<tr>
<td>3.9-3</td>
<td>Enrollment and Capacity of Malibu Area Schools</td>
<td>3.9-7</td>
</tr>
<tr>
<td>3.9-4</td>
<td>Estimated Waste Production</td>
<td>3.9-25</td>
</tr>
<tr>
<td>3.9-5</td>
<td>Project Area Landfills</td>
<td>3.9-26</td>
</tr>
<tr>
<td>3.10-1</td>
<td>General Plan and Local Coastal Program Policy Compliance</td>
<td>3.10-13</td>
</tr>
<tr>
<td>3.11-1</td>
<td>LOS Criteria for Signalized and Unsignalized Intersections</td>
<td>3.11-10</td>
</tr>
<tr>
<td>3.11-2</td>
<td>Existing Weekday AM, Weekday PM and Weekend Peak Hour Intersection LOS</td>
<td>3.11-11</td>
</tr>
<tr>
<td>3.11-3</td>
<td>Existing Transit Service</td>
<td>3.11-11</td>
</tr>
<tr>
<td>3.11-4</td>
<td>Significant Traffic Impact Criteria for Signalized Intersections</td>
<td>3.11-20</td>
</tr>
<tr>
<td>3.11-5</td>
<td>Significant Traffic Impact Criteria for Unsignalized Intersections</td>
<td>3.11-20</td>
</tr>
<tr>
<td>3.11-6</td>
<td>Existing Year (2012) and Existing Year (2012) Plus Project Peak Hour</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Levels of Service</td>
<td>3.11-33</td>
</tr>
<tr>
<td>3.11-7</td>
<td>Future Year (2016) and Future Year (2016) Plus Project Peak Hour</td>
<td>3.11-42</td>
</tr>
<tr>
<td></td>
<td>Levels of Service</td>
<td></td>
</tr>
<tr>
<td>3.11-8</td>
<td>CMP Future Year (2030) and CMP Future Year (2030) Plus Project Peak</td>
<td>3.11-49</td>
</tr>
<tr>
<td></td>
<td>Hour Levels of Service</td>
<td></td>
</tr>
<tr>
<td>3.12-1</td>
<td>Representative Noise Levels</td>
<td>3.12-2</td>
</tr>
<tr>
<td>3.12-2</td>
<td>Adjacent Roadway Existing Noise Levels</td>
<td>3.12-3</td>
</tr>
<tr>
<td>3.12-3</td>
<td>Sensitive Receptors in the Vicinity of the Project Site</td>
<td>3.12-5</td>
</tr>
<tr>
<td>3.12-4</td>
<td>Sensitive Receptor Existing Noise Levels</td>
<td>3.12-6</td>
</tr>
<tr>
<td>3.12-5</td>
<td>Maximum Exterior Noise Limits from Non-Transportation Sources</td>
<td>3.12-8</td>
</tr>
<tr>
<td>3.12-6</td>
<td>Maximum Allowable Noise Exposure Due To Transportation Noise Sources</td>
<td>3.12-9</td>
</tr>
<tr>
<td></td>
<td>Construction Noise from Primary Construction Site at Sensitive</td>
<td>3.12-9</td>
</tr>
<tr>
<td></td>
<td>Receptors</td>
<td></td>
</tr>
<tr>
<td>3.12-7</td>
<td>Construction Traffic Noise at Sensitive Receptors</td>
<td>3.12-12</td>
</tr>
<tr>
<td>3.12-8</td>
<td>Change in Noise Level Associated with Traffic on PCH and Malibu Canyon Road</td>
<td>3.12-14</td>
</tr>
<tr>
<td></td>
<td>Change in Noise Level Associated with Traffic on Surrounding</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Roadways</td>
<td>3.12-17</td>
</tr>
<tr>
<td>3.12-9</td>
<td>Change in Noise Level Associated with Traffic on Surrounding</td>
<td>3.12-20</td>
</tr>
<tr>
<td></td>
<td>Roadways</td>
<td></td>
</tr>
<tr>
<td>3.13-1</td>
<td>Stratigraphy of the Project Site and Associated Fossil Types</td>
<td>3.13-25</td>
</tr>
<tr>
<td>4-1</td>
<td>Regional and Statewide Population Growth, 1992 - 2010</td>
<td>4-6</td>
</tr>
<tr>
<td>4-2</td>
<td>Vicinity Employment and Unemployment</td>
<td>4-7</td>
</tr>
<tr>
<td>4-3</td>
<td>Total Employment Expected from Completion of Proposed Project</td>
<td>4-7</td>
</tr>
<tr>
<td>4-4</td>
<td>Wages for Selected Occupations, Los Angeles County (2012)</td>
<td>4-8</td>
</tr>
<tr>
<td>4-5</td>
<td>Maximum Affordable Monthly Housing Costs per Income Category,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los Angeles County</td>
<td>4-9</td>
</tr>
</tbody>
</table>
LIST OF TABLES (continued)

<table>
<thead>
<tr>
<th>TABLE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-1</td>
<td>Pending and Approved Projects Within and Immediately Adjacent to the City</td>
<td>5-2</td>
</tr>
<tr>
<td>5-2</td>
<td>Major Civic Center Vicinity Pending and Approved Projects</td>
<td>5-7</td>
</tr>
<tr>
<td>6-1</td>
<td>Impact Comparison of Alternatives to the Proposed Project</td>
<td>6-46</td>
</tr>
</tbody>
</table>
This page intentionally left blank.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>percent</td>
</tr>
<tr>
<td>°F</td>
<td>degrees Fahrenheit</td>
</tr>
<tr>
<td>AB</td>
<td>Assembly Bill</td>
</tr>
<tr>
<td>ACM</td>
<td>asbestos-containing materials</td>
</tr>
<tr>
<td>ADA</td>
<td>American with Disabilities Act</td>
</tr>
<tr>
<td>ADT</td>
<td>average daily trips</td>
</tr>
<tr>
<td>AF</td>
<td>acre-feet</td>
</tr>
<tr>
<td>AFY</td>
<td>acre-feet per year</td>
</tr>
<tr>
<td>AMEC</td>
<td>AMEC Environment & Infrastructure, Inc.</td>
</tr>
<tr>
<td>APN</td>
<td>Assessor’s Parcel Number</td>
</tr>
<tr>
<td>AQMP</td>
<td>Air Quality Management Plan</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing of Materials</td>
</tr>
<tr>
<td>B.P</td>
<td>before present</td>
</tr>
<tr>
<td>BACT</td>
<td>Best Available Control Technology</td>
</tr>
<tr>
<td>bgs</td>
<td>below ground surface</td>
</tr>
<tr>
<td>BMP</td>
<td>Best Management Practice</td>
</tr>
<tr>
<td>C.E.</td>
<td>common era</td>
</tr>
<tr>
<td>CAA</td>
<td>Clean Air Act</td>
</tr>
<tr>
<td>CAAQS</td>
<td>California Ambient Air Quality Standards</td>
</tr>
<tr>
<td>CalEEMod</td>
<td>California Emissions Estimator Model</td>
</tr>
<tr>
<td>CalFire</td>
<td>California Department of Forestry and Fire Protection</td>
</tr>
<tr>
<td>CALGreen</td>
<td>California Green Building Standards Code</td>
</tr>
<tr>
<td>Caltrans</td>
<td>California Department of Transportation</td>
</tr>
<tr>
<td>CAPCOA</td>
<td>California Air Pollution Control Officers Association</td>
</tr>
<tr>
<td>CARB</td>
<td>California Air Resources Board</td>
</tr>
<tr>
<td>CBC</td>
<td>California Business Code</td>
</tr>
<tr>
<td>CCA</td>
<td>California Clean Air Act</td>
</tr>
<tr>
<td>CCAR</td>
<td>California Climate Action Registry</td>
</tr>
<tr>
<td>CCC</td>
<td>California Coastal Commission</td>
</tr>
<tr>
<td>CCR</td>
<td>California Code of Regulations</td>
</tr>
<tr>
<td>CCWTF</td>
<td>Civic Center Wastewater Treatment Facility</td>
</tr>
<tr>
<td>CCWWTF</td>
<td>Civic Center Centralized Wastewater Treatment Facility</td>
</tr>
<tr>
<td>CDFW</td>
<td>California Department of Fish and Wildlife</td>
</tr>
<tr>
<td>CDP</td>
<td>coastal development permit</td>
</tr>
<tr>
<td>CEC</td>
<td>California Energy Commission</td>
</tr>
<tr>
<td>CEG</td>
<td>Certified Engineering Geologist</td>
</tr>
<tr>
<td>CEQA</td>
<td>California Environmental Quality Act</td>
</tr>
<tr>
<td>CERCLA</td>
<td>Comprehensive Environmental Response, Compensation, and Liability Act</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>CESA</td>
<td>California Endangered Species Act</td>
</tr>
<tr>
<td>cf</td>
<td>cubic feet</td>
</tr>
<tr>
<td>CFC</td>
<td>California Fire Code</td>
</tr>
<tr>
<td>CFR</td>
<td>Code of Federal Regulations</td>
</tr>
<tr>
<td>CH₄</td>
<td>methane</td>
</tr>
<tr>
<td>CHP</td>
<td>California Highway Patrol</td>
</tr>
<tr>
<td>City</td>
<td>City of Malibu</td>
</tr>
<tr>
<td>CIWMB</td>
<td>California Integrated Waste Management Board</td>
</tr>
<tr>
<td>CMP</td>
<td>Congestion Management Plan</td>
</tr>
<tr>
<td>CNDDB</td>
<td>California Natural Diversity Data Base</td>
</tr>
<tr>
<td>CNEL</td>
<td>Community Noise Equivalent Level</td>
</tr>
<tr>
<td>CNPS</td>
<td>California Native Plant Society</td>
</tr>
<tr>
<td>CO</td>
<td>carbon monoxide</td>
</tr>
<tr>
<td>CO₂</td>
<td>carbon dioxide</td>
</tr>
<tr>
<td>CO₂e</td>
<td>carbon dioxide equivalent</td>
</tr>
<tr>
<td>CON</td>
<td>Conservation</td>
</tr>
<tr>
<td>CPR</td>
<td>California Planning Roundtable</td>
</tr>
<tr>
<td>CPUC</td>
<td>California Public Utilities Commission</td>
</tr>
<tr>
<td>CRHR</td>
<td>California Register of Historical Resources</td>
</tr>
<tr>
<td>CRMP</td>
<td>Cultural Resources Management Plan</td>
</tr>
<tr>
<td>CRPR</td>
<td>California Rare Plant Rank</td>
</tr>
<tr>
<td>CUP</td>
<td>Conditional Use Permit</td>
</tr>
<tr>
<td>CV-2</td>
<td>Commercial Visitor-Serving 2</td>
</tr>
<tr>
<td>CWA</td>
<td>Clean Water Act</td>
</tr>
<tr>
<td>cy</td>
<td>cubic yard</td>
</tr>
<tr>
<td>dB</td>
<td>decibel</td>
</tr>
<tr>
<td>dBA</td>
<td>A-weighted decibel</td>
</tr>
<tr>
<td>DDT</td>
<td>Dichloro-diphenyl-trichloroethane</td>
</tr>
<tr>
<td>DOE</td>
<td>Department of Energy</td>
</tr>
<tr>
<td>DU1</td>
<td>Driving Under Influence</td>
</tr>
<tr>
<td>DWR</td>
<td>Department of Water Resources</td>
</tr>
<tr>
<td>EDD</td>
<td>Employment Development Department</td>
</tr>
<tr>
<td>EIR</td>
<td>Environmental Impact Report</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency</td>
</tr>
<tr>
<td>ERP</td>
<td>Environmental Restoration Program</td>
</tr>
<tr>
<td>ESA</td>
<td>Environmental Site Assessment</td>
</tr>
<tr>
<td>ESHA</td>
<td>Environmentally Sensitive Habitat Area</td>
</tr>
<tr>
<td>F.A.R.</td>
<td>Floor Area Ratio</td>
</tr>
<tr>
<td>FEMA</td>
<td>Federal Emergency Management Agency</td>
</tr>
<tr>
<td>FERC</td>
<td>Federal Energy Regulatory Commission</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>FESA</td>
<td>Federal Endangered Species Act</td>
</tr>
<tr>
<td>FHWA</td>
<td>Federal Highway Administration</td>
</tr>
<tr>
<td>FIRM</td>
<td>Flood Insurance Rate Maps</td>
</tr>
<tr>
<td>FMP</td>
<td>Fire Management Plan</td>
</tr>
<tr>
<td>FTA</td>
<td>Federal Transit Administration</td>
</tr>
<tr>
<td>GE</td>
<td>Geotechnical Engineer</td>
</tr>
<tr>
<td>GHG</td>
<td>greenhouse gas</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographic Information System</td>
</tr>
<tr>
<td>gpd</td>
<td>gallons per day</td>
</tr>
<tr>
<td>H₂S</td>
<td>hydrogen sulfide</td>
</tr>
<tr>
<td>HAP</td>
<td>hazardous air pollutant</td>
</tr>
<tr>
<td>HCD</td>
<td>Housing and Community Development</td>
</tr>
<tr>
<td>HCM</td>
<td>Highway Capacity Manual</td>
</tr>
<tr>
<td>HE</td>
<td>Housing Element</td>
</tr>
<tr>
<td>HRI</td>
<td>Historic Resources Inventory</td>
</tr>
<tr>
<td>HSC</td>
<td>Health and Safety Code</td>
</tr>
<tr>
<td>HVAC</td>
<td>heating, ventilation and air conditioning</td>
</tr>
<tr>
<td>ICS</td>
<td>Incident Command System</td>
</tr>
<tr>
<td>ICU</td>
<td>Intersection Capacity Utilization</td>
</tr>
<tr>
<td>ID</td>
<td>Identification</td>
</tr>
<tr>
<td>ILMP</td>
<td>Integrated Landscape Management Plan</td>
</tr>
<tr>
<td>IPCC</td>
<td>International Panel on Climate Change</td>
</tr>
<tr>
<td>ITE</td>
<td>Institute of Transportation Engineers</td>
</tr>
<tr>
<td>IWMP</td>
<td>Integrated Waste Management Plan</td>
</tr>
<tr>
<td>kV</td>
<td>kilovolts</td>
</tr>
<tr>
<td>KVL</td>
<td>Key Viewing Location</td>
</tr>
<tr>
<td>kWh</td>
<td>Kilowatt-hours</td>
</tr>
<tr>
<td>LACFD</td>
<td>Los Angeles County Fire Department</td>
</tr>
<tr>
<td>LACM</td>
<td>Natural History Museum of Los Angeles County</td>
</tr>
<tr>
<td>LADPW</td>
<td>Los Angeles Department of Public Works</td>
</tr>
<tr>
<td>LASD</td>
<td>Los Angeles County Sheriff’s Department</td>
</tr>
<tr>
<td>LBP</td>
<td>lead-based paint</td>
</tr>
<tr>
<td>lbs/day</td>
<td>pounds per day</td>
</tr>
<tr>
<td>LCP</td>
<td>Local Coastal Program</td>
</tr>
<tr>
<td>L₁ₘₙ</td>
<td>day-night average sound level</td>
</tr>
<tr>
<td>LED</td>
<td>Light Emitting Diode</td>
</tr>
<tr>
<td>Lₑₑq</td>
<td>Equivalent Noise Level</td>
</tr>
<tr>
<td>LIP</td>
<td>Local Implementation Plan</td>
</tr>
<tr>
<td>Lmax</td>
<td>maximum noise exposure limit</td>
</tr>
<tr>
<td>LOS</td>
<td>level-of-service</td>
</tr>
<tr>
<td>LST</td>
<td>Localized Significance Threshold</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Form</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>LU</td>
<td>Land Use</td>
</tr>
<tr>
<td>LUE</td>
<td>Land Use Element</td>
</tr>
<tr>
<td>LUP</td>
<td>Land Use Plan</td>
</tr>
<tr>
<td>M.M.C.</td>
<td>Malibu Municipal Code</td>
</tr>
<tr>
<td>MAWA</td>
<td>Maximum Applied Water Allowance</td>
</tr>
<tr>
<td>MBR</td>
<td>membrane bioreactor</td>
</tr>
<tr>
<td>MBTA</td>
<td>Migratory Bird Treaty Act</td>
</tr>
<tr>
<td>mcy</td>
<td>million cubic yards</td>
</tr>
<tr>
<td>MGDD</td>
<td>Malibu Garbage Disposal District</td>
</tr>
<tr>
<td>MM</td>
<td>Mitigation Measure</td>
</tr>
<tr>
<td>MMcf</td>
<td>million cubic feet</td>
</tr>
<tr>
<td>MMT</td>
<td>million metric tons</td>
</tr>
<tr>
<td>mph</td>
<td>miles per hour</td>
</tr>
<tr>
<td>MRCA</td>
<td>Mountains Recreation and Conservation Authority</td>
</tr>
<tr>
<td>MSERCs</td>
<td>Mobile Source Emission Reduction Credits</td>
</tr>
<tr>
<td>msl</td>
<td>mean sea level</td>
</tr>
<tr>
<td>MTA</td>
<td>Metropolitan Transportation Authority</td>
</tr>
<tr>
<td>MWD</td>
<td>Municipal Water District</td>
</tr>
<tr>
<td>MWPCP</td>
<td>Malibu Water Pollution Control Plant</td>
</tr>
<tr>
<td>NAAQS</td>
<td>National Ambient Air Quality Standards</td>
</tr>
<tr>
<td>NAHC</td>
<td>Native American Heritage Commission</td>
</tr>
<tr>
<td>ND</td>
<td>Negative Declaration</td>
</tr>
<tr>
<td>NEPA</td>
<td>National Environmental Policy Act</td>
</tr>
<tr>
<td>NFPA</td>
<td>National Fire Protection Association</td>
</tr>
<tr>
<td>NHPA</td>
<td>National Historic Preservation Act</td>
</tr>
<tr>
<td>NO₂</td>
<td>nitrogen dioxide</td>
</tr>
<tr>
<td>NOI</td>
<td>Notice of Intent</td>
</tr>
<tr>
<td>NOP</td>
<td>Notice of Preparation</td>
</tr>
<tr>
<td>NOₓ</td>
<td>nitrogen oxide</td>
</tr>
<tr>
<td>NPDES</td>
<td>National Pollutant Discharge Elimination System</td>
</tr>
<tr>
<td>NPS</td>
<td>National Park Service</td>
</tr>
<tr>
<td>NRCS</td>
<td>Natural Resource Conservation Service</td>
</tr>
<tr>
<td>NRHP</td>
<td>National Register of Historic Places</td>
</tr>
<tr>
<td>O₃</td>
<td>ozone</td>
</tr>
<tr>
<td>OES</td>
<td>Office of Emergency Services</td>
</tr>
<tr>
<td>OS</td>
<td>Open Space and Recreation Element</td>
</tr>
<tr>
<td>OSHA</td>
<td>Occupational Safety and Health Act</td>
</tr>
<tr>
<td>OTC</td>
<td>Overland Traffic Consultants, Inc.</td>
</tr>
<tr>
<td>OWDS</td>
<td>onsite waste disposal systems</td>
</tr>
<tr>
<td>OWTS</td>
<td>onsite wastewater treatment system</td>
</tr>
<tr>
<td>Pb</td>
<td>lead</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>PCB</td>
<td>polychlorinated biphenyl</td>
</tr>
<tr>
<td>PCE</td>
<td>passenger car equivalency</td>
</tr>
<tr>
<td>PCH</td>
<td>Pacific Coast Highway</td>
</tr>
<tr>
<td>PD</td>
<td>Planned Development</td>
</tr>
<tr>
<td>Pepperdine</td>
<td>Pepperdine University</td>
</tr>
<tr>
<td>PM</td>
<td>particulate matter</td>
</tr>
<tr>
<td>PM$_{10}$</td>
<td>particulate matter less than 10 microns in diameter</td>
</tr>
<tr>
<td>PM$_{2.5}$</td>
<td>particulate matter less than 2.5 microns in diameter</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>PRC</td>
<td>Public Resources Code</td>
</tr>
<tr>
<td>Project</td>
<td>Rancho Malibu Hotel Project</td>
</tr>
<tr>
<td>PWCP</td>
<td>Phased Water Conservation Plan</td>
</tr>
<tr>
<td>RCP</td>
<td>Regional Comprehensive Plan</td>
</tr>
<tr>
<td>RCRA</td>
<td>Resource Conservation and Recovery Act</td>
</tr>
<tr>
<td>ROG</td>
<td>reactive organic gases</td>
</tr>
<tr>
<td>RTP</td>
<td>regional transportation plans</td>
</tr>
<tr>
<td>RV</td>
<td>recreational vehicle</td>
</tr>
<tr>
<td>RWQCB</td>
<td>Regional Water Quality Control Board</td>
</tr>
<tr>
<td>SB</td>
<td>Senate Bill</td>
</tr>
<tr>
<td>SCAG</td>
<td>Southern California Association of Governments</td>
</tr>
<tr>
<td>SCAQMD</td>
<td>South Coast Air Quality Management District</td>
</tr>
<tr>
<td>SCCIC</td>
<td>South Central Coastal Information Center</td>
</tr>
<tr>
<td>SCE</td>
<td>Southern California Edison</td>
</tr>
<tr>
<td>SCS</td>
<td>Sustainable Communities Strategy</td>
</tr>
<tr>
<td>sf</td>
<td>square foot/feet</td>
</tr>
<tr>
<td>SHPO</td>
<td>State Historic Preservation Office</td>
</tr>
<tr>
<td>SMMNRA</td>
<td>Santa Monica Mountains National Recreation Area</td>
</tr>
<tr>
<td>SMMUSD</td>
<td>Santa Monica-Malibu Unified School District</td>
</tr>
<tr>
<td>SO$_2$</td>
<td>sulfur dioxide</td>
</tr>
<tr>
<td>SoCalGas</td>
<td>Southern California Gas Company</td>
</tr>
<tr>
<td>SRA</td>
<td>Source Receptor Area</td>
</tr>
<tr>
<td>SRRE</td>
<td>Source Reduction and Recycling Element</td>
</tr>
<tr>
<td>SUSMP</td>
<td>Standard Urban Storm Water Mitigation Plan</td>
</tr>
<tr>
<td>SWMP</td>
<td>Storm Water Management Program</td>
</tr>
<tr>
<td>SWPPP</td>
<td>Storm Water Pollution Prevention Plan</td>
</tr>
<tr>
<td>SWRCB</td>
<td>State Water Resources Control Board</td>
</tr>
<tr>
<td>TAC</td>
<td>toxic air contaminant</td>
</tr>
<tr>
<td>TIA</td>
<td>Transportation Impact Analysis</td>
</tr>
<tr>
<td>TRB</td>
<td>Transportation Research Board’s</td>
</tr>
<tr>
<td>TSCA</td>
<td>Toxic Substances Control Ac</td>
</tr>
<tr>
<td>U.S.</td>
<td>United States</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>UBC</td>
<td>Uniform Building Code</td>
</tr>
<tr>
<td>UCLA</td>
<td>University of California, Los Angeles</td>
</tr>
<tr>
<td>ug/m³</td>
<td>micrograms per cubic meter</td>
</tr>
<tr>
<td>ULI</td>
<td>Urban Land Institute</td>
</tr>
<tr>
<td>USC</td>
<td>U.S. Code</td>
</tr>
<tr>
<td>USDOT</td>
<td>U.S. Department of Transportation</td>
</tr>
<tr>
<td>USFS</td>
<td>U.S. Forest Service</td>
</tr>
<tr>
<td>USFWS</td>
<td>U.S. Fish and Wildlife Service</td>
</tr>
<tr>
<td>USGS</td>
<td>United States Geological Survey</td>
</tr>
<tr>
<td>UST</td>
<td>underground storage tank</td>
</tr>
<tr>
<td>V/C</td>
<td>volume to capacity ratio</td>
</tr>
<tr>
<td>VHFHSZ</td>
<td>Very High Fire Hazard Severity Zones</td>
</tr>
<tr>
<td>VMT</td>
<td>vehicle miles traveled</td>
</tr>
<tr>
<td>VOC</td>
<td>volatile organic compound</td>
</tr>
<tr>
<td>WDR</td>
<td>Waste Discharge Requirements</td>
</tr>
<tr>
<td>WQMP</td>
<td>Water Quality Mitigation Plan</td>
</tr>
<tr>
<td>WQO</td>
<td>Water quality objective</td>
</tr>
<tr>
<td>WRCC</td>
<td>Western Regional Climate Center</td>
</tr>
<tr>
<td>WWTF</td>
<td>Wastewater Treatment Facility</td>
</tr>
</tbody>
</table>
1.0 INTRODUCTION

1.1 OVERVIEW

This Environmental Impact Report (EIR) evaluates the proposed Rancho Malibu Hotel Project (Project), in the City of Malibu (City), in the County of Los Angeles, California. The EIR was prepared by AMEC Environment & Infrastructure, Inc., under the authority of the City as the Lead Agency for purposes of the California Environmental Quality Act (CEQA). The proposed Project would include a 274,775 square-foot (sf) hotel complex with a total of 146 guest rooms developed on approximately 16.5 acres of a 27.8-acre site. Development would consist of:

- A main hotel building and spa complex with 12 hotel guest rooms, retail, restaurant, bar, ballroom, meeting rooms, adjacent swimming pool, and other facilities;
- 19 two-story secondary hotel buildings; and
- Two single-story secondary hotel buildings.

A total of 543 parking spaces would be provided, primarily in a four-level, 166,827 sf parking structure consisting of three subterranean levels, as well as a ground level employee parking lot providing 40 spaces. The Project site, addressed as 4000 Malibu Canyon Road, Malibu, California, occupies a location at the northeast corner of the intersection of two of the City’s major roadways, Pacific Coast Highway (PCH) and Malibu Canyon Road, and is bounded on the east by Civic Center Way. The site is one of the largest remaining undeveloped sites within the Malibu Civic Center area and as such, its development is central to the future visual character and economic vitality of the City’s center.

The City includes 27 miles of scenic coastline with multiple state and county beaches and is a nationally recognized destination. However, there are only approximately 115 hotel rooms in the City to accommodate visitors to the community’s many attractions. While the City’s adopted Local Coastal Program (LCP) Land Use Plan (LUP) policies strongly emphasize preservation of the community’s rural character and important scenic and environmentally-sensitive resources, the LCP also recognizes the importance of visitor-serving commercial developments by giving them priority over other non-coastal uses.

1 The Applicant’s plans refer to the secondary hotel buildings as “casitas”; however, these hotel room-containing structures will be referred to as “secondary hotel buildings” for the remainder of this document.
1.0 INTRODUCTION

dependent developments. In particular, the LCP identifies the Civic Center as an
appropriate location for such uses. The LUP Land Use Map designates the Civic Center
area for Community Commercial (CC), Commercial General (CG), and Commercial
Visitor-Serving uses. The Project site is one of a very small number of properties in the
City designated to permit higher intensity visitor-serving uses, such as hotels, through the
application of the Commercial Visitor-Serving 2 (CV-2) zoning designation. However,
the LCP also requires such projects to be designed to be consistent with the community’s
rural character and natural environmental setting. The proposed Project would play a
major role in the shaping of both the future character of this area as well as the City’s
economy.

Developers have been attempting to permit and construct a hotel at the Project site for
many years, and efforts to date have included obtaining California Coastal Commission
(CCC) approval for a 300-room hotel in 1986, completion of a certified EIR in 1997 and
approval of a previous 146-room hotel design by the Malibu City Council in 1998. In
2002, the City Council found that the revised project plans were in substantial
conformance to the requirements set forth in the Resolution dated March 1998. Most
recently in 2007, a 146 room design was submitted by the same applicants putting forth
the proposed Project, yet the application was later withdrawn.

The City’s approval of the 1997 project was kept active until 2006 through annual time
extensions issued by the City. Further, the CCC’s 1986 approval remains active today as
a result of the issuance of 26 consecutive annual extensions.

Given the substantial changes in the regulatory and environmental setting since approval
of the 1986 project, subsequent certification of the 1997 EIR, the passing of time, and the
differences in the design of a hotel on the Project site now being proposed, as compared
to what was set forth in the prior EIR, a new EIR was deemed necessary by the City
Council to provide City staff, decision-makers and the public with an up-to-date and
complete analysis to ensure timely project processing and completion of a legally
sustainable document.

1.2 PROJECT OBJECTIVES

Section 15124(b) of the State Guidelines for Implementation of the California
Environmental Quality Act Guidelines (14 California Code of Regulations [CCR]
1.0 INTRODUCTION

§ 15000 et seq.) requires “[a] statement of objectives sought by the proposed project” must be included within the EIR. Clearly stated objectives are a key element in helping the lead agency develop a reasonable range of alternatives for consideration in the EIR and aid decision-makers in preparing findings or a statement of overriding considerations, if necessary. The proposed Project includes six major objectives:

(1) Provide a high-quality hotel and supporting facilities consistent with allowable uses within the CV-2 zoning district designation;

(2) Ensure that all new development is sited and designed in a manner that respects the site’s rural character and natural environmental setting;

(3) Increase the City’s supply of full-service hotel rooms, with supporting spa, banquet, meeting and special event facilities available for both hotel guests and community members (e.g., weddings, holiday parties, non-profit fundraisers, business functions, etc.);

(4) Enhance the City of Malibu’s Civic Center commercial core, developing its only full service hotel with supporting high quality facilities;

(5) Improve the City’s tax revenue base through generation of substantial transient occupancy and sales taxes; and

(6) Comply with Los Angeles Regional Water Quality Control Board (RWQCB) requirements for wastewater treatment and disposal.

The underlying purpose of the proposed Project is to provide visitor-serving, full-service accommodations consistent with the City’s LCP and the land use designation for the Project site. Implementation of the proposed Project would meet the six major objectives described above and therefore achieve the underlying purpose of the Project.

1.3 PROJECT BACKGROUND AND PREVIOUSLY PREPARED DOCUMENTS

The Project site was first proposed for a hotel development in 1984 as the 300-room Rancho Malibu Mesa Development (also known as the Adamson Hotel), which also included 115,000 sf of office and restaurant space. The County of Los Angeles (County) approved a conditional use permit (CUP No. 244; 3/13/85) and the CCC approved a coastal development permit (CDP No. 5-85-418; 1/7/86) for that proposal. Subsequently, that prior proposal was redesigned to comply with the County’s certified Malibu / Santa Monica Mountains Land Use Plan and to respond to landscaping, grading, and visual concerns. The redesigned proposal, which was deemed in substantial conformance by the
1.0 INTRODUCTION

County in 1986, included a 300-room hotel in separate hillside villas, a separate restaurant, and a separate community use facility.

In 1991, the newly incorporated City placed a moratorium on all new development and the CCC-approved project was precluded from moving forward. In 1995, a CUP application was submitted to the City for the construction of a 250-room hotel complex. In 1997, the City certified an EIR for the proposal and, in March 1998, the City Council approved a scaled down version of the hotel, which was one of the Alternatives included in the EIR, with 146 rooms. A comparison of the 1998 approved project and the current proposed Project is provided in Table 1-1. The 1998 approval was kept active until 2006 through annual time extensions issued by the City. Upon the adoption of the LCP, the applicant was advised to apply for a CDP.

Table 1-1. Summary of Project Revisions since the 1998 Approved Project

<table>
<thead>
<tr>
<th>Project Feature</th>
<th>Approved Project (City Council 1998)</th>
<th>Proposed Project</th>
<th>Net Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Rooms (Units)</td>
<td>Phase 1-106 rooms; Phase 2-40 rooms</td>
<td>146 rooms</td>
<td>No Change in total number of rooms, however phasing is not proposed for the current Project</td>
</tr>
<tr>
<td>Floor Area Ratio (F.A.R.)</td>
<td>181,000 sf – 15% (including 32,800 sf cultural center)</td>
<td>187,818 sf – 15% (no public benefit)</td>
<td>Slight increase in F.A.R.</td>
</tr>
<tr>
<td>Retail</td>
<td>Unknown, considered small</td>
<td>~31,470 sf (two story)</td>
<td>Substantial increase</td>
</tr>
<tr>
<td>Fitness and Spa</td>
<td>Estimated 10,000 sf +/- (hotel guests and City residents only)</td>
<td>~64,337 sf (open to public)</td>
<td>Substantial increase</td>
</tr>
<tr>
<td>Function Lawn</td>
<td>Not proposed</td>
<td>~18,000 sf</td>
<td>Substantial increase</td>
</tr>
<tr>
<td>Structure Height</td>
<td>28 feet (ft)</td>
<td>Main Hotel Building - 36 ft max</td>
<td>Some increase</td>
</tr>
<tr>
<td></td>
<td>431 spaces; surface parking lots</td>
<td>Secondary Hotel Buildings – 24 ft max</td>
<td></td>
</tr>
<tr>
<td>Parking</td>
<td>119,000 cubic yards (cy) balanced onsite</td>
<td>269,840 cy 189,760 cy export</td>
<td>Substantial increase in total grading and export of fill</td>
</tr>
<tr>
<td>Wastewater</td>
<td>Onsite wastewater treatment system (OWTS)</td>
<td>OWTS</td>
<td>No change</td>
</tr>
<tr>
<td>Landscaped or natural vegetation area</td>
<td>18.21 acres</td>
<td>16 acres1</td>
<td>Slight decrease (-2.21 acres or -11.6%)</td>
</tr>
</tbody>
</table>

1 Landscaped or natural vegetation area includes natural vegetated areas, turf hillsides and open space, and formal landscaping within hotel grounds.
1. INTRODUCTION

In July 2007, a CDP application (CDP No. 07-083) was submitted to the City for the construction of a 146-room hotel at the Project site. The City contracted with an environmental firm to start work on an EIR in late 2007. However, the applicant later submitted a letter requesting to withdraw the application and it was officially withdrawn on June 24, 2009.

In June 2011, a CDP application (CDP No. 11-028) was submitted to the City for the same scope of work proposed as part of the 2007 CDP. That application is currently under review by the City and contains the proposal that is the subject of this EIR.

1.3.1 Area Wastewater Disposal

No public wastewater disposal service currently exists within the Civic Center area of the City. Wastewater disposal service in this area consists of individual onsite wastewater treatment systems (OWTSs), including septic systems, drywells, and limited use of advanced treatment and/or package treatment plant systems. The RWQCB and the State Water Resources Control Board (SWRCB) have enacted a Prohibition Area, which imposes wastewater discharge compliance requirements within and surrounding the Civic Center area. In response, the City has undertaken extensive studies to develop the proposed Civic Center Centralized Wastewater Treatment Facility (WWTF). In 2011, the City and the RWQCB entered into a Memorandum of Understanding that set forth commitments for the City regarding the areas to be served by the WWTF, timing of phases to serve different areas, and future actions to address wastewater disposal and water quality to be undertaken by both agencies.

The Project site is located within the Prohibition Area and, therefore, is subject to the prohibition orders, which prohibit all new discharges from OWTSs in the Civic Center area. However, the applicant is currently petitioning the RWQCB to amend Table 4-zz of the Amendment to the Water Quality Control Plan for the Coastal Watersheds of Ventura and Los Angeles Counties (Basin Plan Amendment). Inclusion on Table 4-zz, which permits new OWTSs for specific projects that have already progressed through the entitlement process, would allow onsite wastewater disposal for the proposed Project.
1.4 PURPOSE AND LEGAL AUTHORITY

This EIR was prepared in accordance with the State CEQA Guidelines published by the Resources Agency of the State of California (Title 14, CCR15000 et. seq.), and the City’s procedures for implementing CEQA. Per Public Resources Code Section 21067 and Sections 15367 and 15050 through 15053 of the State CEQA Guidelines, the City is the Lead Agency under whose authority this document has been prepared. It is intended to provide information to public agencies, decision-makers, and the general public regarding the environmental impacts that would result from implementation of the proposed Project. Under the provisions of CEQA, “[t]he purpose of the environmental impact report is to identify the significant effects of a project on the environment, to identify alternatives to the project, and to indicate the manner in which significant effects can be mitigated or avoided” (Public Resources Code 21002.1[a]).

The environmental review process was established to enable public agencies to evaluate a project in terms of its environmental consequences, to examine and implement methods of eliminating or reducing any potentially adverse impacts, and to consider alternatives to the project. While CEQA Guidelines Section 15021(a) requires that major consideration be given to avoiding or minimizing environmental damage, the Lead Agency and other responsible public agencies must balance adverse environmental effects against other public objectives, including social and economic goals, in determining whether and in what manner a project should be approved.

1.5 PUBLIC REVIEW AND COMMENTS

To define the scope of the EIR, the City provided the City Council and the public an opportunity to comment on a proposed EIR Scope of Work at a City Council meeting on April 9, 2012.² A Notice of Preparation (NOP) for the EIR was distributed to federal, state, county, and City agencies, including responsible agencies for purposes of CEQA, citizens’ groups, and the local library with a comment period that ran from May 3, 2012 to June 2, 2012. The City held a public scoping meeting on May 16, 2012. Notices of the EIR scoping meeting were sent to various local agencies, interested parties, special interest groups and all property owners and occupants within a 500-foot radius of the

² An initial study was not completed for the proposed Project. The preparation of a previous EIR approved for similar development on the subject site had already been identified potential impacts from hotel development, thereby negating the need for such a study.
1.0 INTRODUCTION

The purpose of these meetings and notifications was to identify public and agency concerns regarding potential impacts of the proposed Project in compliance with the letter and spirit of CEQA.

1.6 REQUIRED APPROVALS / RESPONSIBLE AGENCIES

The proposed Project would require Planning Commission certification of the Rancho Malibu Hotel Project EIR and approval of the following entitlements:

- CDP to allow the construction of a 146-room hotel with 0.15 (15 percent [%]) F.A.R., 14% landscaping, 32% tall fescue lawn, and 11% open space.
- CUP to allow a hotel (with accessory restaurant, bar, live entertainment and indoor/outdoor event space) in the CV-2 zone.
- Lot Merger to allow the merger of the three adjacent parcels into a single parcel for the purposes of calculating allowable F.A.R. and the requirements for landscaping and open space.
- Tentative Tract Map to allow the creation of a commercial airspace subdivision consisting of two separate legal parcels. Proposed Lot 1 would consist of a 14.5-acre hotel and visitor-serving commercial site consisting of 98 airspace units. Proposed Lot 2 would consist of a 10.3-acre parcel for hotel and commercial purposes consisting of 50 airspace units.
- Variance to allow non-exempt grading totaling 35,260 cy, cumulative of cut and fill.
- Variance to allow construction on slopes (specifically with regard to the creation of a secondary fire access/service entry road and removal of natural slopes at the perimeter of the site where the hillside starts to descend) in excess of 2.5:1.
- Variance to allow building height up to 30 feet, six inches for sections of flat roof, and up to 36 feet, two inches for the elevator and stair shafts.
- Variance to allow a reduction in the total number of parking spaces provided onsite.
- Variance to allow parking within the front yard setback
- Site Plan Review to allow building heights exceeding a maximum of 24 feet for sections of flat roof and 28 feet for sections of pitched roof, see Variance for Building Height referenced above.
- Minor Modification to allow a 50% reduction in the required front yard setback for the construction of the subterranean parking structure.
1.0 INTRODUCTION

- Determination of Use with regard to the proposed commercial air space subdivision.

The Project would require the additional approvals from the following responsible agencies:

- California Department of Transportation (Caltrans) encroachment permit to permit grading along PCH, which would occur within an existing Caltrans slope easement, and a hauling permit for any proposed hauling routes along PCH.

- City Public Works Department encroachment permits to allow Project improvements within the City right-of-way.

- RWQCB issuance of Waste Discharge Requirements (WDR) for the Project.

- Southern California Edison approval to underground existing overhead utilities, relocate two existing transformers and install two additional transformers.

1.7 PROJECT APPLICANT AND PROJECT DESIGNERS

Lead Agency:
City of Malibu
Planning Department
c/o Joyce Parker-Bozyinski
23825 Stuart Ranch Road
Malibu, CA 90265

Applicant:
Green Acres, LLC
P.O. Box 6528
Malibu, CA 90264

Applicant’s Representative:
Susan Villain
Vue Ventures Inc.
(310) 409-9008
susanvillain@msn.com

Architect:
Barsocchini & Associates, Inc.
3502 Coast View Drive
Malibu, CA 90265

Civil Engineer:
PSOMAS
c/o Andrew Nickerson
555 South Flower Street, Suite 4400
Los Angeles, CA 90071

3 In accordance with Malibu Municipal Code (M.M.C.) Section 17.04.050, when a use is not specifically listed or is determined by the Planning Director not to be included in a general category of use in the chapter defining uses permitted, it shall be assumed that such uses are prohibited unless it is determined by an action of the Planning Commission, following receipt of a recommendation from the Director, and a public hearing, that the use is similar to and not more objectionable than the uses listed.
1.8 Scope of the EIR

This EIR assesses the potential impacts of developing a 294,728 sf hotel complex of 146 rooms on approximately 16 acres of a 27.8-acre site in the Civic Center area of the City. Cumulative Project impacts are discussed in each relevant section of this EIR, and represent a comprehensive assessment of potential impacts on City resources using a list of past, present, and probable future projects that could produce related or cumulative impacts.

1.9 Areas of Known Public Controversy

Based on the input received at the public scoping meeting and responses to the NOP, the following issues are known to the City to be of concern and may be controversial (each issue will be further discussed in the EIR):

- Potential visual and aesthetic impacts associated with Project site alteration, and the size, bulk and scale of the proposed structures and associated compatibility with the rural character of the community;
- Loss of and damage to cultural resources;
- Increased development within an area prone to wildfire;
- Lack of available water resources;
- Increased traffic congestion, including that from short-term construction traffic, such as heavy haul trucks, and long-term traffic growth from operation of the proposed hotel, particularly during emergency events (e.g., fire evacuation);
- Elevated noise levels during special events; and
- Cumulative impacts, such as loss of open space and change in the character of the Civic Center area.

1.10 Organization of the EIR

This EIR is organized into eight sections. Section 1.0, Introduction, summarizes the background of the proposed Project, the Project objectives, and explains the environmental review process. A detailed description of the proposed Project is provided in Section 2.0, Project Description. Existing environmental conditions, specific Project impacts, mitigation measures, residual impacts and cumulative impacts are detailed in Section 3.0, Environmental Impact Analysis and Mitigation Measures. Section 4.0, Other
CEQA Sections, identifies significant and irreversible, growth-inducing, and unavoidable effects. Section 5.0, Cumulative, details the pending, proposed and approved projects in the City that would potentially result in environmental effects when combined with the proposed Project. Section 6.0, Alternatives, describes alternatives to the proposed Project site and design, and identifies the Environmentally Superior Alternative. Section 7.0, List of Preparers, identifies the EIR project team. Documents and interviews used as a basis of information for preparing the EIR are identified in Section 8.0, References and Persons or Organizations Contacted. The appendices to the EIR include the NOP, responses to the NOP, and supporting technical studies.
2.0 PROJECT DESCRIPTION

2.1 INTRODUCTION

The proposed Rancho Malibu Hotel Project would consist of a 274,775 square-foot (sf) hotel complex of 146 guest rooms on approximately 16.5 acres of a 27.8-acre site in the City of Malibu (City). This section describes the Project location, characteristics of the site and vicinity, details of the proposed development, construction methods, and operational information.

2.2 PROJECT LOCATION

The proposed Project site is located at 4000 Malibu Canyon Road within the Civic Center area of the City of Malibu, California (Figure 2-1). The site encompasses an elevated level coastal terrace and surrounding slopes immediately south and east of Pepperdine University (Pepperdine) and is bordered by Malibu Canyon Road to the north and west, Pacific Coast Highway (PCH) to the south, and Civic Center Way to the east. The site consists of three parcels (Assessor’s Parcel Numbers [APNs] 4458-030-007, 4458-028-015, and 4458-028-019) totaling approximately 27.8 acres located within the Commercial Visitor-Serving 2 (CV-2) zoning district. These parcels comprise one of the largest remaining undeveloped sites within the Malibu Civic Center area.

The 27.8-acre Project site is located at the northeast corner of the intersection of Malibu Canyon Road and PCH, across Malibu Canyon Road from Pepperdine’s Alumni Park (left). The Project site (background) rises above and is visible from the four-lane PCH (right). PCH runs through a deep cut along much of the site’s southern boundary to its intersection with Malibu Canyon Road.
Regional Setting and Project Location

FIGURE 2-1
2.3 EXISTING SETTING

2.3.1 Project Vicinity

The 27.8-acre roughly triangular site is bordered by Malibu Canyon Road and the large open lawns of Pepperdine’s Alumni Park to the north and west, Civic Center Way and mixed institutional and residential uses to the north and east, and PCH, the City-owned portion of Malibu Bluffs Park and undeveloped land to the south. Nearby land uses include Pepperdine to the north and west, the State-owned portion of Malibu Bluffs Park to the south, the Los Angeles County Road Maintenance Yard, Webster Elementary School, Our Lady of Malibu Catholic Church and School, and three condominium complexes off of Vista Pacifica and De Ville Way to the east (Figure 2-2).

The Pacific Ocean lies 0.25 miles south of the site, lower Malibu Creek 0.5 miles to the east and the base of the Santa Monica Mountains foothills are to the north across Malibu Canyon Road. The site borders the low-lying lands of the Civic Center area and is visible from nearby neighborhoods, portions of the Civic Center area, the Pepperdine campus, westbound PCH and southbound Malibu Canyon Road. In the foothills above the site to the north and east are the Malibu Knolls single-family residential neighborhood, and the structures and faculty housing of Pepperdine. Further to the east is the Civic Center area, including City Hall, various County buildings, Malibu Library, three commercial shopping centers, and Legacy Park.
Note: Much of the vegetation depicted in this aerial burned off in recent fires.
The site is bounded by two of the largest roads in the City, PCH and Malibu Canyon Road, as well as a third road, Civic Center Way, which are all generally posted with speed limits of or operating at speeds of 40 to 55 miles per hour. A four-lane divided segment of PCH is located within a deep cut along the site’s southern boundary.

PCH’s travel lanes are bordered by wide paved shoulders. No sidewalks or formal bike paths exist along this segment of PCH (as is the case for the majority of the City). Malibu Canyon Road, a four-lane 70-foot-wide arterial runs along the site’s western and northern boundaries. An existing eight-foot-wide sidewalk is provided on the west (Pepperdine) side of Malibu Canyon Road; no sidewalks currently exist along the Project site frontage and no striped bike paths are provided. Malibu Canyon Road transitions to two lanes north of its intersection with Civic Center Way and a secondary entrance to the Pepperdine campus. Civic Center Way runs along the eastern boundary of the Project site and is two-lane rural road, which lacks sidewalks for most of its Project site frontage and provides no striped bike paths. Dirt paths exist in places along the edges of Malibu Canyon Road.

The only adjoining property is located to the southeast of the Project site in the bottom of Winter Canyon, and is used as a leach field for treatment of wastewater generated by the Malibu Colony Plaza shopping center. The eastern edge of the site drops off steeply into
Winter Canyon, which is traversed by Civic Center Way. A small tributary drainage traverses portions of the eastern edge of the site; however, the majority of this section of Winter Canyon’s drainage channel has been placed in an underground culvert which daylights into an open channel outside of the site’s southeast corner.

2.3.2 Project Site

The 27.8-acre Project site consists of a level or gently sloping terrace of about 16.5 acres bounded on the east and south by steep slopes leading down to Civic Center Way and PCH, respectively. The site’s approximate 1,000 feet of frontage along Malibu Canyon Road is generally level to gently sloping. The site is currently vacant but historically supported a nursery operation. No structures are located on the Project site; however, the gated former nursery entrance driveway off Malibu Canyon Road still exists and is located approximately 250 feet north of the intersection of PCH. A network of unmaintained dirt roads provides limited access throughout the level terrace portion of the site from this existing site entrance.

The Project site is underlain by Marine Terrace Soils with only limited bedrock exposure (GeoSoils Consultants, Inc. 2011). When exposed, such soils can exhibit moderate to high erosion rates. The site is exposed to moderate- to high-seismicity typical of the region and the Malibu Coast Fault runs through the site. Two historic landslides are located on the slopes of Winter Canyon along the site’s eastern boundary.

The site exhibits substantial topographic variation, with the level terrace area bounded by slopes of 20% to more than 50% grade along its northern and eastern boundaries, with particularly steep grades above the southern portions of Winter Canyon / Civic Center Way. Very steep slopes of 50% or more also exist along the deep cut for PCH along the
2.0 Project Description

site’s southern boundary. Existing drainage is to both the north and south, with runoff collected in storm drains along Malibu Canyon Road and PCH, as well as the Winter Canyon drain located southeast of the site (PSOMAS 2011). Limited erosion and gullying is present along the site’s southeastern slopes as well as above PCH. Existing vegetation cover onsite aids in adsorption of rainfall and limits runoff.

Existing vegetation patterns reflect both the past use of the site by the nursery and vegetative regrowth after the site burned in the 2007 Canyon Fire. The Project site’s east facing slopes above Civic Center Way are thickly vegetated with regrowth of coastal sage scrub, with the fire follower bush poppy dominating portions of this slope. The level and gently sloping portions of the coastal terrace contain large areas of coastal sage scrub dominated by laurel sumac and smaller areas of open disturbed land and limited areas of native bunch grasses. Groves of young eucalyptus, ranging from 10 to 30 feet in height, occur over limited areas primarily on the eastern and southern portions of the terrace. Palm trees are also numerous in several areas in the eastern portion of the site. The site’s south-facing slopes overlooking PCH support more limited coastal sage scrub habitat and scattered eucalyptus trees, with some areas disturbed by highway maintenance activities.

The site is visually prominent from surrounding roads and neighborhoods, as well as from Pepperdine. Views of the site from public roads are available from westbound PCH, from Cross Creek Road to past the Civic Center Way, from eastbound PCH at its intersection with Malibu Canyon Road, and from southbound Malibu Canyon Road. The site is also visible from adjacent areas, such as Pepperdine, the Malibu Knolls neighborhood, Malibu

![Image](Image1.png)

The Project site is undeveloped, with approximately 16.5 acres of level or gently sloping terrace vegetated primarily with disturbed coastal sage scrub habitat (left) and remnant nursery plants, such as eucalyptus and palm trees. The steep slopes along the site’s eastern side above Civic Center Way rise 50 to more than 100 feet above this roadway and support high quality coastal sage scrub habitat (right).
2.0 PROJECT DESCRIPTION

Bluffs Park and more distant locations and neighborhoods, such as the Serra Retreat, Malibu Country Estates neighborhoods, and portions of the Civic Center.

2.4 PROJECT OVERVIEW

The Project applicant, Green Acres LLC, proposes to develop a 274,775 sf hotel complex consisting of 146 rooms and supporting facilities on approximately 16.5 acres of the 27.8-acre site (Table 2-1). Development would consist of a main hotel building, 15 two-story detached secondary hotel buildings, 4 two-story secondary hotel buildings with basements, 2 single-story secondary hotel buildings, and supporting full-service spa, fitness center, retail, restaurant, bar, ballroom facilities along with three swimming pools, a playground, meeting rooms and other facilities (Figure 2-3).

Proposed structures would be organized around a central axis, which would consist of a series of courtyards, patios, and the central pool complex and lawn that would run from the motor court at the Project entry on the west through the hotel and pool complex to a second event lawn and scenic overlook on the eastern site bluff top. Located north of this central axis would be an 11,000 sf lawn for events, a hotel ballroom, the spa,

Table 2-1. Proposed Project Area Summary

<table>
<thead>
<tr>
<th>Description</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Site</td>
<td>27.87 acres</td>
</tr>
<tr>
<td>Turf Hillsides and Open Space</td>
<td>12 acres</td>
</tr>
<tr>
<td>Development</td>
<td>15.87 acres</td>
</tr>
<tr>
<td>Formal Landscaping</td>
<td>151,342 sf</td>
</tr>
<tr>
<td>Event Lawns</td>
<td>22,432 sf</td>
</tr>
<tr>
<td>Paved Walkways, Common Seating</td>
<td>49,779 sf</td>
</tr>
<tr>
<td>Private Patios</td>
<td>44,348 sf</td>
</tr>
<tr>
<td>Courtyard Paving/Pool Deck</td>
<td>34,943 sf</td>
</tr>
</tbody>
</table>

The proposed Project would be developed on the site’s generally level 16-acre terrace. However, construction of the proposed perimeter access road and secondary hotel buildings would entail grading, areas of cut and fill slopes, and installation of approximately 548 feet of retaining walls on steep slopes along the site’s eastern boundary.
181,334 square feet.

Note: Under Malibu Municipal Code, the net floor area is 181,334 square feet.
This page left intentionally blank for 11X17” figure
11 secondary hotel buildings and an employee parking lot. Located to the south of the axis would be a subsurface parking structure, street level and subterranean retail, and 10 secondary hotel buildings.

The main two-story hotel building of 58,258 sf above ground would contain a restaurant, bar, retail space, library, sundries store and other facilities on the ground floor with 12 guest rooms and roof-top patios located on the second floor. The two hotel basement levels would support 82,644 sf of spa, fitness, retail and support facilities, including the kitchen, administration and mechanical facilities. The various two-story secondary hotel buildings would range in size from approximately 1,378 sf to more than 8,750 sf in size and would provide the majority of hotel accommodations, containing a total of 134 guest rooms (refer to Table 2-2).

Primary site access would be provided via a main entrance and exit driveways centrally located along the site’s frontage with Malibu Canyon Road, approximately 680 feet north of the intersection of PCH and Malibu Canyon Road, with a secondary fire and service access road proposed approximately 200 feet north of the main entrance driveway. A total of 543 parking spaces would be provided onsite, primarily in a four-level, 166,827 sf parking structure with three subterranean levels, with additional parking provided in a surface level employee lot consisting of 40 spaces and a 14 space registration surface parking area outside the main entrance to the hotel.

Project development is limited to a maximum of two stories above finished grade. When viewed from surrounding roads and neighborhoods, the Project would appear to consist of two-story structures, with some rooftop gardens and patios atop the second level of the main hotel building. Rooftop patios and gardens do not constitute a story. However, because a large portion of the main hotel building would be constructed below grade, development of the hotel, spa, ballroom, retail and service uses would generally consist of three levels of services, with the spa, gym, pool complex and basement retail on a subterranean floors located 10 to 15 feet in elevation below the hotel lobby and surrounding grounds and secondary hotel buildings. Near the east end of the site, the first floor of most proposed secondary hotel buildings would be on the same level as the pool, lawn area and overlook.
Table 2-2. Project Details

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Address</td>
<td>4458-030-007, -028-015, and -028-019</td>
</tr>
<tr>
<td>Zoning</td>
<td>Commercial Visitor Serving– 2 (CV-2)</td>
</tr>
<tr>
<td>Acreage</td>
<td>27.8 acres (1,210,968 sf)</td>
</tr>
<tr>
<td>Hotel Main Building (gross floor area)</td>
<td>140,902 sf</td>
</tr>
<tr>
<td>1. Lowest Level/Basement Level 2 (retail shops, courtyard, and mechanical facilities)</td>
<td>18,543 sf</td>
</tr>
<tr>
<td>2. Upper Basement/Basement Level 1 (pool, spa facilities, spa restaurant, and fitness center)</td>
<td>64,101 sf</td>
</tr>
<tr>
<td>3. First Floor/Ground Level (lobby, ballroom, restaurant, bar, library, kitchen, private dining rooms, and support-administrative facilities)</td>
<td>44,188 sf</td>
</tr>
<tr>
<td>4. Second Floor (12 guest rooms, rooftop gardens, and mechanical facilities)</td>
<td>14,070 sf</td>
</tr>
<tr>
<td>Secondary Hotel Buildings: gross floor area/net floor area (for F.A.R.1)</td>
<td>133,873 sf</td>
</tr>
<tr>
<td>Total Development: Gross Square Feet of Development</td>
<td>274,775 sf</td>
</tr>
<tr>
<td>Floor Area for F.A.R. Calculation (excludes basement level square footage)</td>
<td>181,213 sf (0.15 F.A.R.)</td>
</tr>
<tr>
<td>Proposed Parking:</td>
<td></td>
</tr>
<tr>
<td>4-level Parking Structure (3 subterranean levels)</td>
<td>489 total spaces</td>
</tr>
<tr>
<td>At-grade</td>
<td></td>
</tr>
<tr>
<td>Subterranean Level 1</td>
<td>46 spaces</td>
</tr>
<tr>
<td>Subterranean Level 2</td>
<td>143 spaces</td>
</tr>
<tr>
<td>Subterranean Level 3</td>
<td>142 spaces</td>
</tr>
<tr>
<td>Employee Parking (At-grade)</td>
<td>153 spaces</td>
</tr>
<tr>
<td>Guest Registration Parking (At-grade)</td>
<td>40 spaces</td>
</tr>
<tr>
<td>Total Parking</td>
<td>543 spaces</td>
</tr>
<tr>
<td>Required Landscaping:</td>
<td></td>
</tr>
<tr>
<td>Proposed Landscaping</td>
<td>484,550 sf (40% of net lot area)</td>
</tr>
<tr>
<td>Required/Proposed Open Space (includes: open and private courtyards, pool, spa deck, terraces, walkways, landscaping, and porticos)</td>
<td>302,844 sf (25% of net lot area)</td>
</tr>
</tbody>
</table>

1 Per Malibu Municipal Code Section 17.40.080, the gross square footage of all buildings on a given parcel shall be limited to a maximum F.A.R. of 0.15, or 15% of the lot area (excluding any street rights-of-way). Also per M.M.C. Section 17.02.060, only the gross floor area of the floors above the ground surface area is considered when calculating the F.A.R.

The Project proposes a tentative tract map to create an airspace subdivision to allow each hotel room, as well as two retail spaces, to be sold individually as commercial condominiums. The use of the condominium units would be limited to no greater than 30 consecutive calendar days for the owner, in order to still maintain the transient use of the hotel as defined by Malibu Municipal Code (M.M.C.) Section 3.24.020, and the owner could use the unit no more than 180 days per calendar year. When the unit owner

2-12 Rancho Malibu Hotel Project Public Draft EIR
is not staying at the hotel, the unit would be placed into the normal pool of hotel rooms to be used by the public.

2.4.1 Hotel Main Building

The hotel main building would generally consist of four levels (Basement Level 1, Basement Level 2, First Floor/Ground Level and Second Floor) with rooftop decks comprising 140,902 gross sf (58,258 sf above ground), with the top roof deck rising approximately 50 feet in elevation above the floor of the lowest basement level; however, consistent with the M.M.C., only two stories of this development would extend above finished grade, with maximum elevations of 32.4 feet at the elevators shaft (average height of 27 to 30 feet above finished grade). Overall, approximately 66% of the proposed main hotel building, spa and supporting facilities would be located underground within proposed Basement Levels 1 and 2. This extensive use of basement space would limit the Project visibility when viewed from surrounding roads and neighborhoods and the hotel main building would appear to consist of a two-story structure, as two of the four levels would be constructed primarily below finished grade.

The building levels of the main hotel structure are discussed in detail below and would consist of the following: Basement Level 2 containing retail uses; Basement Level 1 containing the spa, fitness, pool complex and retail units located 10 to 15 feet in elevation below the First Floor/Ground Level; the First Floor/Ground Level, which would contain the hotel lobby, services (i.e., front desk and administrative areas), restaurant, and ballroom; and a Second Floor containing guest rooms with rooftop gardens/decks. Approximately 45,000 sf of rooftop gardens would overlie portions of the spa, retail uses, ballroom and hotel (Figure 2-3). In addition to these structures, more than two acres of on-grade terrace, deck, and courtyard and portico space would be provided, concentrated around the pool, spa and hotel, with these open paved areas surrounded by a combination of native and ornamental plants (see Section 2.4.3 below).

Figure 2-4 depicts both above ground elevations of structures that may be visible from surrounding public viewing points or site grounds. Additionally, this figure depicts subsurface basement sections that would be constructed below finished surface grades and would generally not be visible from public roads; however, these facilities would be partially visible from internal view areas, such as the central courtyard and pool deck. The Project’s north elevations, shown in Figure 2-4, would be as viewed from the north of the project site.
perspective of Malibu Canyon Road, the north end of Civic Center Way and areas of Pepperdine and higher elevation neighborhoods or vantage points. West elevations would be as seen from Malibu Canyon Road; however, actual structural visibility may be limited by topography and eventually mature landscaping depending upon the viewing location.

The east and south elevations depicted in Figure 2-4 are as viewed from internal Project vantage points as topography and the intervening secondary hotel buildings and Project landscaping would preclude or severely limit views of these aspects from public viewing areas.

Lowest Floor/Basement Level 2

The lowest floor of the main hotel building, referred to as Basement Level 2, would be primarily occupied by approximately 17,029 sf of retail space in the southwestern portion of the hotel main structure (Figure 2-5). This Level would be at 210 feet in elevation above mean sea level (msl), approximately 22 feet below finished grade, and would primarily support three retail stores. An internal open to the sky courtyard containing palm trees and two fountains would provide a central circulation area for access to, from, and between the retail stores. The retail stores would be partitioned into three retail spaces with ceilings of approximately 16 feet in height. A hallway would separate the southern and eastern retail stores, which would provide access to the atrium from a service stairway located on the eastern side of the structure.

Pedestrian access to the Basement Level 2 would be provided by stairwells and elevators from the First Floor/Ground Level at two locations, including the hotel lobby as well as by an emergency egress staircase that would lead out to the motor court and hotel entry area. Access from inside the first floor of the main hotel structure would be provided by a two-level stairway and two elevators (Figures 2-4, 2-5 and 2-6). In addition, a service and employee entrance would be located on the southeastern side of the Basement Level 2. Other uses on this level include mechanical space. Security features of this level would include an emergency phone, surveillance cameras, and security lighting.
North Elevation

East Elevation

South Elevation

West Elevation

Note: Basement based on review of plan views and section drawings.
2.0 PROJECT DESCRIPTION

Basement Level 1

Basement Level 1 would support approximately 64,101 sf of space, primarily consisting of the spa and fitness facilities, a shop, café/bar, and hotel office and services. Adjacent to, but outside of, the main hotel building, is the pool, pool deck, pool cabanas and related facilities, which would occupy approximately 24,196 sf of this level (Figure 2-5).\(^1\) The spa, sauna and fitness center would occupy approximately 31,425 sf of this level.

Basement Level 1 would be located at approximately 218 feet elevation above msl, approximately 14 feet below finished grade, and would support a combination of below ground, above ground, and open air spaces.

The spa would be located primarily on the north side of the main courtyard, with the spa café/bar, retail and member services, as well as covered patio areas. The spa facility would feature an atrium with skylight, spa reception area, three saunas and two steam rooms, nine rooms for facials, as well as locker rooms, lounges, and relaxation areas. The spa reception area would open to the main courtyard.

The pool deck would be located to the west of the main hotel building and would be reached by a short double stair descending down from the Basement Level 1 courtyard. The pool deck would include a large fountain adjacent to the double stair and would be approximately 110 feet wide, with a 3,440 sf geometric pool situated in the center. A narrow arm of the pool deck would extend west to an outdoor spa/hot tub. Eighteen cabanas, 12 of which would be in a two level configuration, would be located on the north pool deck, with six contiguous cabanas located on the south pool deck, and three contiguous cabanas each located along the more narrow pool deck leading to the spa/hot tub, on the north and south sides, respectively. Pool amenities would include showers, restrooms, two saunas and a steam room.

The fitness center would be located below the hotel lobby, separated from the spa by hotel support facilities, and would include a gym with a range of fitness equipment, two classrooms for instructed fitness courses and restrooms. Additional hotel uses on this level would include offices, sales/catering, employee lockers and training rooms, housekeeping, storage, and utilities.

\(^1\) While they are not internal to the main hotel building, some of the 24,196 sf of pool, pool deck, pool cabanas and related facilities are included in the 64,101 sf of total floor space for Basement Level 1.
First Floor/Ground Level

The First Floor would consist of approximately 44,188 sf, including the hotel lobby, offices, restaurant, ballrooms and ancillary uses (Figure 2-6). The hotel lobby would open on the motor court and the primary site entrance from Malibu Canyon Road. North of the motor court would be the main ballroom, with a covered portico and open patio that would connect the ballroom with the western event lawn. Miscellaneous hotel uses including storage, restrooms, and utilities would abut the ballroom to the north and east. South of the motor court and adjacent to the hotel lobby would be a 2,820 sf ground level retail store.

The hotel entrance, lobby and reception areas would be contiguous to a lounge, bar, library, and sundries shop. The lobby and reception area would include the hotel front desk, services, and restrooms. Hallways would link this area to the main hotel restaurant and private dining room, the ballroom to the north, and the retail areas to the south. A series of terraces behind the lobby area and restaurant would overlook the spa on Basement Level 1, courtyard and pool areas and hotel grounds. The 4,470 sf restaurant and adjacent 1,500 sf dining terrace would be located at the northeastern portion of the First Floor. The kitchen and various service and storage areas would be adjacent to the restaurant.

Second Floor

The Second Floor would consist of approximately 14,070 sf of hotel uses, including 12 guest rooms, circulation areas, and utilities located above the hotel reception area. An open atrium would provide views to the lobby and reception area below. This floor would be located approximately 16 feet above finished grade and would overlook the courtyards, terraces, pool and grounds located below (Figure 2-7). The guest rooms would have private balconies ranging from 750 sf to 875 sf in size. Access to the guest rooms would be via the elevators and a stairway from the hotel lobby retail areas. Keycard access would restrict hotel areas to staff and hotel guests only.

2.4.2 Secondary Hotel Buildings

The majority of hotel accommodations would be provided within 21 detached secondary hotel buildings located throughout the Project site. These structures would include
2.0 PROJECT DESCRIPTION

15 two-story secondary hotel buildings, 4 two-story secondary hotel buildings with
basements, and 2 single-story secondary hotel buildings that would, in total, comprise
133,873 sf with 134 guest rooms (Figure 2-8). Access for hotel guests and to the guest
rooms within these detached buildings would be via walkways through the hotel grounds;
shuttle service with electric carts would also be provided. Service and fire access roads
that encompass and bisect the Project site would provide drop off and pick up access to
the guest rooms, as well as access for hotel staff and emergency vehicles; however, no
individual private, employee or tenant parking would occur adjacent to the secondary
hotel buildings.

The two single-story secondary hotel buildings would be located at the eastern end of the
Project site. The 4,257 sf Presidential Suite would be located to the north of the east event
lawn. The Presidential Suite would include four bedrooms, four bathrooms, a living
room, fitness area, and a large private patio containing a private pool and spa. The other
1,378 sf single-story secondary hotel building, located south of the east event lawn,
would include two one-bedroom guest units, each with a living room, bathroom and
private patio.

The 19 two-story secondary hotel buildings would range in size from approximately
3,810 sf to more than 8,750 sf and would support 132 guest rooms. The two-story
secondary hotel buildings would each contain between eight and 10 guest rooms with
private balconies or patios. Although individual floor plans would vary, guest rooms in
the two-story secondary hotel buildings would generally include a foyer, separate
bedroom, living room, bathroom, fireplace, and closet space. The basement areas located
beneath four of the secondary hotel buildings would each be approximately 750 sf in size
and would not be habitable.

2.4.3 Landscaping and Open Space

Project landscaping and open space would consist of approximately 16 acres, including
almost four acres of formal landscaped areas and walkways within the hotel grounds,
nine acres of tall fescue turf lawn, and three acres of natural open space (i.e., space that
would remain non-irrigated and retain the existing vegetation) on slopes and hillsides

2 Although not specified, it should be presumed that living room space would double as a second bedroom
through uses of fold out couches or roll away beds.
Type “B” – Eight-Plex, 4 Units per Floor

Type “J” – Duplex, Single Floor

Secondary Hotel Buildings

Note: Square footages include patios and balconies.
surrounding hotel and grounds (Figure 2-9). The four acres of formal landscaping would consist of a mix of developed walled planters, lawns and other landscapes within the formal hotel grounds. Features of these formal landscaped grounds would include a bamboo garden, reflecting pool, lily pond and garden pavilions at the event lawns. An additional 45,000 sf of rooftop gardens would overlie portions of the spa, retail uses, and ballroom on the main hotel building. In places, rooftop decks, patios and gardens would function as a fourth level. Approximately 22,432 sf of lawn (2% of site) would be provided in two locations to support events and functions, such as weddings and other celebrations. More than two acres of terrace, deck, and courtyard and portico space would be provided, concentrated around the pool, spa, and hotel.

Approximately nine acres (32% of site) around the north, east and southern site perimeter would be converted to tall fescue turf lawn interspersed with sycamore, cottonwood and olive trees. These areas and associated landscaping, particularly tall fescue lawn, are intended for the disposal of treated wastewater via evapotranspiration, as well as landscaping. Approximately three acres (11% of site), located primarily on the steep hillsides above Civic Center Way and PCH, would not be altered and existing vegetation would remain intact. The eastern slope is vegetated with dense-intact coastal sage scrub, whereas southern slopes above PCH tend to be more disturbed. These areas are not proposed to be irrigated.

The proposed Project would include approximately 50,000 sf of walkways and exterior informal sitting areas and fountains to serve as a hotel commons that would provide access throughout the internal site grounds. In addition, a second public pool and children’s play area would be provided within the hotel common area located south of the main hotel building and would provide a more family oriented recreation area away from the main pool and spa area.

2.4.4 Drainage and Grading

Drainage would be collected onsite in a series of storm drains of up 60 inches in diameter and conveyed offsite at two primary locations: 1) a stormwater drain that would connect to the existing storm drain beneath PCH in Winter Canyon to the southeast of the site; and, 2) the southwest corner of the site adjacent to PCH and Malibu Canyon Road where a 72,000-gallon stormwater detention tank beneath the subterranean parking structure would retain peak storm flows for gradual discharge into a bio-retention basin. Offsite
Proposed Landscape Plan

Project Site Boundary
Existing Topographic Contour
Post-Project Topographic Contour
Proposed Cut/Fill Area
Proposed Paved Area
Proposed Hotel
Proposed Secondary Hotel Buildings
Proposed Pool or Water Feature
Proposed Landscaping
Hotel Garden Roof
Palms
Trees
Shrubs
Groundcover
Lawn
Tall Fescue Turf Lawn
Non-Irrigated Areas to Remain in Existing Condition

SCALE IN FEET
0 230

FIGURE 2-9
Landscape Plan
Proposed Rancho Malibu Hotel Project
conveyance of stormwater in the southeast portion of the site would occur via a 30-inch storm drain at the site’s southeast corner along Civic Center Way, which would either connect directly to the existing culvert under PCH in Winter Canyon or would drain to the existing daylighted section of Winter Creek at the southeast corner of the site.

Project development would require approximately 229,000 cubic yards (cy) of cut and 40,000 cy of fill. Substantial excavation would be required for the construction of the proposed four-level subterranean parking structure and the basement retail, spa, pool and hotel service facilities (Figure 2-10). Proposed excavation would extend 35 to 40 feet below existing grade for parking structure and stormwater detention facilities and 15 to 25 feet below grade to accommodate the spa, pool, basement retail and hotel service facilities. Excavation would occur primarily in the western portion of the site and fill would be utilized in the southeastern portion of the site.

Grading around the site perimeter would involve less topographic alteration; however, segments of the northern terrace edge would be lowered from five to 10 feet with newly constructed manufactured slopes of five to 15 feet in height along much of the northern slope in the viewshed of Malibu Canyon Road. Some alteration to the east-facing slopes above Civic Center Way would also occur, with the most substantial grading proposed for the site’s southeast corner near the Presidential Suite. The eastern and southern perimeters of the terrace would require installation of retaining walls to support fill slopes of 10 to 15 feet in height. Approximately 548 feet of a caisson-supported single retaining wall of approximately six feet in height would be installed in these areas along with 220 feet of double caisson-supported retaining walls, each of which would measure six feet in height, for a combined total of 12 feet, which is in accordance with the maximum height allowed as set forth in LCP Local Implementation Plan (LIP) Section 3.5.5 (Figures 2-3).
Although portions of the excavation would be balanced onsite, the applicant estimates that site grading and preparation would require export of an estimated 189,760 cy of material. Depending upon the type of haul truck selected, the export of excess soil could require from 9,500 to 19,000 one-way haul truck trips. No destination has yet been identified for this exported material; however, destination sites are available to the north through Malibu Canyon and to the west traveling along PCH.

2.4.5 Parking and Circulation

The proposed Project would include three separate access points off Malibu Canyon Road. All public vehicular access to the Project would be provided by a dual entrance and exit driveway located approximately 680 feet north of the intersection of PCH and Malibu Canyon Road. An additional service entrance would be located approximately 200 feet north of the main entrance, which would connect to an internal circulation system of 26-foot wide perimeter and internal fire and service access roads of approximately 3,500 feet in length; portions of these internal roads would dual as walkways, with decorative pavers installed within the roadways (Figure 2-3). Hotel guests and patrons of the spa, pool cabanas, ballroom and restaurant would utilize the main entrance to access the motor court for drop off, the 14 check-in parking spaces, or the 489-space subterranean parking structure.

Hotel deliveries, a portion of employee traffic and other service vehicles would utilize the secondary access driveway located north of the main entrance. A 40-space employee parking lot would be located off this service road, in the northern portion of the Project site. Service access at this driveway would be limited to a right turn out only. Although the general public would be prohibited from utilizing this access, hotel patrons would also be able to utilize this access for pick up and drop off via electric golf carts for access to the secondary hotel buildings units. In addition, the site plan includes a third proposed...
access driveway that connects to the fire and service road system through the patron check-in parking area located within 25 feet of the existing main accessway.

The proposed Project would provide 543 parking spaces, which would include accessible parking spaces in compliance with the Americans with Disabilities Act (ADA), provided at several locations on site, with the majority of parking occurring in the four-level subterranean parking structure (Figure 2-10). The four-level parking structure would be located in the southwestern portion of the Project site and provide 489 parking spaces. Three of the levels would be underground, with only the top level providing surface parking. No underground or surface walkways appear to link the parking structure with the hotel. Access from the parking structure to the proposed hotel would appear to be via walkways off the entrance driveway and the structure’s southeast corner (Figure 2-3). Two elevators are located within the parking structure and would provide access from the subterranean levels to the ground level. Additional parking would include a surface parking lot with 40 spaces for employees, and a 14-space surface parking lot for registration and guest services adjacent to the entrance of the main hotel building.

Based upon M.M.C. Section 17.48.030 – Specific Parking Requirements, a total of 1,068 parking spaces would be required for the proposed Project. The M.M.C. does not take into account that guests use a number of facilities while on the Project site and instead requires a cumulative number of parking spaces based on every use available onsite. The Traffic Study (Overland 2013) completed for the Project, estimated that the actual parking demand based upon peak demand calculations for a resort hotel with multiple uses is 487 parking spaces for weekday peak parking demand and 513 parking spaces for weekend peak parking demand.

2.4.6 Utilities/Services

Electrical services would be provided by Southern California Edison, with undergrounding of existing overhead utilities, relocation of two existing transformers and installation of two additional transformers. Natural gas service would be provided by the Southern California Gas Company. Water service would be provided by Los Angeles County Waterworks District No. 29 (District 29) through a prior water allocation agreement with Pepperdine from their existing 3,000,000 gallon storage tank. Fire protection service would be provided by the Los Angeles County Fire Department, with fire-fighting water demands fulfilled by a water service agreement from the Pepperdine...
Cross Section

Plan for Levels B1 and B2

Scale in Feet

0 40

Proposed Parking Structure

FIGURE 2-10
storage tank. Wastewater disposal would be provided by an onsite wastewater treatment system (OWTS) (see Section 2.4.7 below).

2.4.7 Proposed Wastewater Disposal

Sewage disposal for the proposed Project would be provided by an advanced OWTS. The OWTS would be located beneath the proposed employee parking lot in the northwest portion of the site. The proposed OWTS would utilize a membrane bioreactor system to treat sewage effluent to a quality that would meet tertiary treatment standards for recycled water. The peak flow from the OWTS will be approximately 43,000 gallons per day (gpd) with an off-season peak flow of 26,000 gpd. Tertiary treated effluent from the proposed OWTS would be suitable for recycled water uses, such as irrigation for landscaping, commercial air-conditioning and cooling or recycled plumbing use. As currently proposed, this effluent would be stored within a 900,000 gallon storage tank located beneath the parking garage and disposed through irrigation of site landscaping such as event lawns and ornamental garden areas, and though spray irrigation of approximately nine acres of tall fescue turf lawn covered hillsides overlooking Winter Canyon and Malibu Canyon Road.

The OWTS is categorized as “zero discharge”, which has been designed to be capable of treating and disposing of all wastewater onsite, while not infiltrating into the groundwater within and adjacent to the site. In order to not affect groundwater, the system would spray irrigate lawn and landscape areas at monitored rates that would only saturate soils within the root-bearing zone, where moisture would be taken up by vegetation or evaporated. The proposed 900,000 gallon storage tank would be able to store from 21 to 35 days of flows from the OWTS during wet weather periods. The adequacy of the proposed OWTS to serve Project wastewater disposal needs has been initially approved by City technical review, but would be required to obtain approval by the Regional Water Quality Control Board (RWQCB) as well as to obtain permits from both the RWQCB and the City for the operation of the OWTS prior to construction.

If an amendment to the Basin Plan to construct and operate the OWTS were not approved by the RWQCB, the Project would be required to connect to the City’s proposed Civic Center WWTF. Under this scenario, Project construction would be delayed until completion of the proposed Civic Center WWTF, when the Project would be eligible for...
connection to the system through construction of new wastewater collection main in Civic Center Way, with onsite wastewater collection lines discharging into the main. The proposed Civic Center WWTF would support sufficient capacity to receive wastes from the Project site and treat effluent to meet or exceed RWQCB discharge standards, including for redistribution as recycled water. It is anticipated that the Civic Center WWTF would be capable of providing sufficient recycled water to meet landscaping needs.

2.5 PROJECT OPERATION

2.5.1 Hotel Operations

The proposed Project would be operated as a resort hotel, with hotel facilities such as the restaurant, spa, fitness center, ballroom, pool area and event lawns available for use or rental by both hotel guests and the general public (refer to Table 2-3). The proposed airspace subdivision would permit each guest room and two of the retail spaces to be sold and owned individually. Hotel unit owners would be limited to staying in their unit no more than 180 days per calendar year, and for not more than 30 days at a time. When the unit owner is not staying at the hotel, the unit would be placed into the pool of rooms and made available to the public.

The hotel would be operated under the direction of a general and assistant manager who would oversee various departments, such as housekeeping, maintenance/groundskeeping, spa operations and sales. Hotel staff would be responsible for coordinating with the owners of individual units regarding the timing and frequency of owner occupancy versus availability for rental use. Hotel staff would also be responsible for ensuring that owner use and occupancy complies with City ordinance restrictions and for providing documentation to the City to validate ongoing use and rental of hotel rooms. Consistent with M.M.C Section 43.24.070, the hotel operator would be required to make a return to the City’s tax administrator. Hotel staff would also be responsible for managing and overseeing special events and the rental of a range of hotel facilities for private functions. All such functions will be required to comply with the regulations set forth in M.M.C. Chapter 8.24, Noise Ordinance and would be governed by conditions of approval placed on the Project.
Table 2-3. Hotel Services and Operation

<table>
<thead>
<tr>
<th>Function Area</th>
<th>Hours of Operation</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retail shops</td>
<td>9:00 a.m. – 9:00 p.m.</td>
<td>Open to hotel guests and public</td>
</tr>
<tr>
<td>Hotel restaurant</td>
<td>6:00 a.m. – 1:00 a.m.</td>
<td>Open to hotel guests and public</td>
</tr>
<tr>
<td>Sundrys store</td>
<td>7:00 a.m. – 10:00 p.m.</td>
<td>Open to hotel guests and public. Serves bottled alcohol and prepackaged food.</td>
</tr>
<tr>
<td>Lobby bar</td>
<td>10:00 a.m. – 2:00 a.m.</td>
<td>Open to hotel guests and public. Serves alcohol and food. Occasional indoor live entertainment.</td>
</tr>
<tr>
<td>Library</td>
<td>8:00 a.m. – 11:00 p.m.</td>
<td>Open to hotel guests only.</td>
</tr>
<tr>
<td>Ballroom and meeting rooms</td>
<td>6:00 a.m. – 2:00 a.m.</td>
<td>Open to hotel guests and the public for hotel resort operations and/or privately hosted functions. Food service until 12:00am; alcohol service until 2:00am. Occasional indoor live entertainment.</td>
</tr>
<tr>
<td>Fitness center and spa</td>
<td>5:00 a.m. – 10:00 p.m.</td>
<td>Open to hotel guests and public. Alcohol and food service.</td>
</tr>
<tr>
<td>Swimming pool/spa</td>
<td>5:00 a.m. – 9:00 p.m.</td>
<td>Open to hotel guests, invited visitors, spa users and for rental for private functions. Alcohol and food service. Occasional outdoor live entertainment.</td>
</tr>
<tr>
<td>Pool cabanas</td>
<td>9:00 a.m. – 12:00 a.m.</td>
<td>Open to hotel guests and/or private functions. Occasional onsite outdoor live entertainment.</td>
</tr>
<tr>
<td>Function lawns</td>
<td>8:00 a.m. – 12:00 a.m.</td>
<td>Outdoor function lawn for hotel resort operations and private functions. Alcohol and foodservice until 12:00am. Occasional outdoor life entertainment.</td>
</tr>
<tr>
<td>Guest transportation</td>
<td>5:00 a.m. – 2:00 a.m.</td>
<td>Shuttle vans for use offsite. Electric golf-carts for onsite transportation.</td>
</tr>
</tbody>
</table>

1 Outdoor amplified sound occurring between the hours of 8:00 a.m. and 12:00 a.m. (midnight) shall be limited to scheduled events in connection with hotel resort operations and/or privately hosted events.

2.5.2 Staffing

The Project applicant estimates that the proposed hotel, spa and restaurant would employ approximately 120 full-time, part-time, seasonal, and permanent employees at any given time. Staffing would generally consist of hotel administration and operations staff, housekeeping and maintenance, food and beverage service, marketing and sales, accounting, security, and spa/fitness center staff. The greatest number of employees would be associated with the food and beverage service, followed by marketing and sales, and the spa/fitness center, as presented in Table 2-4. These numbers do not appear to include retail employees associated with privately owned retail space or potentially all of those associated with special event management and operation, such as caterers, musicians and other special event workers.
2.0 Project Description

Table 2-4. Proposed Project Employment

<table>
<thead>
<tr>
<th>Staff Position</th>
<th>Employment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administration</td>
<td>2</td>
</tr>
<tr>
<td>Hotel Operations(^1)</td>
<td>10</td>
</tr>
<tr>
<td>Housekeeping</td>
<td>12</td>
</tr>
<tr>
<td>Food and Beverage</td>
<td>33</td>
</tr>
<tr>
<td>Marketing and Sales(^2)</td>
<td>25</td>
</tr>
<tr>
<td>Spa/Fitness Center</td>
<td>20</td>
</tr>
<tr>
<td>Accounting</td>
<td>6</td>
</tr>
<tr>
<td>Maintenance</td>
<td>9</td>
</tr>
<tr>
<td>Security</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL</td>
<td>120</td>
</tr>
</tbody>
</table>

\(^1\) Would include office manager, front desk, and concierge.
\(^2\) Would include retail shops, convention, and banquet staff.

2.5.3 Events

The proposed Project is designed to accommodate rental of various facilities for special events, such as weddings, wedding receptions, bar/bat mitzvahs, corporate and private parties, corporate gatherings, conferences, and special occasions. Facilities available for special event use include the ballroom/banquet room, private dining rooms, cabanas/pool area, and event lawns. These facilities could host events of either hotel guest or the general public. The onsite facilities could accommodate several events simultaneously, or all major facilities could be utilized as part of a single event. Maximum occupancy of the site is difficult to estimate; however, for purposes of estimating wastewater flows, the restaurant, bars, terraces and pool food service areas have an estimated capacity of 260 seats while the ballroom capacity is estimated at 350 seats. The capacity of outdoor event lawns and other areas is unclear. No limits are currently proposed on either the number of special events that would be held at the hotel or on the number of guests that could attend such events.
2.0 PROJECT DESCRIPTION

2.6 CONSTRUCTION ACTIVITIES

2.6.1 Phasing and Timing

Construction of the proposed Project is anticipated to extend over an approximately 24-month period and involve four major phases (excluding pre-construction activities). Phase I would include removal and grubbing of vegetation and initial rough grading, and is anticipated to require 2-4 weeks. Phase II would entail site preparation activities, including excavation, rough and fine site grading of 269,000 cy (229,000 cy of cut and 40,000 cy of fill), export of 189,760 cy, and installation of initial shoring, and is expected to require approximately 3-4 months. Phase III would entail construction of the proposed substructure and buildings and is anticipated to require up to 18-20 months. Phase IV would include completion of offsite improvements for Project frontage and utilities and would require 2-3 months, but would likely be concurrent with the late stages of Phase III. All work would be subject to traffic control and City circulation planning requirements. These matters are discussed more fully below.

Construction activity, the type and quality of construction equipment present, and the number of workers would vary throughout the construction process. Construction would typically commence at 7:00 a.m. and would typically end between 4:00 p.m. and 5:00 p.m. The number of workers present onsite has been estimated to range from five to 150 depending upon the Project phase (Overland 2013). Material delivery would occur throughout the day, with large-scale deliveries typically scheduled outside of the peak traffic hours. Heavy haul truck trips would likely be scheduled outside of the peak morning and afternoon traffic hours.

2.6.2 Site Preparation (Phases I and II)

Site preparation would be performed through vegetation clearing and grubbing, rough grading, excavation of the parking structure and other subsurface facilities and initial shoring activities that are anticipated to take approximately three to four months and would be completed concurrently. Site preparation and grading activities would require the use of several scrappers, excavators, bulldozers, backhoes, loaders, 20 cy capacity trucks with double trailers, and other heavy equipment. Approximately 9,488 truckloads are expected to be required for export of fill with an average of approximately 136 loaded trucks per day leaving the site for a period of approximately 10 weeks (Overland 2013).
This average may be increased or decreased depending on the availability of truck haulers during the period of work activity. In addition to these haul truck trips, additional heavy truck traffic during this period would include cement trucks, material, equipment delivery trucks, and worker vehicles. In total, heavy truck traffic could reach up to 150-200 vehicles per day over this period.

The methods to be used for shoring have not yet been determined by the applicant. However, excavation and shoring would likely require use of several two-track excavators, Gradeall forklift(s), stinger and hydro cranes, dewatering baker tanks, D6 or larger bulldozers, a modified track excavator driller, a front-end loader, 10-15 end dumps, two backhoe loaders, a compressor, a concrete pump, small tools, and light trucks.

Although groundwater is generally below excavation depths on the bluff top, some temporary dewatering may be necessary during excavation and construction following storm events.

2.6.3 Construction (Phase III)

Project construction is estimated to require approximately 18-20 months. All construction activities would be staged within a secured construction area. Based upon the flow of goods and services to the site, traffic control may be modified but should not change dramatically once the construction area is established and secured. A single tower crane would facilitate construction activities within the secured construction area. Construction activities would require use of the following equipment:

- One tower crane for a period of up to 14 months;
- Road hydraulic cranes as required for specific lifts (staged in delineated area and/or onsite);
- Forklift and material handling equipment (onsite);
- Concrete trucks and hydraulic boom pumps during foundation construction for a period of approximately 2.5-3 months (staged in delineated area and/or onsite);
- Material deliveries daily (staged in delineated area and/or onsite);
- Office trailers and storage containers (staged in delineated area and/or onsite);
- Light truck vehicles and tool boxes; and
2.0 PROJECT DESCRIPTION

- Miscellaneous small tools, compressors, mixers, generators, etc.

Parking and staging is expected to be completed onsite with the exception of ingress and egress of vehicle and truck traffic. All required parking and material staging are anticipated to be accomplished onsite and within the traffic controlled or delineated areas, per a construction staging plan approved by the City Planning Department and City Environmental Sustainability Department.

2.6.4 Offsite Improvements (Phase IV)

Offsite improvements under the proposed Project would occur over approximately three to four months concurrently with Phase III and would be associated with connection of utility infrastructure and pedestrian improvements. Utility connections would consist of construction of 30-inch storm drain pipes that would connect to the City’s stormwater infrastructure in the southwest and southeast portions of the Project site. Additionally, the Project would require the installation of 1,800 feet of 16-inch water main in Malibu Canyon Road and 1,200 feet of water main in PCH to connect with existing potable water lines. Roadside pedestrian improvements would include approximately 800 feet of five to six foot wide paved sidewalk along Malibu Canyon Road at the western side of the Project site.

2.6.5 Traffic Control Plan

A Traffic Control Plan would be prepared and would include site preparation, and ongoing construction activities, which are anticipated to stretch over an approximately 24-month period (Overland 2013). The Plan would cover the following tasks or activities:

- The Project applicant would be required to submit formal construction staging and traffic control plans for review and approval by the City Public Works Department, Environmental Sustainability Department, and Planning Department prior to the issuance of any grading or building permits. A construction management plan will be developed for use during the entire construction period, based on the particular characteristics of the Project’s clearing, grading and construction activities. This plan will also incorporate safety measures around the construction site to reduce the risk to pedestrian, bicycle and vehicular traffic near the work area. The construction management plan will identify all traffic control measures, signs, delineators, and work instructions to be implemented by the construction contractor through the duration of construction activity. A traffic
control plan would also need to be reviewed and approved by Caltrans if construction activities impact PCH.

- All delivery trucks would be brought onto the Project site and be loaded and unloaded within the perimeter fence of the construction site. No detours around the construction site are expected; however, flaggers or traffic directors would be used to control traffic movement during the ingress and egress of trucks and heavy equipment.

- Construction equipment and worker cars will be contained onsite. If construction parking cannot be accommodated onsite, the construction management plan shall identify alternative parking locations for construction workers and a method to transport them to and from the Project site, if it is beyond walking distance. These alternative parking locations would be submitted for approval by the City prior to commencement of Phase I.

- All haul trucks would be tarped prior to leaving the Project site.

- The Project applicant would be responsible for daily or weekly cleaning of surrounding public roads, with frequency to be determined by City staff and Caltrans.

- Prior to initiation of Phase I, the Project applicant would be responsible for photo-documenting the conditions of City-owned roads around the Project site and along the haul truck route on City roads with a requirement to repair these roads to pre-construction condition prior to the issuance of the Certificate of Occupancy.
3.0 ENVIRONMENTAL IMPACT ANALYSIS AND MITIGATION MEASURES

To define the scope of the EIR, the City of Malibu (City) provided the City Council and the public an opportunity to comment on a proposed EIR Scope of Work at a City Council meeting on April 9, 2012. A Notice of Preparation (NOP) for the EIR was distributed to federal, state, county, and City agencies, including responsible agencies for purposes of CEQA, citizens’ groups, and the local library with a comment period that ran from May 3, 2012 to June 2, 2012. The City held a public scoping meeting on May 16, 2012. Notices of the EIR scoping meeting were sent to various local agencies, interested parties, special interest groups and all property owners and occupants within a 500-foot radius of the Project site, as well as published in a local newspaper and placed on the City’s website. Agency and public input received during the comment period and those from the scoping meeting were considered during the preparation of this EIR. Through this process, the City has determined that the EIR analysis should focus on the following resource areas:

- Aesthetics and Visual Resources
- Air Quality
- Cultural Resources
- Biological Resources
- Geology and Soils
- Fire Protection and Hazardous Materials
- Hydrology and Water Quality
- Utilities
- Public Services
- Land Use
- Traffic and Transportation
- Noise
- Paleontological Resources

This section of the EIR addresses the potentially significant environmental impacts of the proposed project for the resources listed above. Each environmental resource area is discussed under the following subsections: Existing Conditions, Regulatory Framework, Project Impacts and Mitigation Measures, Cumulative Impacts, and Residual Impacts. For each impact identified in this EIR, a statement of the level of significance of the impact is provided. Impacts are categorized in one of the following categories:

- **No** impact would result when no adverse change in the environment is expected; no mitigation would be required.

- **A beneficial** impact would result when the proposed project would have a positive effect on the natural or human environment and no mitigation would be required (Class IV).

1 An initial study was not completed for the proposed Project. The preparation of a previous EIR approved for similar development on the subject site had already been identified potential impacts from hotel development, thereby negating the need for such a study.
• A \textit{less than significant} impact would not cause a substantial change in the environment, although an adverse change in the environment may occur; only compliance with standard regulatory conditions would be required (Class III).

• A \textit{significant} (but mitigable) impact would have a substantial adverse impact on the environment but could be reduced to a less than significant level through successful implementation of identified mitigation measures (Class II).

• A \textit{significant unavoidable} impact would cause a substantial adverse effect on the environment, and no feasible mitigation measures would be available to reduce the impact to a less than significant level (Class I).
3.1 AESTHETICS AND VISUAL RESOURCES

This section provides an overview of the aesthetic qualities and visual resources in the Project vicinity and the Malibu Civic Center, with particular attention to those resources related to the Project site. In a semi-rural community such as the City of Malibu (City), visual resources are often related to the natural character of the area, as well as the developed context of buildings, architectural design, setbacks from public roads and landscaping. Visual continuity within a region is often desired or anticipated by viewers, and development that is incompatible or inconsistent with the open or low-profile character of a semi-rural and noted scenic area, such as Malibu, can be considered disruptive to the aesthetic character.

This section also addresses the potential for the proposed Project to create visual impacts as defined by the California Environmental Quality Act (CEQA) and by applicable City visual resources policies, guidelines, and architectural design and compatibility standards. In particular, the City’s Local Coastal Program (LCP) and General Plan identify and designate scenic elements, highly scenic areas, scenic roads, and scenic ridgelines, and the documents identify public viewing areas and vista points located along designated scenic highways. These areas are considered to be of higher visual sensitivity and are a particular emphasis within the aesthetics and visual resources impact analysis.

3.1.1 Existing Setting

3.1.1.1 Regional Setting

The City is a semi-rural community located between the Pacific Ocean and foothills of the Santa Monica Mountains. The City stretches along approximately 21 miles of coastline encompassing sandy beaches, rocky headlands, coastal lagoons and bluffs. The shoreline typically rises abruptly to coastal terraces and the lower foothills of the Santa Monica Mountains, which provide a dramatic scenic backdrop to the City. Views throughout the City frequently include coastal views of

Image: The Santa Monica Mountains and the Pacific Ocean are the key visual resources in the City and the steep topography and coastal setting allow for dramatic ocean and mountain views throughout the City.
3.1 AESTHETICS AND VISUAL RESOURCES

bluffs and beaches, as well as inland views of creeks, canyons, hills, mountains, and
ridges covered with native vegetation.

Development within the City is primarily characterized by low-rise residential
neighborhoods accessed from surface streets off of Pacific Coast Highway (PCH). These
neighborhoods range from beachfront condominium complexes and estate homes to large
lot single-family properties located in the foothills. Commercial and multi-family
residential development is almost entirely concentrated along PCH, with the primary
commercial area occurring within the City’s Civic Center and as areas of strip
commercial development to the east. Additionally, the proximity of the Santa Monica
Mountains and Pacific Ocean, relatively low-levels of development, and limited night-
lighting permit high quality views of the nighttime sky. Taken together, the City’s semi-
rural aesthetic is established by its low-density development pattern interrupted by parks,
open spaces, undeveloped steep hillsides, and the views of regional natural features.

Public views of the area are primarily afforded from major roadways such as PCH,
Malibu Canyon Road, Civic Center Way and a range of residential side streets. PCH is
the City’s primary transportation corridor. Additionally, PCH is also heavily used for
coastal access and recreational drives, and is known for its scenic ocean and mountain

The Project site rises above the low-lying valley of Malibu Creek (foreground, right) and the City’s Civic Center commercial core. Pepperdine University (Pepperdine) (backdrop, left), and commercial and residential structures, including HRL Laboratories (backdrop, right), rise above the Civic Center. Undeveloped open space in the valley bottom, including Legacy Park and Malibu Lagoon (foreground) combine with large areas of open hillsides with native habitat to help maintain the semi-rural character of this area.
views. The section of PCH in the City is eligible, but is not officially designated as a State Scenic Highway (City of Malibu 1995; Caltrans 2013). Malibu Canyon Road, which winds through Malibu Canyon in the Santa Monica Mountains National Recreation Area (SMMNRA) to PCH at the Project site, is a designated Los Angeles County Scenic Highway (Caltrans 2013). The LCP Land Use Plan (LUP) identifies PCH and Malibu Canyon Road as designated scenic roads.

3.1.1.2 Visual Character of the Project Site Vicinity

The Project site vicinity is characterized by a mix of institutional, commercial, and single-family and multi-family residential development interspersed with undeveloped open space and parks. The Project site is located on an elevated coastal terrace affording views in all directions.

To the west, the 830-acre Pepperdine campus, the rolling lawns and ponds of Alumni Park, and the backdrop of larger Spanish revival-style hillside campus buildings are the predominant visual features.

To the north, steep undeveloped hillsides rise into the Santa Monica Mountains, with one- and two-story single-family residential development on the ridges above Winter Canyon to the northeast. The four-story HRL Laboratory is located on a hillside above Malibu Canyon Road, approximately 0.4 miles north of the Project site and is highly visible from the Civic Center area and surrounding development.

To the east, Winter Canyon creates a deep valley bisected by Civic Center Way and supports a mix of two- and three-story structures, including three condominium complexes, Our Lady of Malibu School and Church, the Los Angeles County Road Yard and Webster Elementary School. Several large parking lots and lawns are associated with Webster Elementary School. These institutional and residential uses support a range of architectural styles, particularly Spanish revival.

To the south across PCH, large areas of undeveloped public and private land include the City–owned portion of Malibu Bluffs Park (developed with a park), the state-owned portion of Malibu Bluffs Park (undeveloped), and the privately-owned Crummer property (24120 PCH), which is currently undeveloped but has an application in process with the City for the construction of four new two-story single-family estate homes. Malibu Bluffs Park is developed with parking, two baseball diamonds, and a large lawn area, is heavily utilized, and affords scenic views of both the ocean and mountains. The state-owned portion of Malibu Bluffs Park supports a scenic trail network that traverses this open
space. Undeveloped land in this area is characterized by gently sloping mesas, bluffs, and
multiple shallow canyons that support a mix of open grassland and coastal sage scrub
habitat.

Further removed from the Project site to the east, the City’s Civic Center encompasses
mostly low-lying or gently sloping land west of Malibu Creek. The Civic Center is a mix
of open, undeveloped grassland between several commercial and institutional centers.
Development within this area generally consists of one- and two-story buildings with a
wide variety of architectural styles, ranging from Spanish colonial characterized by white
stucco siding and red-tile roofs, modern tilt up concrete offices, and older rustic wooden
or storehouse style structures. Larger public buildings include the Los Angeles County
Courthouse, Library, and Malibu City Hall. The combination of Malibu Country Mart,
Malibu Village and the Malibu Lumber Yard, with their boutique stores and restaurants,
comprises one of the City’s most prominent commercial centers. Legacy Park and its
system of walkways, native habitat areas, and native plantings is another key visual
feature of the Civic Center.

Winter Canyon Way and Civic Center Way located to the east of the Project site (pictured, right),
support two schools, a church, and several condominium complexes. The bluff that rises above Winter
Canyon separates the Project site from the lower-lying Civic Center in the valley. Malibu Lagoon and
the Pacific Ocean are important scenic resources in this view area.
Identified Scenic Resources in the Project Site Vicinity

Of the approximately 22 scenic resources recognized by the City in the General Plan and the LUP, the closest Vista Point to the Project site is Kellers Shelter Vista Point located one mile east; however no views of the Project site are available from this location (City of Malibu 1995).

The Project site is not identified as a scenic vista, but is highly visible from both Malibu Canyon Road and PCH. The LCP Local Implementation Plan (LIP) identifies scenic roads as “those public roads within the City that traverse or provide views of areas with outstanding scenic qualities that contain striking views of natural vegetation, geology, and other unique natural features, including the mountains, canyons, ridgelines, beach and ocean.” Malibu Canyon Road and PCH, both of which offer foreground and distant views of the Project site, are designated as scenic roads in the LCP. PCH and segments of Malibu Canyon Road offer views of natural vegetation and hillsides on the Project site, as well as more distant ocean and mountain views.

Nighttime Lighting Conditions and Glare

Nighttime lighting conditions vary throughout the City, from heavily lit areas of commercial development to more rural areas with little night lighting. The majority of light and glare in the Project site vicinity is generated by Pepperdine, the Civic Center, nearby residential and institutional uses, Malibu Canyon Road, and Webb Way. There is currently no source of nighttime lighting on the Project site.

Visual Character of the Project Site

The Project site is an elevated coastal terrace bordered by Malibu Canyon Road to the north and west, PCH to the south, and Civic Center Way to the east. The central portions are generally level, but drop steeply 60-80 feet into Winter Canyon and the road cut for PCH on the southeastern portions of the Project site. No structures exist onsite; however, several unmaintained dirt roads, remnants of the previous nursery use onsite, traverse the level area of the Project site.

The Project site’s east facing slopes above Civic Center Way are thickly vegetated with coastal sage scrub. The level and gently-sloping portions of the coastal terrace contain large areas of coastal sage scrub, grasslands and open disturbed areas and several groves of eucalyptus, ranging from 10-30 feet in height on the eastern and southern portions of
3.1 AESTHETICS AND VISUAL RESOURCES

3.1.1.4 Existing Views of the Proposed Project Site

The Project site is visually prominent from surrounding roads and neighborhoods, as well as from Pepperdine. Primary public views of the Project site are from PCH and Malibu Canyon Road, which together carry almost 50,000 vehicle trips per day by the Project site (refer to Section, 3.11, Transportation and Traffic). The Project site is also visible from adjacent public use areas at Pepperdine, the Malibu Knolls and Malibu Country Estates neighborhoods, as well as more distant locations such as the Serra Retreat neighborhood and portions of the Civic Center. Further, distant views of the Project site are available from public recreation areas including Malibu Bluffs Park and trails in the Santa Monica Mountains, such as the Coastal Slope Trail.

1 During removal of the story poles from the site, areas of the level mesa-top were heavily disturbed, including substantial removal of trees, coastal sage scrub, and other vegetation. The description of the site refers to vegetation as it existed prior to this disturbance.
Existing Views from PCH

PCH in the Project vicinity extends from John Tyler Drive to Cross Creek Road. Views from this roadway extent are largely open and unobstructed with views of open space, natural features, and vegetated hillsides with the Santa Monica Mountains as a backdrop view. Views of the Project site from westbound PCH are limited as elevated terrain within the Pepperdine’s Alumni Park blocks views of Project site for east-bound travelers until approximately 600 feet from the intersection with Malibu Canyon Road. The intersection of PCH and Malibu Canyon Road offers open views of the Project site through to the Santa Monica Mountains to the north. Views of the Project site from PCH for eastbound travelers are limited east of Malibu Canyon Road due to this road’s steep decent towards Webb Way, as PCH is at approximately 40-60 feet below the Project site’s level terrace, which limits views from Malibu Canyon Road of both the Project site and the Santa Monica Mountains. Overall, unless stopped at the intersection of PCH with Malibu Canyon Road, motorists traveling eastbound can glimpse the Project site for roughly 25 seconds, with substantially longer view times for eastbound bicyclists.

For westbound travelers on PCH, views of the Project site have a much longer duration. Continuous generally open views of the Project site are available from the intersection of Cross Creek Road west to more than 1,000 feet past Webb Way. Although partially obscured at times by hillside condominiums east of the site, the Project site’s level mesa is visible from a distance. Additionally, the heavily vegetated hillsides associated with both the Project site and the Crummer Property (located immediately south of PCH and the Project site) is visible to westbound travelers. Views of the Project site are most prominent from this vantage for motorists on PCH. Overall, unless stopped at the intersection of PCH and Cross Creek Road or Webb Way, westbound motorists have sustained views of the Project site lasting for over a minute, with substantially longer view times for westbound bicyclists and motorists stopped at the intersection of PCH and Webb Way.

Although partially obstructed in places by hillside condominiums, westbound motorists on PCH have generally unobstructed views of the Project site of one to two minutes in duration.
3.1 AESTHETICS AND VISUAL RESOURCES

1. Existing Views from Malibu Canyon Road

2. Malibu Canyon Road in the Project site vicinity extends north from its intersection with PCH to Malibu Knolls Road. Views from this road are relatively open, including undeveloped hillsides of the Santa Monica Mountains, Pepperdine’s Alumni Park, and the undeveloped mesa and hillsides of the Project site. The Santa Monica Mountains form a backdrop to the north with the Pacific Ocean to the south.

3. Northbound motorists on Malibu Canyon Road have views of the western edge of the Project site, but views across the entire mesa top are limited as the roadway is located 10-20 feet below the mesa along most of the Project site. As motorists approach Civic Center Way, views of the Project site’s heavily vegetated north facing hillsides and portions of the mesa top become available, backed by more distant views of existing development in Winter Canyon and the Pacific Ocean in the distance. Views along Malibu Canyon Road north of Civic Center Way are intermittent, partially obstructed by shrubs, trees, and existing homes, with steep hillsides dominated by native vegetation and limited views of HRL Laboratories hillside development.

4. Southbound motorists exiting Malibu Canyon Road enjoy intermittent brief views of the Project site, mesa top and hillsides, and in the last 900 feet before Civic Center Way, unobstructed views for about 15 seconds of most the Project site to the southwest. Motorist moving southbound past Civic Center Way Views have views of the front of the Project site and Alumni Park, with glimpses of the Pacific Ocean.
Existing Views from Other Public Areas

The Project site is visible from adjacent public areas, such as the Pepperdine’s Alumni Park, Malibu Bluffs Park, Malibu Knolls and Malibu Country Estates neighborhoods, as well as from more distant locations, such as the Serra Retreat neighborhood and portions of the Civic Center. Due to proximity, views of the Project site from Alumni Park are highly prominent, particularly on the raised grassy knolls, which offer a higher vantage across the Project site towards the Civic Center. Views of the Project site are also available from Malibu Bluffs Park; however, due to the lower elevation of the park, views of and across the Project site are limited.

Intermittent views of the Project site are available between structures or from open lots from neighborhoods and public roads to the east, including Malibu Knolls. Most of the neighborhoods in Project site vicinity are near the same elevation or slightly above the site’s blufftop, so views of the Project site are open and dominant from various locations. Although intermittent, locations within these neighborhoods offer prominent views of the undeveloped blufftop, which blends with the Crummer Property and Malibu Bluffs Park in the distance, creating open viewsheds backed by the Pacific Ocean. The neighborhoods located on hillsides along Vista Pacifica and De Ville Way across Civic Center Way provide views of the site’s blufftop and densely vegetated slopes that characterize the site’s eastern side.

2 Private views are typically not considered environmentally significant impacts under CEQA (Pub. Res. Code § 21083(c)); therefore, this discussion focuses on views from public spaces such as roadways and parks.

3 Pepperdine is located in unincorporated Los Angeles County.
3.1 AESTHETICS AND VISUAL RESOURCES

Distant views of the Project site are available from Legacy Park and other areas within the Civic Center. The blufftop of the Project site forms the western boundary of the Civic Center, which joins with the undeveloped Crummer Property south of PCH to form an open natural undeveloped blufftop bisected by the deep cut for PCH. Although the site is visible from numerous vantage points and silhouettes the sky, the Project site is not considered a significant ridgeline according to the City’s Civic Center Specific Plan (City of Malibu 1996) and does not meet the standards for a ridgeline per LIP Chapter 2. As viewed from the Civic Center area, the Project site is also partially obscured by the condominium complexes on the eastern side of Winter Canyon.

Existing Views from Public Trails

Numerous public trails are located in the Santa Monica Mountains foothills as well as within Malibu Bluffs Park. The Los Angeles County Department of Parks and Recreation’s *Riding and Hiking Trails Master Plan*, the Malibu LCP, and the City’s General Plan note the location and importance of public trail routes in the Santa Monica Mountains, foothills, and coastal areas. The Coastal Slope Trail, a major east-west trail located northwest of Pepperdine, slopes downhill east of the Pepperdine property into Malibu Canyon. Views of the Project site are available intermittently from south-facing sections of this trail.

3.1.2 Regulatory Setting

3.1.2.1 Federal Regulations

There are no federal regulations that pertain to aesthetic resources.

3.1.2.2 State Regulations

California Coastal Act. The California Coastal Act (Pub. Res. Code § 30000 et seq.) prioritizes protection of important scenic resources and views from public areas, such as
highways, roads, beaches and trails under two provisions relevant to the proposed Project:

Section 30251: “The scenic and visual qualities of coastal areas shall be considered and protected as a resource of public importance. Permitted development shall be sited and designed to protect views to and along the ocean and scenic coastal areas, to minimize the alteration of natural land forms, to be visually compatible with the character of surrounding areas and, where feasible, to restore and enhance visual quality in visually degraded areas . . .”

Section 30253: New development shall: “(e) Where appropriate, protect special communities and neighborhoods that, because of their unique characteristics, are popular visitor destination points for recreational uses.” The California Coastal Commission has defined special communities as “areas that add to the visual attractiveness of the coast.”

California Scenic Highway Program. California’s Scenic Highway Program was designed to preserve and protect scenic highway corridors. Jurisdictions nominating a scenic highway for official designation have in place or adopt ordinances to preserve the scenic quality of the corridor, including policies to preserve scenic resources through land use regulations, site planning, control of outdoor advertising (including a ban on billboards), grading, and measures to direct structural design and appearance (California Streets and Highways Code § 260 et seq.). PCH in the City is eligible to be nominated as a State Scenic Highway, but has not been officially designated.

3.1.2.3 Local Regulations

City’s Local Coastal Program (LCP). The City lies entirely within the California Coastal Zone, as defined by the California Coastal Act. The Coastal Act requires that its goals and policies be implemented by local government through the LCP process. The LCP is composed of two plans: the LUP and the LIP. Both plans were adopted by the California Coastal Commission (CCC) on September 13, 2002.

LCP Land Use Plan (LUP)

The LUP provides for the protection of scenic and visual resources, including views of the beach, ocean, mountains, canyons, and natural habitat areas. The LUP identifies Scenic Roads in the City as those roads that traverse or provide views of areas with outstanding scenic quality, that contain striking views of natural vegetation, geology, and other unique natural features, including the beach and ocean. Further, views of the ocean and other scenic areas from public parklands, riding and hiking trails are also addressed.
LUP Chapter 6, Scenic and Visual Resources, contains policies to prevent visual and aesthetic impacts. Land Use Policies 6.1 through 6.34 address viewshed protection, visual compatibility, visual prominent, the siting of structures and architectural character in visual resource areas, design/visual elements, and scenic roadways. The most relevant policies are listed below.

LUP Policy 6.1 The Santa Monica Mountains, including the City, contain scenic areas of regional and national importance. The scenic and visual qualities of these areas shall be protected and, where feasible, enhanced.

LUP Policy 6.2 Places on and along public roads, trails, parklands, and beaches that offer scenic vistas are considered public viewing areas. Existing public roads where there are views of the ocean and other scenic areas are considered Scenic Roads.

LUP Policy 6.3 Roadways traversing or providing views of areas of outstanding scenic quality, containing striking views of natural vegetation, geology, and other unique natural features, including the ocean, shall be considered Scenic Roads. The following roads within the City are considered Scenic Roads: Pacific Coast Highway, Decker Canyon Road, Encinal Canyon Road, Kanan Dume Road, Latigo Canyon Road, Corral Canyon Road, Malibu Canyon Road, and Tuna Canyon Road.

LUP Policy 6.4 Places on, along, within, or visible from scenic roads, trails, beaches, parklands, and state waters that offer scenic vistas of the beach and ocean, coastline, mountains, canyons, and other unique natural features are considered Scenic Areas. Scenic Areas do not include inland areas that are largely developed or built out such as residential subdivisions along the coastal terrace, residential development inland of Birdview Avenue and Cliffside Drive on Point Dume, or existing commercial development within the Civic Center and along Pacific Coast Highway east of Malibu Canyon Road.

LUP Policy 6.5 New development shall be sited and designed to minimize adverse impacts on scenic areas visible from scenic roads or public viewing areas to the maximum feasible extent. If there is no feasible building site location on the proposed project site where development would not be visible, then the development shall be sited and designed to minimize impacts on scenic areas visible from scenic highways or public viewing areas, through measures including, but not limited to, siting development in the least visible portion of the site, breaking up the mass of new structures, designing structures to blend into the natural hillside setting, restricting the building maximum size, reducing maximum height standards, clustering development, minimizing grading, incorporating landscape elements, and where appropriate, berming.
LUP Policy 6.6 Avoidance of impacts on visual resources through site selection and design alternatives is the preferred method over landscape screening. Landscape screening, as mitigation of visual impacts, shall not substitute for project alternatives, including resiting or reducing the height or bulk of structures.

LUP Policy 6.7 The height of structures shall be limited to minimize impacts on visual resources. The maximum allowable height, except for beachfront lots, shall be 18 feet above existing or finished grade, whichever is lower. The maximum allowable height, except for beachfront lots, shall be 18 feet above existing or finished grade, whichever is lower. On beachfront lots, or where found appropriate through Site Plan Review, the maximum height shall be 24 feet (flat roofs) or 28 feet (pitched roofs) above existing or finished grade, whichever is lower. Chimneys and rooftop antennas may be permitted to extend above the permitted height of the structure.

LUP Policy 6.9 All new development shall be sited and designed to minimize alteration of natural landforms by: conforming to the natural topography; preventing substantial grading or reconfiguration of the project site; eliminating flat building pads on slopes. Building pads on sloping sites shall utilize split-level or stepped-pad designs; requiring that man-made contours mimic the natural contours; ensuring that graded slopes blend with the existing terrain of the site and surrounding area; minimizing grading permitted outside of the building footprint; clustering structures to minimize site disturbance and minimize development area; minimizing height and length of cut-and-fill slopes; and, minimizing the height and length of retaining walls.

Cut-and-fill operations may be balanced onsite where the grading does not substantially alter the existing topography and blends with the surrounding area. Export of cut material may be required to preserve the natural topography.

LUP Policy 6.12 All new structures shall be sited and designed to minimize impacts to visual resources by: ensuring visual compatibility with the character of surrounding areas; avoiding large cantilevers or understories; and, setting back higher elements of the structure toward the center of uphill portion of the building.

LUP Policy 6.13 New development in areas visible from scenic roads or public viewing areas shall incorporate colors and exterior materials that are compatible with the surrounding landscape. The use of highly reflective materials shall be prohibited.

LUP Policy 6.15 Fences, walls, and landscaping shall not block views of scenic areas from scenic roads, parks, beaches, and other public viewing areas.

LUP Policy 6.20 New development on properties visible from and inland of Pacific Coast Highway shall be sited and designed to protect public views of the
3.1 AESTHETICS AND VISUAL RESOURCES

ridgelines and natural features of the Santa Monica Mountains through measures including, but not limited to, restricting the building maximum size, reducing maximum height limits, clustering development, incorporating landscape elements, and, where appropriate, berming.

LUP Policy 6.23 Exterior lighting (except traffic lights, navigational lights, and other similar safety lighting) shall be minimized, restricted to low intensity fixtures, shielded, and concealed to the maximum feasible extent so that no light source is directly visible from public viewing areas. Night lighting for sports courts or other private recreational facilities in scenic areas designated for residential use shall be prohibited.

LUP Policy 6.27 New development shall minimize removal of natural vegetation. Existing native trees and plants shall be preserved on the site, consistent with Policy 3.60.

LUP Policy 6.33 The Pacific Coast Highway corridor shall be protected as a scenic highway and significant viewshed.

LUP Policy 6.34 Landscaping improvements, including median plantings, may be permitted along Pacific Coast Highway east of Malibu Canyon Road. Any proposed landscaping shall be composed primarily of native and drought-tolerant plant species. Landscaping shall be designed and maintained to be subordinate to the character of the area and not block ocean or mountain views at maturity. No such improvements shall be provided west of Malibu Canyon Road in order to maintain the rural character of that area.

LCP Local Implementation Plan (LIP)

Pursuant to the provisions of Public Resources Code Section 30166.5 for implementing the policies of the LCP and the LUP, the LIP governs the protection of scenic views under the various chapters and sections listed below.

Chapter 6, Scenic, Visual, and Hillside Resource Protection, of the LIP is designed to enhance and protect the scenic and visual qualities of coastal and mountain areas within the City, which are resources of public importance, in accordance with the policies of the LCP and the California Coastal Act. LIP Chapter 6 includes development standards, permit and application requirements, and other measures to ensure that permitted development is sited and designed to achieve the purposes of the ordinance. The City includes standard conditions that govern the use of building materials, colors, as well as lighting visible from scenic roads or public viewing areas. As the Project site is visible from scenic roads, including the adjacent PCH and Malibu Canyon Road, the proposed Project would be subject to these conditions. Various sections of the chapter elaborate on
the standards, requirements, and measures of Chapter 6 including the following development standards from LIP Section 6.5 that are applicable to the proposed Project:

A. Development Siting

Standard A1. New development shall be sited and designed to minimize adverse impacts on scenic areas from scenic roads or public viewing areas to the maximum feasible extent. If there is no feasible building site location on the proposed project site where development would not be visible, then the development shall be sited and designed to minimize impacts on scenic areas from scenic highways or public viewing areas, through measures including, but not limited to, siting development in the least visible portion of the site, breaking up the mass of new structures, designing structures to blend into the natural hillside setting, restricting the building maximum size, reducing maximum height standards, clustering development, minimizing grading, incorporating landscape elements, and where appropriate, berming.

B. Development Design

Standard B1. The height of structures shall be limited to minimize impacts to visual resources. The maximum allowable height, except for beachfront lots, shall be 18 feet above existing or finished grade, whichever is lower. On beachfront lots, or where found appropriate through Site Plan Review, pursuant to Section 13.27 of the Malibu LIP the maximum height shall be 24 feet (flat roofs) or 28 feet (pitched roofs) above existing or finished grade, whichever is lower. Chimneys and rooftop antennas may be permitted to extend above the permitted height of the structure.4

Standard B3. Retaining walls visible from scenic highways, public viewing areas, trails, parks and beaches should incorporate veneers, texturing and/or colors that blend with the surrounding earth materials or landscape.

Standard B5. New development in scenic areas visible from scenic roads or public viewing areas shall incorporate colors and exterior materials that are compatible with the surrounding landscape.

4 Section 3.8, Commercial Development Standards, provides the following exception: the Planning Commission may allow heights up to 24 feet for flat roofs and 28 feet for pitched or sloped roofs. In no event shall the maximum number of stories above grade be greater than two.
3.1 AESTHETICS AND VISUAL RESOURCES

a. Acceptable colors shall be limited to colors compatible with the surrounding environment (earth tones) including shades of green, brown and gray with no white or light shades and no bright tones.

b. The use of highly reflective materials shall be prohibited except for solar energy panels or cells which shall be placed to minimize significant adverse impacts to public views to the maximum extent feasible.

c. All windows shall be comprised of non-glare glass.

E. Ocean Views

New development on parcels located on the ocean side of public roads, including but not limited to, Pacific Coast Highway, Malibu Road, Broad Beach Road, Birdview Avenue, Cliffside Drive shall protect public ocean views.

Standard E4. New development on properties visible from and inland of Pacific Coast Highway shall be sited and designed to protect public views of the ridgelines and natural features of the Santa Monica Mountains through measures including, but not limited to, restricting the building maximum size, reducing maximum height limits, clustering development, incorporating landscape elements, and where appropriate, berming.

Standard E5. New commercial development within the Civic Center shall be sited and designed to not obstruct public views of the ridgelines and natural features of the Santa Monica Mountains through measures such as clustering development, and restricting height and bulk of structures.

G. Lighting

Exterior lighting (except traffic lights, navigational lights, and other similar safety lighting) shall be minimized, restricted to low-intensity features, shielded, and concealed to the maximum extent feasible so that no light source is directly visible from public viewing areas. Night lighting for sports courts, sports fields, or other private recreational facilities in scenic areas designated for residential use shall be prohibited.

H. Pacific Coast Highway

1. The Pacific Coast Highway corridor shall be protected as a scenic highway and significant viewshed by requiring that development conform to the following standards:
b. New commercial development that includes a parking lot visible from Pacific Coast Highway shall include landscaping and/or berming to screen the view, so long as such measures do not obscure or block views of the ocean.

Malibu Municipal Code (M.M.C.). M.M.C. Title 17 (Zoning) regulates land use and development throughout the City as implementation of the land use policies in the General Plan as it is required by California law to be consistent with the Land Use Element. The M.M.C. identifies the uses that are allowed on parcels within the City. The Project site is designated Commercial Visitor Serving 2 (CV-2) per the M.M.C. Zoning Map.

City’s General Plan. The City’s General Plan was adopted in 1996 and last revised in 2004. The General Plan establishes land use designation, goals and policies concerning the community and provides direction for growth and development. It also outlines programs developed to accomplish General Plan goals and policies. Applicable General Plan elements, goals and policies are outlined below.

Land Use Element (LU)

The LU guides future development within the City through a land use map that prescribes the location and distribution of land use types and intensities and identifies the City’s goals and policies related to land use planning. The following land use goals and policies related to aesthetics and visual quality are applicable to the proposed Project.

LU Goal 1: The natural and environmental resources of Malibu are protected and enhanced.

- **LU Policy 1.1.1** The City shall protect the natural environment by regulating design and permitting only land uses compatible with the natural environment.

- **LU Policy 1.1.4** The City shall preserve the City’s rural residential character.

- **LU Policy 1.1.5** The City shall require careful site planning that blends development with the natural topography.

- **LU Policy 1.4.3** The City shall minimize the alteration of existing landforms and require design consistent with natural topography and processes of the site (i.e., geological, soils, hydrological, water percolation, and runoff).

LU Goal 2: Manage growth to preserve a rural community character.

- **LU Policy 2.1.5** Consistent with the primary objective of protecting RPAs, the City shall protect and preserve public and private ocean and mountain views, by striking an equitable balance between the right to reasonable use of one’s
property including the maintenance of privacy and the right to protection against unreasonable loss of views.

LU Goal 4: Commercial uses and structures in harmony with the rural residential character and natural environment of the community

- **LU Policy 4.3.2** The City shall require buildings within the Civic Center Area to reflect (a) the uniqueness of this location as the City’s town center, (b) its close proximity to the beach and ocean, and (c) a “community village” character with small-scale, low-rise buildings. Development in the Civic Center will be guided by those policies and implementation measures in the Plan that are generally applicable to commercial development.

Open Space and Recreation Element (OS)

The OS provides direction regarding open space and recreational issues, including outdoor recreation facilities and trails. The element also includes different aspects of the natural environment, including aesthetic and visual quality, that contribute to an ecological balance. Goals and policies that are applicable to the proposed Project are listed below.

- **OS Goal 1:** An abundance of open space contributing to a rural, natural environment consistent with this Open Space Management Plan.
 - **OS Policy 1.1.3** The City shall preserve, protect, and enhance the character and visual quality of natural open space as a scenic resource of great value and importance to the quality of life of residents and the enhancement of the scenic experience of visitors.
 - **OS Policy 1.2.3** The City shall require development to link and integrate open space visually and link open space to activity centers, other open spaces and scenic routes through a system of trails.

3.1.3 Environmental Impacts

3.1.3.1 Thresholds for Determining Significance

CEQA Guidelines

The significance thresholds for potential aesthetic and visual impacts were determined based upon the CEQA Guidelines, Appendix G, and other relevant considerations, including the City’s policies and requirements.

The proposed Project would have a significant impact on aesthetics and visual resources if it would:
• Substantially degrade the existing visual character or quality of the site and its surroundings;
• Substantially damage significant visual resources, such as trees and historic buildings;
• Have a substantial adverse effect on a scenic vista/view or obstruct the scenic views of sensitive viewers;
• Result in substantial glare that would adversely affect sensitive views in the area or create potential hazards to motorists; or
• Create a new source of substantial light or glare which would adversely affect day or nighttime views in the area.

3.1.3.2 Impact Assessment Methodology

Overall Methodology for Identifying Adverse Visual Impacts

To identify whether the Project would result in an adverse visual impact in accordance with the thresholds outlined in Section 3.1.3.1, this methodology considers an adverse visual impact to occur when:

1) A project perceptibly changes existing features of the physical environment so that they no longer appear to be characteristic of the subject locality or region (i.e., change in character and quality);

2) A project introduces new features to the physical environment that are perceptibly uncharacteristic of the region and/or locale (i.e., change in character); or

3) Aesthetic features of the landscape become less visible (e.g., partially or totally blocked from view) or are removed (i.e., effect or obstruct scenic vista).

Changes that seem uncharacteristic are those that appear out of place, discordant, or distracting. In this case, the change must be seen as uncharacteristic after several years, not just months after a project is complete. The degree of the visual impact depends upon how noticeable the adverse change may be. The noticeability of adverse changes is a function of project features, context, and viewing conditions (e.g., angle of view, distance, and primary viewing directions).

Overall visual impact is considered significant if the impact severity rating is high and has an associated impact susceptibility rating of moderate or high. Second tier impacts occur when impact severity is: (1) rated high and has an associated impact susceptibility
rating of low, or (2) rated moderate with an associated impact susceptibility rating of moderate or high.

A number of factors are considered in the evaluation of a landscape's visual resources and of the potential for one or more visual impacts to occur, including:

Visual Quality is a measure of the overall impression or appeal of an area as determined by the particular landscape’s characteristics and scenic resources (e.g., Santa Monica Mountains, Pacific Ocean, bluffs, ridges, etc).

Viewer Sensitivity addresses the level of interest or concern of viewers regarding an area’s visual resources and is closely associated with viewers’ expectations for the area. Viewer sensitivity reflects the importance placed on a given landscape based on the human perceptions of the intrinsic beauty or aesthetic quality of the existing landforms.

Viewer Exposure describes the degree to which viewers are exposed to views of the landscape. Viewer exposure considers the number of viewers, the duration of view, the landscape, and the proximity of viewers to the subject landscape.

Visual Impact Susceptibility is a concluding assessment about the degree of probability that implementation of the proposed Project would result in a noticeable visual impact to the existing semirural setting.

Visual Impact Severity is a determination made by evaluating the visual contrast, project dominance, and view impairment created by the proposed Project. In effect, visual impact severity addresses the pertinent project characteristics and their likely effect on the landscape, including visual contrast, project dominance and view impairment.

Impact Assessment Process

AMEC reviewed existing Project documents and relevant City visual resource protection policies and standards, and performed field reconnaissance to identify key public views. In order to evaluate visual impacts, Key Viewing Locations (KVLs) were selected which are representative of the most critical public locations from which the Project would be seen, including significant travel corridors, key vista points, proximity to existing public use areas, and at significant recreation/attraction areas. These are primarily located along PCH and Malibu Canyon Road, including detailed analyses at four KVLs (Figure 3.1-1). KVLs were generally selected to provide representative views from specific routes or capture the presence or absence of a potentially significant Project impact in that location. There are many other areas where the proposed Project may be viewed, but these areas
FIGURE 3.1-1

Vicinity Visual Resources and Key Viewing Locations
were determined to have less potential for determining significant visual impacts generated by the Project than the chosen KVLs. Private views are briefly discussed; however, changes to private views are typically not considered environmentally significant impacts that must be analyzed under CEQA (Pub. Res. Code § 21083(c)).

Baseline photographs were used to construct and study visual massing representations. The story poles and known location and height of existing features were used for scale, distance, and location reference in the rendered photographs. The massing representations are intended to approximately depict the proposed Project structures in terms of size, bulk and scale based upon site plans, elevations, architectural renderings, and onsite storypoles. While landscaping will eventually provide vegetative screening of the development onsite when mature, landscaped vegetation will not begin to mature until after Project completion. Proposed retaining walls are not depicted. This process allows a determination of visual impact significance to be made from each KVL.

In addition to the specific KVL analysis, several more broad ranging factors were evaluated including shade and shadows, light and glare and the overall effects of the Project on changing the existing character of the community.

3.1.3.3 Visual Impact Analysis

Proposed Project Characteristics

The proposed Project would include a main hotel structure, 21 secondary hotel buildings, a four-level subterranean parking structure and employee surface parking, a guest drop-off, site retaining walls, service fire access road and landscaping. Significant understructure grading is proposed to lower the entire mesa-top by an average of five feet, with major alteration of south and east facing hillsides, as well as deep excavation for key structures. Structures would be designed with a Spanish Colonial motif, including red tile pitched roofs supported by wood beams and light-colored façade surfaces. A large portion of the main hotel building would be constructed below-grade, maintaining the appearance of a two-story structure while allowing for additional space below-grade. The Applicant has requested a variance for height to permit the proposed Project to extend to 30.5 feet for the main hotel building, with special allowance to 36.2 feet at elevator and roof access stairway shafts only, as well as a variance for height to allow construction of flat roofs up to 28 feet in height on some of the secondary hotel buildings. The multi-

\[\text{These massing representations are intended solely to provide a conceptual preview of potential development scale and are not computer-generated visual simulations.}\]
The Project site’s semi-rural setting and high visual quality in the vicinity is recognized as important in the City’s LCP and General Plan. The City’s reputation as an attractive and scenic area of lengthy ocean and mountain views creates higher expectations and sensitivity for viewers than typical highway corridors. The Project site is located along in a highly visible area from PCH and Malibu Canyon Road, the primary transportation
corridors within this area and the City. Commuters, tourists, and residents all use these roadways. Viewer exposure and sensitivity area considered high due to the high number of daily viewers in close proximity to the Project site, as well as the duration, quality, and availability of views.

Motorist viewing of the Project site would experience a range of lengths of viewing time depending on the existing view obstructions of the proposed Project, travel speed, traffic conditions and whether traffic stops at traffic signals. For travelers westbound on PCH, the site first becomes visible near Cross Creek Road, with views growing as travelers proceed west toward the site. At 45 miles per hour, almost two minutes of viewing time would be available to westbound motorists between Cross Creek Road and the toe of the Project site’s hillsides, where views of proposed structures would be lost. Viewing time would obviously increase if travelers are stopped at the signals at either Cross Creek Road or Webb Way. Viewing times would be briefer for both eastbound motorists on PCH and those southbound on Malibu Canyon Road; however, prominent views of the site are also available from these locations. The viewing time for pedestrians and cyclists along these roadway corridors would be more extended, as would those for public transit riders, depending upon their location on the bus.

Project Visual Impacts

Analysis of the proposed Project’s visual impacts focuses on permanent or long-term changes to the existing setting resulting from Project construction. This EIR employs photographs taken from key public viewing locations combined conceptual massing representations of the proposed Project to help guide this impact analysis. Analysis of changes to these KVLs focuses on visual impact severity, contrast, Project dominance, and impairment of views. It also considers the susceptibility of viewers to such changes to determine an overall rating regarding the significance of the visual impact for each KVL.

KVL A: Westbound PCH at Malibu Colony Plaza; View toward the Project Site

Views of the Project site from PCH, approximately 1,600 feet to the east, would be available to more than 20,000 westbound motorists, cyclists, pedestrians and transit riders per day (Figure 3.1-2). From westbound PCH at the base of the hill directly east of the

6 These conceptual massing representations were prepared using Project site plans, architectural elevations and renderings and story poles placed on the Project site. These are not computer generated graphics and are intended to convey the general size, bulk and scale of projects structures as they would appear from different key viewing locations.
LEGEND

1 Presidential Suite
2 1 Story Secondary Hotel Building
3 2 Story Secondary Hotel Building
4 2 Story + Basement Secondary Hotel Building

Notes: Structures depicted using site plans, story poles, elevations, and architectural renderings as reference. These are not a computer-generated visual simulation.

Hillside grading, retaining walls, and proposed landscaping are not shown; much of the existing vegetation would be removed.

Conceptual Massing Study
KVL A: Westbound PCH at Malibu Colony Plaza;
View toward the Project Site

FIGURE 3.1-2
3.1 AESTHETICS AND VISUAL RESOURCES

Project site, PCH runs directly towards the Project site and would offer foreground views of at least seven Spanish Colonial structures with associated light-colored walls and red tile roofs for approximately 25 seconds as motorist travel west uphill toward Malibu Canyon Road. These structures and associated retaining walls would be distributed along the site’s currently undeveloped ridgeline and hillsides.

The proposed structures would be highly visible from KVL A as PCH rises directly towards the Project site and motorists would have largely unobstructed views of these buildings for approximately 25 seconds. Viewer exposure and impact susceptibility would both be considered high as these structures would dominate the skyline directly ahead of motorists from KVL A, at least for five years or so (i.e., until the landscaping matures). In addition, the majority of the Project’s 400 feet of up to 12 foot high hillside retaining walls (comprised of a combination of walls, individually not to exceed a height of six feet) would be visible from this location. Although the retaining walls would be required to be constructed of colors and materials to blend into the surrounding environment and over time landscaping may soften changes to KVL A, the structural and managed landscaping components of the Project would result in a substantial change to the existing naturally vegetated and semi-rural visual character of this viewshed. The visual impact severity and viewer susceptibility from this City designated scenic road at KVL A would be considered high.

KVL B: Eastbound PCH at Malibu Canyon Road; View toward the Project Site

The proposed Project would become visible to eastbound travelers on PCH only as they approach within approximately 800 feet of Malibu Canyon Road due to the topography and vegetation of Pepperdine’s Alumni Park (Figure 3.1-3). Such views would extend for approximately 500 feet past this intersection as PCH descends towards the Civic Center and views are obscured by south facing slopes on the Project site. Traveling at speeds of 45 miles per hour, motorists could view the proposed Project for approximately 25 seconds, with substantially longer exposure for those stopped at the signalized intersection.

7 Long-term landscape maintenance practices could prolong this period of visibility. For example, proposed site perimeter screen trees may be trimmed or topped to preserve ocean views from the secondary hotel buildings or due to fire management concerns. Such actions could significantly reduce the value of such trees in providing long-term screening. Use of landscaping alone for screening of highly visible structures may not suffice to address visual concerns.
LEGEND

- Rancho Malibu Hotel Retail Space
- 2 Story Secondary Hotel Building

Notes: Structures depicted using site plans, story poles, elevations, and architectural renderings as reference. These are not a computer-generated visual simulation.

Hillside grading, retaining walls, and proposed landscaping are not shown; much of the existing vegetation would be removed.
The quality of views and viewer sensitivity at KVL B is high for two reasons: 1) this KVL B is experienced by travelers leaving rural scenic western Malibu who are susceptible to abrupt changes to the undeveloped landscape, and 2) KVL B is an elevated location offering views south across Malibu Bluffs Park to the Pacific Ocean and north to Santa Monica Mountains where development may obstruct or change views of these regional visual resources. The resulting visual impact susceptibility is rated high.

The proposed Project would initially be highly visible from this location, particularly for eastbound motorists stopped at the Malibu Canyon Road intersection with PCH. The proposed four-level parking garage at the southwest corner of the site would be primarily subterranean with surface parking constructed at-grade, which would reduce the visibility of onsite parking. Proposed structures would stand at a maximum of 28 feet above grade in the southwest portions of the site. Proposed structures and landscaping would partially block existing mountain views, although such obstruction would be limited, with only the lower slopes of the mountains partially obscured, similar to obstruction by the existing onsite eucalyptus grove as viewed from some sections of PCH. The proposed structures and landscaping would contrast with existing natural visual elements and become the dominant feature for eastbound travelers at KVL B. While structures would be setback over 100 feet from the roadway and screened with landscaping, this could also further obstruct mountain views given the ascending topography of the Project site. Approximately 20,000 daily travelers would experience this change in character of the site and partial obstruction of views of the Santa Monica Mountains with resultant high visual susceptibility and impact severity.

KVL C: Southbound Malibu Canyon Road; Intermittent Views of the Project Site

The proposed Project would become visible to more than 9,000 daily southbound travelers on Malibu Canyon Road, a City-designated scenic road, after exiting the highly scenic drive through Malibu Canyon. As travelers proceed downhill past Malibu Knolls Road, intermittent views of the Project site beyond existing homes and roadside vegetation become available, framed by the Pacific Ocean in the background. Such views become more extensive as travelers approach the intersection of Malibu Canyon with Civic Center Way, where the proposed Project would be highly visible along the Project site’s level mesa. These structures would stand in contrast to the skyline and background views of the Pacific Ocean (Figure 3.1-4). While the Project would be highly visible, such views would be intermittent given the varied topography with substantially longer exposure for those stopped at the traffic light at Civic Center Way.
RANCHO MALIBU

EXISTING VIEW

LEGEND

① Presidential Suite
② 2 Story Secondary Hotel Building
③ 2 Story + Basement Secondary Hotel Building
④ Rancho Malibu Hotel Services Area

Notes: Structures depicted using site plans, story poles, elevations, and architectural renderings as reference. These are not a computer-generated visual simulation.

Hillside grading, retaining walls, and proposed landscaping are not shown; much of the existing vegetation would be removed.
3.1 AESTHETICS AND VISUAL RESOURCES

The quality of these views and viewer sensitivity at KVL C would be rated high given the scenic drive through Malibu Canyon and elevated views to the south across the Project site to the Pacific Ocean, resulting in high visual impact susceptibility. Proposed buildings would be highly visible and would stand in contrast to the skyline. The structures would obstruct ocean views as Malibu Canyon Road descends towards the intersection with Civic Center Way. Proposed structures and ornamental landscaping would contrast with existing natural visual elements and would be the dominant foreground feature, with high visual contrast and view dominance. While structures are proposed setback from the roadway and screened with landscaping, such landscaping would take at least five years to mature and could also further obstruct ocean views, resulting in a high visual impact severity.

Additional Visual Considerations

Additional visual concerns include the architectural compatibility of the proposed Project with other development in the Civic Center area of Malibu and potential effects of scenic resources such as trees, particularly if the proposed Project would have the potential to “substantially degrade the existing visual character or quality of the site and its surroundings” (CEQA Guidelines Appendix G).

Compatibility with Surrounding Area

The proposed Project would result in construction of a major hotel complex on a visually prominent site in an area with a mix of larger existing developments, such as Pepperdine and condominium complexes in Winter Canyon, as well as undeveloped open lands. While determining neighborhood compatibility can be subjective, architecture, project size, bulk and scale, site visibility and integration of the Project into the natural and built environment are all important factors in evaluating compatibility.

Spanish Colonial architecture is common in the City; however, its use on this highly visible site, with light-colored walls and red tiles roofs would increase Project visibility and contrast with surrounding natural landscapes. This heightened visibility potentially conflicts with City visual resources policies such as LIP Section 6.5, Development Siting Standard B5, which states:

“New development in scenic areas visible from scenic roads or public viewing areas shall incorporate colors and exterior materials that are compatible with the surrounding landscape”; and
3.1 AESTHETICS AND VISUAL RESOURCES

“a. Acceptable colors shall be limited to colors compatible with the
surrounding environment (earth tones) including shades of green, brown
and gray with no white or light shades and no bright tones.”

In addition, while the height of proposed structures would generally be consistent with
City’s standards, and in keeping with nearby structures, site topography and the size bulk
and scale of the proposed structures would result in buildings that stand in contrast to the
skyline and partially obstruct views of the Pacific Ocean and Santa Monica Mountains
from two scenic roadways.

Several proposed structures would exceed existing height requirements for the City, and
the Applicant is seeking height variances for them. However, due to the distance of
adjacent development and primary views of the site, and given the overall size, bulk and
scale of the proposed Project, such increased heights would not be in and of themselves
perceptible from surrounding roadways and public viewing areas. Rather, Project impacts
would be related to overall building massing along the level mesa and eastern and
southern portions of the blufftop.

Overall, the proposed 181,213 square feet of new above-ground structures, including
main hotel buildings and secondary hotel buildings would occupy the highly visible mesa
top and ridgelines on the eastern and southern site boundaries. Although the secondary
hotel buildings would be detached from the main hotel building, landscaping,
architectural design features, and small gaps between structures would not provide
substantial visual separation between structures or a viewshe when viewed from
surrounding scenic roads. Further, the 400 feet of retaining walls along the eastern
hillside of the Project site would be highly visible from scenic northbound PCH. The
proposed retaining walls would be required to be constructed of natural materials and
colors and would be potentially softened with landscaping; however, would constitute a
substantial change from existing views from westbound PCH in the Civic Center area.

The proposed Project would result in substantial changes to the Project site’s visual
characteristics and public views from surrounding scenic roads. Several of the Project
components (i.e., the retaining walls and structures at the edge of the blufftop) would
require design review by the City to ensure consistency with LUP Policy 6.12 (siting and
clustering to maintain compatibility) as well as with LUP Policy 6.9, which requires new

8 M.M.C. Section 17.40.080(A)(1)(c) – Height, states: “Notwithstanding any provision of this section, the
Planning Commission, pursuant to Section 17.62.040, may allow heights up to twenty-four (24) feet for flat
roofs and twenty-eight (28) feet for pitched or sloped roofs.”
development to be sited and designed to minimize impacts to scenic areas visible from scenic highways or public viewing areas, conform to the natural topography, limit grading, and minimize the height and length of retaining walls. In particular, development of the site at this intensity is proposed to entail significant amounts of grading, including lowering most of the existing mesa top by approximately five feet, creating large areas of manufactured slopes, and installing highly visible retaining walls on segments of these slopes.

In summary, while the Project would be developed within an area with larger existing structures, significant grading and site alteration combined with the size, bulk and scale of proposed development on this highly visible site create potential incompatibilities with the surrounding area and possible conflicts with adopted City policy. The Malibu Planning Commission will consider Project compatibility issues and consistency with City policy. However, these elements have the potential to contribute to Project impacts as discussed below.

Loss of Trees

Project construction would result in the removal of eucalyptus trees and palms that remain from the previous nursery use of the Project site, as well as potential removal of several native black walnuts. However, existing eucalyptus, palms and walnuts are not skyline trees or visually distinct from the coastal sage habitats onsite and, as such, their loss would be understood as part of overall conversion of the site to developed uses rather than a visual change associated with tree removal. Further, the proposed Project includes planting of hundreds of native and non-native trees as extensive landscaping. Therefore, visual impacts associated with the loss of trees are considered less than significant.

3.1.3.4 1986 and 1998 Project Environmental Review Findings

Developers have been attempting to permit and construct a hotel at the Project site for many years, and efforts to date have included obtaining CCC approval for a 300-room hotel in 1986, completion of a certified EIR in 1997 and approval of a previous 146-room hotel design by the Malibu City Council in 1998. Applicable findings of environmental review performed for these projects are described below.

California Coastal Commission 1986 Approval of a 300-Room Hotel

In January 1986, the CCC approved the following project (Permit No. 5-85-418) for the subject property: 300 room hotel (222,200 square feet), 32,800 square foot community
3.1 AESTHETICS AND VISUAL RESOURCES

center, offices, restaurant, information kiosk and art center, and 1,039 parking spaces.

The CCC’s approval has been kept valid over the years and the most recent permit extension (the 26th extension) was issued by the CCC setting the new expiration date as January 7, 2014. The EIR completed for this project in 1986 found the project to be potentially out of character with the extent and types of most existing development in the area, and noted it would be readily visible from certain areas of Malibu and parts of two scenic highway corridors; however, would not result in impacts to significant ocean views. It also noted that nighttime lighting from the project could disturb adjacent apartment and condominium residents and some nighttime coastline views. The EIR required mitigation that included design the project to complement natural landforms; revegetation of graded slopes with native vegetation; screening development with native vegetation; and use of low-level outdoor lighting. Impacts to visual resources were considered less than significant with mitigation.

Findings of the 1998 Project EIR

The 1998 EIR determined that the previously proposed project would result in adverse aesthetic impacts due to the Project’s large size and high visibility from nearby areas, but that impacts would be less than significant with the incorporation of mitigation. Mitigation consisted of incorporation of design guidelines pursuant to the Civic Center Specific Plan and completion of the City’s Design Review process. Further, to minimize the effect of eliminating the natural visual quality of the site, the EIR required mitigation to include a Scrub Garden Component into the Landscape Plan to provide an area for native scrub landscaping to preserve the natural visual appearance of the site to the extent feasible.

3.1.3.5 Project Impacts and Mitigation Measures

Impact Description

VIS-1 The proposed Project would result in an adverse temporary, less than significant degradation of public views during Project construction (Class III).

The proposed Project would create construction-related visual impacts through disruption of views associated with significant site alteration, including removal of almost all vegetation across the site, large scale recontouring and changes to site topography and the presence of equipment and material storage. Over the six month grading phase, such changes would be out of character with the currently undeveloped, vegetated blufftop
3.1 AESTHETICS AND VISUAL RESOURCES

landscape. Offsite impacts would also include many heavy haul trucks moving through the community on a daily basis. The visual impact is created by the unsightliness of mobile construction equipment, dust, diesel emissions, roadway debris, eroding or bare hillsides and unfinished structures. Construction would extend over an estimated two-year period through grading and site alteration, foundation pouring, erection of structures and final landscape installation. While many viewers would consider a prolonged construction period with this degree of disturbance an adverse impact, it would be temporary, and is thus determined to be less than significant.

Mitigation Measures

No mitigation measures are required.

Impact Description

VIS-2 The proposed Project would result in potentially significant aesthetic impacts through the degradation of public views from designated scenic roads (Class II).

The proposed Project would be highly visible from PCH and Malibu Canyon Road, both City designated scenic roads, and would contrast with the surrounding natural areas and landforms (refer to KVLs A, B, and C). This change in views would be noticeable from many locations along PCH to thousands of daily travelers through the City on westbound and eastbound PCH. Travelers on southbound Malibu Canyon Road would also experience intermittent views of the proposed Project. The view from westbound PCH (e.g., KVL A) would be especially prominent, due to the proximity of the structures and retaining walls to the highway. Changes would vary from distant views of the retaining walls and structure siding and roofing from PCH in the Civic Center area (KVL A), to views such as those from Malibu Canyon Road (KVL C) which provide unobstructed, foreground views from several locations.

During Project construction, substantial removal of vegetation and grading on the level portions of the site as well as on the site’s hillsides would result in substantial visual contrast with the surrounding natural setting. Project conversion of slopes vegetated with native habitat to manufactured slopes supporting combinations of retaining walls up to 12 feet in height overall along the eastern hillside of the Project site would substantially contrast with existing and adjacent vegetated hillsides and be highly visible from PCH. The mass of the proposed structures on a relatively flat, open mesa, particularly on the southern and eastern ridges overlooking PCH, would increase the viewable exposure,
contrast with the existing surroundings, and insert a prominent feature to the landscape. Although over time proposed landscaping would mature and soften these visual changes, as discussed above, landscaping alone cannot be relied upon to reduce the contrast and visibility of proposed structures from the adjacent designated scenic roads, PCH and Malibu Canyon Road.

Potential mitigation of these adverse visual changes would require site plan alterations (i.e., additional setbacks, reductions in height of several specific buildings, reductions in visibility of development from key viewing points, reduction of development envelope, elimination or reduction of retaining walls, or a combination of these measures). Setback of structures further from the edges of slopes, particularly within the southern portion of the site, would reduce the prominence and mass of development as viewed from scenic roads, particularly PCH. Therefore, the visual impact of the proposed Project from scenic roadways would be potentially significant, but subject to feasible mitigation, with inclusion of MM VIS-2a and VIS-2b. Mitigation would be feasible with increased setbacks and/or implementation of a Project alternative to reduce such impacts to less than significant (refer to Reduced Development/Garden Hotel Alternative in Section 6.0, Alternatives).

Mitigation Measures

The following mitigation measures are required to help reduce Project aesthetic impacts to views from surrounding City-designated scenic roads to a less than significant level.

MM VIS-2a In order to reduce visibility of proposed structures from scenic roads and to “break up” building massing on the top of the hillsides along the perimeter of the proposed development envelope, design review shall consider the relocation of structures away from the southern and eastern edges of the development envelope toward the center of the site. Additional measures to reduce visual prominence would include potential reduction in the number of stories or the total height of secondary hotel buildings located along the perimeter of the Project site (Examples of potential redesign measures are provided in Figure 3.1-5).

Plan Requirements and Timing. Plans and procedures to address these issues shall be incorporated into plans submitted to the City Planning Department and shall be subject to review and approval by the City
Planning Commission. Plans shall be submitted to and approved by the City prior to issuance of the coastal development permits the Project.

Monitoring. Revised site plans shall be submitted to the City Planning Department for review and consideration prior to issuance of the CDP.

MM BIO-2a (Hillside Landscape and Habitat Enhancement Plan) would also apply to this impact and would require the Applicant to create native woodland on the site’s north and east facing slopes to restore native habitat to this area and maintain a wildlife corridor. Creation of fire resistant native riparian and/or woodland habitats on these slopes would help screen the Project from surrounding roads, soften the appearance of new structures and also aid in evapotranspiration of wastewater effluent.

MM VIS-2b Scrub Garden Component of Landscape Plan: The landscape and native habitat enhancement plan (refer to MM BIO-2a) shall provide an area for native scrub landscaping to preserve the natural visual appearance of the site to the extent feasible, with the limitation of site development and onsite disposal of treated effluent. A minimum of one acre of scrub habitat shall be included within the landscape plan. For maximum visual effect, scrub landscaping is encouraged along the margins of the site, along the public pathway along the slope on the north side of the site, and along steep slopes below structures on the north, east, and southeast slopes of the site. The landscape maintenance plan shall provide for regular thinning of scrub landscaping to minimize fuel supply and resulting fire danger.
Plan Requirements and Timing. Prior to issuance of building permits, the Applicant shall file a performance bond with the City to complete and maintain plantings until pre-established performance criteria are met.

Monitoring. A qualified biologist approved by the City shall monitor for compliance with restoration and revegetation plans. Maintenance shall be confirmed through site inspections. City Biologist approval is required for performance bond release.

Large blank areas of building facades visible by the general public from outside the Project shall not be permitted. Such facades shall be “broken up” by architectural features, such as decorative sculptural panels, setbacks, windows, columns, textured surfaces or other architectural details as appropriate. Building facades should reflect a common theme throughout the Project, and should show common patterns and rhythms of fenestration, structural details, etc.

Plan Requirements and Timing. Plans and procedures to address these issues shall be incorporated into plans submitted to the City Planning Department and subject to review and approval by the City. Plans shall be submitted to and approved by the City prior to issuance of the coastal development permit for the Project.

Monitoring. Revised site plans shall be submitted to the City Planning Department for review and consideration prior to issuance of the CDP.

Impact Description

VIS-3 The proposed Project would partially obstruct and potentially degrade public views of the Santa Monica Mountains and/or Pacific Ocean from major public view points (Class III).

As discussed previously, the Project site’s prominent location is visible from numerous public viewing areas throughout the Project site vicinity and construction of a development of this scale would alter views of the Santa Monica Mountains and the Pacific Ocean from public parks, scenic roadways and trails in the Santa Monica Mountains.
3.1 AESTHETICS AND VISUAL RESOURCES

Views of the Santa Monica Mountains

The views of the Santa Monica Mountains from Pepperdine’s Alumni Park, Malibu Bluffs Park, and Legacy Park would not be substantially affected by Project development. Malibu Bluffs Park is directly south of the Project site, but views of the Project site are largely blocked by existing topography. Views of rooftop elements of the proposed structures would be visible from the parking areas in Malibu Bluffs Park to the south of the Project site. Views of the Santa Monica Mountains would not be affected by the proposed Project as viewed from Legacy Park and Kellers Shelter Vista Point, the closest City-designated vista point. Views of the Santa Monica Mountains from these points occur primarily to the north, while proposed Project development would occur approximately one mile to the east and outside the primary viewshed of the mountains from these vantages.

The Project development would alter public views of the Santa Monica Mountains from PCH and other public view points. The view of the mountains available to travelers heading eastbound on PCH would be partially obstructed by Project development; however, this obstruction would be limited, with only the lower slopes of the mountains partially obscured. The Project would not obstruct mountain views available to westbound travelers on PCH. Because there are other large commercial, institutional, and residential structures within the same viewshead, the Project would not substantially degrade views of the Santa Monica Mountains from this vantage. Refer to Section 3.1.3.3, Visual Impact Analysis, for KVL A and KVL B and further discussion of these views.

Views of the Pacific Ocean

The views of the Pacific Ocean from PCH, Legacy Park, Malibu Bluffs Park, and Kellers Shelter Vista Point would not be affected by Project development. All of these public view points are south of the proposed Project site; therefore, the ocean views from such vantages would not be affected.

Ocean views from Malibu Canyon Road and other public roadways and viewpoints located north of the Project site would be altered. Intermittent views of the Pacific Ocean from Malibu Canyon Road would be altered by construction of multiple buildings that would be visible on the Project site. These structures would partially obstruct views of the Pacific Ocean across portions of the site from lower elevations on this roadway closer
to Civic Center Way; however, intermittent views of the Pacific Ocean across the site would remain available from most of Malibu Canyon Road north of the Project site.

Scenic viewpoints from trails in the Santa Monica Mountains, on the Pepperdine campus, and from other high points in the Malibu area would be altered through development of the proposed Project in the foreground of the ocean vista. Such viewpoints, however, are sweeping panoramic views, and the proposed Project would constitute a relatively minor additional urbanized element of the view alongside adjacent condominium neighborhoods and Pepperdine. As such, these views would not be obstructed nor significantly impacted.

Although the proposed Project would alter views of both the Santa Monica Mountains and the Pacific Ocean from various vantage points, the Project would not substantially obstruct or degrade views of these significant visual resources from key public viewing locations. Therefore, impacts would be less than significant.

Mitigation Measures

No mitigation measures are required.

Impact

VIS-4 The proposed Project would result in an increase in glare as well as vicinity nighttime lighting, which would have adverse, but not significant impacts to the character of quality of the nighttime sky, including within adjacent parklands (Class III).

In accordance with the City’s standard conditions regarding building materials, the exterior of the proposed buildings would be constructed of non-reflective building materials. Construction materials for the proposed Project would include textured stucco walls with deep inset windows and tile roofs. Some elements of the proposed Project, such as windows, automobile windshields, and swimming pools, represent potential sources of daytime glare; however, proposed structures would be required to utilize non-glare glass and reflective building materials are prohibited, consistent with LIP Standard B(5)(c), both of which would substantially reduce potential glare.

The proposed Project would introduce nighttime lighting as a major source of new lighting within an area that currently has substantial open spaces with few light sources (i.e., Malibu Bluffs Park, Pepperdine’s Alumni Park, and the Crummer Property). However, the development of four single-family homes is proposed and is currently
under review for the Crummer Property directly to the south. The Project site is in the vicinity of substantial light sources, including residential development in Winter Canyon and Malibu Knolls, the Pepperdine campus, PCH street lighting, and Civic Center commercial development. The proposed Project would introduce exterior lighting in the form of new interior road and parking lot lighting, landscape and security lighting, exterior and interior building lighting, and skylights on building roofs.

Proposed Project lighting could spillover and affect nighttime views within adjacent neighborhoods, park lands and public land in the Santa Monica Mountains. However, the proposed Project would be required to comply with light and glare requirements set forth in the M.M.C. and the LIP. Outdoor lighting would be required to incorporate low-level lighting fixtures and would be designed and installed with directional shields so that light spill over to adjacent land uses and roadways would be prohibited. Project landscaping would also help to diffuse light dispersal and would buffer light intrusion impacts to view of the nighttime sky. In accordance with LIP Chapter 6, a deed restriction incorporating the lighting restrictions of the LIP would be executed and recorded. This nighttime lighting would incrementally increase light pollution and potentially diminish views from adjacent open areas; however, compliance with the City’s standard conditions, M.M.C., and LIP, in combination with implementation of proposed MM BIO-3a, would reduce impacts from light and glare associated with the proposed Project to less than significant.

3.1.3.6 Cumulative Impacts

Impact Description

VIS-5 The proposed Project impact associated with degradation of views from scenic PCH would be considered cumulatively considerable when combined with other proposed projects in and adjacent to the Civic Center area, particularly the Crummer Project, but would be less than significant with mitigation (Class II).

There are eight pending, planned, and approved projects in the Project vicinity that have the potential to alter the aesthetic character of the Civic Center. These combined projects would add a total of approximately 815,000 square feet of new commercial, institutional and residential development to the Project vicinity. Development of the proposed Project, in conjunction with these related projects, would incrementally contribute to the gradual planned development of presently undeveloped parcels in the Civic Center and resultant changes to its existing character. While these pending projects would combine to change...
existing views and add new sources glare and nighttime light, views of the Santa Monica
Mountains would remain from many public vantage points and new development would
be conditioned to meet City design goals and nighttime lighting restrictions. While many
of these pending projects would be visible from public roads, trails and parks, the
proposed Project is over 1/2 mile from the low-lying areas of the Civic Center, is located
at a higher elevation, and is partially screened from portions of the Civic Center by
Winter Canyon hillsides. Therefore, the Project only incrementally contributes to
aesthetic impacts and changes to the character of the low-lying areas in the Civic Center.
Given the Project’s distance from the central areas of Civic Center, its elevational
separation, and incorporation of proposed mitigation measures, its contribution to overall
cumulative aesthetic changes within Civic Center would be considered less than
significant.

However, the proposed Project in conjunction with the pending Crummer development
would substantially alter views for westbound travelers along PCH due to the presence of
large structures at the top of the hill on both sides of the highway. As discussed below,
combined development associated with these two pending projects would substantially
alter the character of views from PCH.

KVL D: Westbound PCH at Webb Way; View toward the Project and Crummer Sites

Distant view of these two properties from 1/2 mile (or 2,640 feet) to the east traveling
west on PCH would be visible to the approximately 20,000 westbound motorists and
cyclists per day. These projects would be located on prominent bluffs framing both
sides of PCH. Views of these developments from westbound PCH grow increasingly
apparent to the west of Malibu Lagoon, and from this vantage would last for
approximately 35 seconds for a motorist traveling at 45 miles per hour. Westbound
travelers would have unobstructed views of multiple buildings along this skyline for one
to two minutes, or longer if stopped at the PCH & Webb Way signal. Both proposed
developments would be highly visible from KVL D, effectively extending the effect of
adjacent hillside condominiums overlooking Winter Canyon across KVL D in its entirety.
Views from this approach are scenic as open hillsides contribute to the scenic quality of
this view, although adjacent development limits views to the west and imparts a more
suburban character on parts of this corridor. However, viewer susceptibility would be
high due to the large number of travelers, the scenic nature of the overall drive along
PCH, and the views of the Santa Monica Mountains and surrounding hillsides.
Stretching along the central hilltop area visible from KVL D, approximately nine large structures on both sites would protrude into the currently vacant skyline, with larger structures encroaching into views of the lower slopes of the Santa Monica Mountains (Figure 3.1-6). While large condominium complexes exist on the hills above Winter Canyon, this intrusion into the skyline and the visual contrast of these two developments would result in a change from existing condition, incrementally and cumulatively contributing to a change from area’s current semi-rural setting. Although future landscaping may soften these visual changes, these projects’ dominance would be moderate to high from KVL D, with the proposed Project and pending Crummer development extending development across this currently vacant, highly visible blufftop area.

The proposed Project’s contribution to these changes in views from PCH would be considered cumulatively considerable; however, implementation of proposed MM VIS-2a, -2b, and -2c would reduce this impact to less than significant.

Residual Impacts

Proposed mitigation measures would help retain key views from PCH and reduce Project impacts to views from scenic roads to a less than significant level. Mitigation measures and standard City requirements to address nighttime lighting would reduce impacts to less than significant. The Project’s contribution to cumulative impacts would be adverse, but less than significant with implementation of mitigation.
Notes: Structures depicted using site plans, story poles, elevations, and architectural renderings as reference. These are not a computer-generated visual simulation. Hillside grading, retaining walls, and proposed landscaping are not shown; much of the existing vegetation would be removed.
3.2 AIR QUALITY

This section describes existing air quality conditions and relevant air quality regulations, assesses potential impacts of the proposed Rancho Malibu Hotel Project (Project) on air quality, including greenhouse gas (GHG) emissions, and recommends mitigation measures to reduce impacts to air quality from the proposed Project. Existing conditions for air quality is based upon information derived from state and federal agency standards, state air quality monitoring stations, and site specific studies provided in Appendix B. Emission estimations were derived from the California Emissions Estimator Model (CalEEMod) emission modeling software. The Applicant-prepared Air Quality Study for the proposed Project has been subject to peer review and approval by the City of Malibu (City) Planning Department (Appendix B). Approval of the data, methodologies, and conclusions of this study provides the basis for following air quality analysis.

3.2.1 Existing Setting

Air quality in a given location is determined by the concentration of various pollutants in the atmosphere. National Ambient Air Quality Standards (NAAQS) are established for the criteria pollutants, which include ozone (O₃), carbon monoxide (CO), nitrogen dioxide (NO₂), sulfur dioxide (SO₂), particulate matter equal to or less than 10 microns in diameter (PM₁₀) and 2.5 microns in diameter (PM₂.₅), and lead (Pb). California has also developed California Ambient Air Quality Standards (CAAQS) for these criteria pollutants, as well as hydrogen sulfide, vinyl chloride, and visibility reducing particles.

The City is located within the South Coast Air Basin (Basin), which is under the jurisdiction of the South Coast Air Quality Management District (SCAQMD). The SCAQMD is required to monitor air pollutant levels to ensure that air quality standards are met and, if they are not met, to develop strategies to meet the standards. Existing conditions for air quality in the Basin are described in detail in the 2012 Draft Air Quality
3.2 AIR QUALITY

Management Plan (AQMP), which is summarized and incorporated herein by reference. The Final 2012 AQMP was adopted by the AQMD Governing Board on December 7, 2012. Proposed projects in the Basin are to be evaluated for conformity with the provisions of the 2012 AQMP. While the Air Quality study for this Project was performed in October 2012 consistent with the 2007 AQMP, provided in Appendix B, setting information from the 2012 AQMP is utilized in this analysis.

3.2.1.1 Regional Climate and Meteorology

The Basin, which is a subregion of the SCAQMD’s jurisdiction, is bounded by the Pacific Ocean to the west and the San Gabriel, San Bernardino, and San Jacinto mountains to the north and east. It includes all of Orange County and the non-desert portions of Los Angeles, Riverside, and San Bernardino Counties. Climate within the Basin can generally be characterized as Mediterranean, with warm dry summers and cooler, relatively damp winters. Inland areas typically experience a wider range of temperatures than on the coast, mainly due to the separation of regions by transformation in terrain, such as the Santa Monica Mountains (Western Regional Climate Center 2001).

The speed and direction of winds in coastal areas, such as the City, are influenced by the location and strength of the Pacific high-pressure system, by topographical features and by circulation patterns resulting from temperature differences between land and sea. In the fall, on-shore surface winds decline and the marine layer grows shallow, allowing an occasional weak offshore flow. Pollutants may accumulate more during this time of year, remaining over the ocean for a few days and being carried back on-shore. Strong inversions can form at this time, trapping pollutants near the ground surface; this effect is intensified when the Pacific high weakens and moves inland to the east. This may produce conditions known as a Santa Ana where air, often pollutant-laden, is transported towards foothills and coastal areas from the east and southeast. The break-up of this condition generally occurs within several days and may then result in stagnant conditions and a build-up of pollutants offshore. The sea breeze can also bring these pollutants back on-shore, where they combine with local emissions and cause high pollutant concentrations.

3.2.1.2 Regional Air Quality

The Basin is characterized by a substantial pollution burden. Air pollution forms either directly or indirectly from pollutants emitted from a variety of sources. These sources can
be natural, such as oil seeps, vegetation, or windblown dust, but the majority of emissions in the Basin are related to human activity. Emissions result from fuel combustion sources, such as cars and trucks; from the evaporation of organic liquids, such as those used in coating and cleaning processes; and through abrasion processes, such as tires on roadways (SCAQMD 2004).

The Basin is currently designated as “non-attainment” for O₃, PM₁₀ and PM₂.₅, and Pb standards. The Basin is in attainment for the federal standards for SO₂, CO, and NO₂. In 2011, O₃, PM₂.₅, NO₂ and Pb exceeded federal standard concentration levels at one or more of the routine monitoring stations in the Basin. While the concentration level of the new 1-hour NO₂ federal standard (100 parts per billion [ppb]) was exceeded in the Basin at two stations (Central Los Angeles and Long Beach, on the same day) in 2011, the NAAQS NO₂ design value has not been exceeded (the three-year average of the annual 98th percentile of the daily 1-hour maximums). Therefore, the Basin remains in attainment of the NO₂ NAAQS. The United States Environmental Protection Agency (U.S. EPA) designated the Los Angeles County portion of the Basin, including the Project area, as nonattainment for the recently revised (2008) federal Pb standard (0.15 micrograms per cubic meter [µg/m³], rolling three-month average), due to the addition of source-specific monitoring under the new federal regulation (U.S. EPA 2012).

3.2.1.3 Local Air Quality

The City is located along the coast, upwind from the primary regional sources of mobile and stationary emissions. The air quality monitoring station located nearest to the Project site is the Veteran’s Administration Hospital in West Los Angeles, approximately 14 miles east of the Project site. However, this station does not monitor PM₁₀ or PM₂.₅ emissions. Therefore, the West Palm Avenue monitoring station in Burbank, California was used for these pollutants. Ambient air quality data obtained from these stations characterize the air quality representative of the ambient air quality in the Project area.

The number of days that NAAQS standards have been exceeded at the closest monitoring station is presented in Table 3.2-1. As shown, the O₃ concentration exceeded state standards eight times in 2008, five times in 2009 and three times in 2010. The PM₁₀ concentration exceeded state standards five times in 2008 and 10 times in 2009, but did not exceed state standards in 2010 and did not exceed the federal standards in 2008, 2009.
3.2 AIR QUALITY

Table 3.2-1. Ambient Air Quality Data

<table>
<thead>
<tr>
<th>Year</th>
<th>O₃ Worst 1-Hour</th>
<th>PM₁₀ Worst 24-Hours</th>
<th>PM₂.₅ Worst 24-Hours</th>
<th>CO Worst 8-Hour</th>
<th>NO₂ Worst 1-Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>0.97</td>
<td>118.5</td>
<td>68.9</td>
<td>1.76</td>
<td>0.090</td>
</tr>
<tr>
<td>No. of Exceedances (state)</td>
<td>8</td>
<td>11</td>
<td>--</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>No. of Exceedances (federal)</td>
<td>2</td>
<td>0</td>
<td>--</td>
<td>0</td>
<td>--</td>
</tr>
<tr>
<td>2009</td>
<td>0.095</td>
<td>130.3</td>
<td>67.5</td>
<td>1.51</td>
<td>0.077</td>
</tr>
<tr>
<td>No. of Exceedances (state)</td>
<td>5</td>
<td>10</td>
<td>--</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>No. of Exceedances (federal)</td>
<td>3</td>
<td>0</td>
<td>11</td>
<td>0</td>
<td>--</td>
</tr>
<tr>
<td>2010</td>
<td>0.79</td>
<td>51</td>
<td>43.7</td>
<td>1.44</td>
<td>0.071</td>
</tr>
<tr>
<td>No. of Exceedances (state)</td>
<td>3</td>
<td>0</td>
<td>--</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>No. of Exceedances (federal)</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>--</td>
</tr>
</tbody>
</table>

Notes: ppm = parts per million
μg/m³ = micrograms per cubic meter

or 2010. The PM₂.₅ concentration exceeded federal standards two times in 2008, 11 times in 2009 and four times in 2010. No exceedances of either the state or federal standards for NO₂ or CO have occurred at either monitoring station in the last three years. Table 3.2-1 indicates that background CO levels are low.

3.2.1.4 Sensitive Receptors

Federal and state ambient air quality standards have been established by the U.S. EPA and CARB, respectively to represent the levels of air quality considered sufficient, with an adequate margin of safety, to protect public health and welfare. Sensitive receptors are those segments of the public most susceptible to respiratory distress, such as children under 14, the elderly over 65, persons engaged in strenuous work or exercise, and people with cardiovascular and chronic respiratory conditions. Sensitive receptors in the vicinity of the Project site are primarily located to the east, and include Webster Elementary and Our Lady of Malibu School, as well as several residential complexes.
3.2 AIR QUALITY

3.2 AIR QUALITY

3.2.1 Odors

The Project site is currently undeveloped and produces no odors. Southeast of the Project site, Winter Canyon accommodates the Malibu Water Pollution Control Plant (MWPCP) and leach fields for disposal of wastewater generated by the Malibu Colony Plaza shopping center, as well as for nearby residential uses (LA Department of Public Works 2012). The MWPCP utilizes an extended aeration biological treatment, which can generate slight odors during operation, sludge removal, or maintenance.

3.2.1.6 Greenhouse Gases and Global Climate Change

Global climate change involves alterations in the average weather of the Earth, which can be measured by wind patterns, storms, precipitation and temperature. Scientific consensus has identified that human-related emission of greenhouse gases above natural levels is a significant contributor to global climate change. GHGs trap heat in the atmosphere and regulate the Earth’s temperature include water vapor, carbon dioxide (CO₂), methane, NOₓ, chlorofluorocarbons and O₃.

The primary activities that generate GHG emissions include transportation, utilities, industrial/manufacturing, agricultural and residential uses (California Energy Commission [CEC] 2005). Total U.S. GHG emissions were 6,633.2 million metric tons of carbon dioxide equivalent (CO₂E) in 2009 (U.S. EPA 2011). Since 1990, U.S.

Table 3.2-2. Sensitive Receptors in the Vicinity of the Project Site

<table>
<thead>
<tr>
<th>Receptor</th>
<th>Distance (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our Lady of Malibu Church and School</td>
<td>600</td>
</tr>
<tr>
<td>Malibu Knolls and De Ville Way Neighborhoods</td>
<td>650</td>
</tr>
<tr>
<td>Webster Elementary School</td>
<td>750</td>
</tr>
<tr>
<td>Pepperdine University</td>
<td>950</td>
</tr>
</tbody>
</table>

diseases. Sensitive receptor locations therefore typically include residential areas, schools, hospitals, and senior residences. Sensitive receptors in the vicinity of the Project site include residents of the Vista Pacifica and De Ville Way neighborhoods to the northeast of the Project site, and Pepperdine, Our Lady of Malibu Church and School, and Webster Elementary School. The surrounding sensitive receptors are approximately 500 to 950 feet from the site (see Table 3.2-2).
emissions have increased at an average annual rate of 0.4%. The transportation and industrial end-use sectors accounted for 33% and 26%, respectively, of CO₂ emissions from fossil fuel combustion in 2009. Meanwhile, the residential and commercial end-use sectors accounted for 22% and 19%, respectively, of CO₂ emissions from fossil fuel combustion in 2009 (U.S. EPA 2011).

Based upon the CARB California Greenhouse Gas Inventory for 2000-2008, California produced 478 million metric tons (MMT) of CO₂E in 2008 or approximately 6.8% of the U.S. total. The major source of GHG in California is transportation, contributing 36% of the state’s total GHG emissions. Electricity generation is the second largest source, contributing 24% of the state’s GHG emissions (CARB 2010). CARB has projected statewide unregulated GHG emissions for the year 2020, which represent the emissions that would be expected to occur in the absence of any GHG reduction actions, will be 596 MMT CO₂E (CARB 2007).

3.2.2 Regulatory Setting

3.2.2.1 Federal Regulations

Clean Air Act. The federal Clean Air Act of 1970 directs attainment and maintenance of the NAAQS. The 1990 Amendments to this Act included new provisions that addressed air pollutant emissions affecting local, regional, and global air quality. The U.S. EPA is responsible for implementing the Clean Air Act and establishing the NAAQS for criteria pollutants. These seven criteria pollutants include CO, nitrogen oxides (NOₓ), O₃, SO₂, PM₁₀, PM₂.₅, and Pb. Other air pollutants of concern include toxic air contaminants (TACs) or hazardous air pollutants (HAPs), in particular diesel particulate matter, generated from the operation of diesel engines (e.g., trains, equipment, truck, etc.). Table 3.2-3 lists the current federal and state standards for criteria pollutants.

Data collected at permanent monitoring stations are used by the U.S. EPA to classify regions as “attainment” or “nonattainment,” depending on whether the regions met the requirements stated in the primary NAAQS. Nonattainment areas are imposed with additional restrictions as required by the U.S. EPA.
Table 3.2-3. Current Federal and State Ambient Air Quality Standards

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Averaging Time</th>
<th>Federal Primary Standards</th>
<th>California Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ozone (O₃)</td>
<td>8-Hour</td>
<td>0.075 ppm (2008 std)</td>
<td>0.070 ppm</td>
</tr>
<tr>
<td></td>
<td>8-Hour</td>
<td>0.08 ppm (1997 std)</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>1-Hour</td>
<td>0.12 ppm</td>
<td>0.09 ppm</td>
</tr>
<tr>
<td>Carbon Monoxide (CO)</td>
<td>8-Hour</td>
<td>9.0 ppm</td>
<td>9.0 ppm</td>
</tr>
<tr>
<td></td>
<td>1-Hour</td>
<td>35.0 ppm</td>
<td>20.0 ppm</td>
</tr>
<tr>
<td>Nitrogen Dioxide (NO₂)</td>
<td>Annual</td>
<td>0.053 ppm</td>
<td>0.030 ppm</td>
</tr>
<tr>
<td></td>
<td>1-Hour</td>
<td>0.100 ppm</td>
<td>0.18 ppm</td>
</tr>
<tr>
<td>Sulfur Dioxide (SO₂)</td>
<td>24-Hour</td>
<td>0.03 ppm</td>
<td>0.04 ppm</td>
</tr>
<tr>
<td></td>
<td>3-Hour</td>
<td>0.5 ppm</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>1-Hour</td>
<td>0.075 ppm</td>
<td>0.25 ppm</td>
</tr>
<tr>
<td>Respirable Particulate Matter (PM₁₀)</td>
<td>Annual</td>
<td>--</td>
<td>20 μg/m³</td>
</tr>
<tr>
<td></td>
<td>24-Hour</td>
<td>150 μg/m³</td>
<td>50.0 μg/m³</td>
</tr>
<tr>
<td>Fine Particulate Matter (PM₂.₅)</td>
<td>Annual</td>
<td>15 μg/m³</td>
<td>12 μg/m³</td>
</tr>
<tr>
<td></td>
<td>24-Hour</td>
<td>35 μg/m³</td>
<td>--</td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>Rolling 3-Month Average</td>
<td>0.15 μg/m³</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>30 Day Average</td>
<td>--</td>
<td>1.5 μg/m³</td>
</tr>
<tr>
<td></td>
<td>3-Month Average</td>
<td>1.5 μg/m³</td>
<td>--</td>
</tr>
</tbody>
</table>

Notes:
1 ppm = parts per million
2 μg/m³ = micrograms per cubic meter
3 std = standard
4 -- = Not applicable
5 Source: CARB 2012

Federal Regulation of Climate Change. The U.S. Supreme Court ruled in *Massachusetts v Environmental Protection Agency*, 127 S.Ct.1438 (2007), that carbon dioxide and other GHGs and pollutants must be regulated under the federal Clean Air Act if the U.S. EPA determines they pose an endangerment to public health and welfare. At this time, however, no federal legislation or regulations have been enacted specifically addressing GHG emissions reductions and climate change.

A more detailed discussion of individual pollutants can be found in Appendix B.

Air Quality Management Plan (AQMP). Under the provisions of the Clean Air Act, the U.S. EPA requires each state that has not attained the NAAQS to prepare an AQMP, a
3.2 AIR QUALITY

separate local plan detailing how these standards are to be met. The California Lewis Air Quality Act of 1976 established the SCAQMD and mandated a planning process requiring preparation of an AQMP. The SCAQMD Governing Board adopted the 2012 AQMP in December 2012. Proposed projects in the Basin are to be evaluated for conformity with the provisions of the 2012 Plan (SCAQMD 2012). A more detailed discussion of the AQMP can be found in Appendix B.

3.2.2.2 State Policies and Regulations

California Air Resources Board (CARB). The CARB is responsible for incorporating air quality management plans for local air basins and established the CAAQS; comparing the criteria pollutant concentrations in ambient air to the CAAQS determines state attainment status for criteria pollutants in a given region. CARB has jurisdiction over all air pollutant sources in the state; it delegated responsibility for stationary sources to local air districts and retained authority over emissions from mobile sources.

California Clean Air Act (CCAA). The CCAA went into effect on January 1, 1989, and was amended in 1992. The CCAA mandates achieving the health-based CAAQS at the earliest practical date.

California Diesel Fuel Regulations. With the California Diesel Fuel Regulations, the CARB set sulfur limitations for diesel fuel sold in California for use in on-road and off-road motor vehicles, including harbor craft and intrastate locomotives.

Assembly Bill (AB) 1493. Requires the CARB to define GHG emission standards for cars and light trucks manufactured after 2009 and is projected to result in an 18% reduction in emissions.

Executive Order S-3-05. On June 1, 2005, Governor Schwarzenegger announced the following GHG emission reduction targets:

- By 2010, reduce GHG emissions to 2000 levels.
- By 2020, reduce GHG emissions to 1990 levels.
- By 2050, reduce GHG emissions to 80% below 1990 levels.

AB 32. The California Global Warming Solutions Act of 2006 (AB 32) requires the CARB to adopt regulations to evaluate statewide GHG emissions, and then create a
program and emission caps to limit statewide emissions to 1990 levels. The program is to be adopted by 2012, and implemented in a manner achieving emissions compliance by 2020. AB 32 does not directly amend the California Environmental Quality Act (CEQA) or other environmental laws.

Executive Order S-01-07. Enacted on January 18, 2007, this Order requires that a statewide goal be established to reduce the carbon intensity of the California’s transportation fuels by at least 10% by 2020, and that a low carbon fuel standard for transportation fuels be established for California.

Senate Bill 97. Senate Bill 97 (SB 97) was signed into law on August 24, 2007, and states that a failure to analyze the GHG impacts in CEQA documents prepared for transportation and levee projects funded by Propositions 1b and 1e would not result in a violation of CEQA. This GHG evaluation provision remained in place until 2010. By enacting the requirements of SB 97, the state acknowledged that climate change analysis is to occur in conjunction with the CEQA process. The bill also requires the Office of Planning and Research to develop CEQA Guidelines for the mitigation of GHG emissions or the effects of GHG emissions by July 1, 2009.

Senate Bill 375. Senate Bill 375 (SB 375), signed into law on October 1, 2008, sets guidelines for local governments and other stakeholders for regional actions to achieve reduction of GHG emissions through integrated development patterns, improved transportation planning and policy measures. SB 375 requires CARB to develop, in consultation with metropolitan planning organizations (MPOs), passenger vehicle GHG emissions reduction targets for 2020 and 2035 by September 30, 2010. It sets forth a collaborative process to establish these targets, including the appointment by CARB of a Regional Targets Advisory Committee to recommend factors to be considered and methodologies for setting GHG emissions reduction targets. SB 375 also provides incentives for streamlining CEQA Guideline requirements by reducing CEQA requirements for certain development projects that are consistent with regional plans that achieve the targets.

CARB Resolution No. 07-54. CARB Resolution No. 07-54 establishes 25,000 metric tons of GHG emissions as the threshold for identifying the largest stationary emission sources in California for purposes of requiring the annual reporting of emissions.
3.2 AIR QUALITY

Senate Bill x1-2. Senate Bill x1-2 (SB x1-2) was signed into law in 2011. The law creates a three-stage compliance period for electricity providers to meet renewable energy goals, with the ultimate goal that California will generate 33% of its electricity from renewable energy by 2020.

3.2.2.3 Local and Regional Policies and Regulations

City of Malibu Local Coastal Program (LCP). Chapter 4, Hazards and Shoreline / Bluff Development, of the City’s LCP Land Use Plan (LUP), adopted pursuant to Public Resources Code section 30200 et seq., requires that all new development shall “[b]e consistent with requirements imposed by an air pollution control district or the State Air Resources Control Board…” (Pub. Res. Code § 30253(c)). In addition, new development shall “[m]inimize energy consumption and vehicle miles traveled” (Pub. Res. Code § 30253(d)).

City of Malibu General Plan Safety and Health Element (S). The S Element provides policies related to the protection human health and the environment, including air quality. Specifically, S Policy 1.1.6 requires that “The City shall reduce air pollution and improve Malibu’s air quality.” To implement this policy, the City requires under S Implementation Measure 33 the evaluation of impacts on air quality in connection with development proposals.

South Coast Air Quality Management District. The SCAQMD is the agency principally responsible for comprehensive air pollution control in the Basin. To that end, the SCAQMD, a regional agency, works directly with the Southern California Association of Governments (SCAG), county transportation commissions, local governments, and cooperates actively with all federal and state government agencies. The SCAQMD develops rules and regulations, establishes permitting requirements, inspects emissions sources, and enforces such measures through educational programs or fines, when necessary. Rules applicable to the Project include:

- Permits – Regulations II and III
- Prohibitions – Regulation IV
- New Source Review – Regulation XIII
- Toxics and Other Non-Criteria Pollutants – Regulation XIV
3.2.3 Environmental Impacts

3.2.3.1 Thresholds for Determining Significance

Appendix G of the State CEQA Guidelines was used to determine that the proposed Project would have a potentially significant effect on air quality if it would:

a) Conflict with or obstruct implementation of the applicable air quality plan;

b) Violate any air quality standard or contribute substantially to an existing or projected air quality violation;

c) Result in a cumulatively considerable net increase of any criteria pollutant for which the Project region is non-attainment under an applicable federal or state ambient air quality standard;

d) Expose sensitive receptors to substantial pollutant concentrations; and/or

e) Create objectionable odors affecting a substantial number of people.

The CEQA Guidelines also state that the significance criteria established by the applicable air quality management district or air pollution control district may be relied upon to make the determinations above. Given SCAQMD’s regulatory role in the Basin, the significance thresholds and analysis methodologies outlined in the SCAQMD CEQA Air Quality Handbook (as updated per the SCAQMD web site), Final Localized Significance Threshold Methodology guidance document, and Final Methodology to Calculate PM$_{2.5}$ and PM$_{2.5}$ Significance Thresholds guidance document were also used in evaluating project impacts.

Table 3.2-4 lists the significance thresholds recommended by the SCAQMD for emissions generated by construction and operation of projects within the Basin.

SCAQMD has also developed a Localized Significance Threshold (LST) methodology in response to the Governing Board’s Environmental Justice Enhancement Initiative (1-4), which was prepared to update the SCAQMD’s CEQA Air Quality Handbook (SCAQMD 1993). LSTs were devised in response to concern regarding exposure of individuals to criteria pollutants in local communities. LSTs represent the maximum emissions from a project that will not cause or contribute to an air quality exceedance of the most stringent
Table 3.2-4. SCAQMD Air Quality Significance Thresholds

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Operation Thresholds</th>
<th>Construction Thresholds</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOx</td>
<td>55 lbs/day</td>
<td>100 lbs/day</td>
</tr>
<tr>
<td>ROC</td>
<td>55 lbs/day</td>
<td>75 lbs/day</td>
</tr>
<tr>
<td>PM$_{10}$</td>
<td>150 lbs/day</td>
<td>150 lbs/day</td>
</tr>
<tr>
<td>PM$_{2.5}$</td>
<td>55 lbs/day</td>
<td>55 lbs/day</td>
</tr>
<tr>
<td>SOx</td>
<td>150 lbs/day</td>
<td>150 lbs/day</td>
</tr>
<tr>
<td>CO</td>
<td>550 lbs/day</td>
<td>550 lbs/day</td>
</tr>
<tr>
<td>Pb</td>
<td>3 lbs/day</td>
<td>3 lbs/day</td>
</tr>
</tbody>
</table>

Note: ROC = reactive organic compounds.
Source: SCAQMD 2008a.

Table 3.2-5. SCAQMD LSTs for Construction

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Allowable emissions as a function of receptor distance in feet from a five-acre site (lbs/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>82 Feet</td>
</tr>
<tr>
<td>Gradual conversion of NOx to NO$_2$</td>
<td>221</td>
</tr>
<tr>
<td>CO</td>
<td>1,531</td>
</tr>
<tr>
<td>PM$_{10}$</td>
<td>13</td>
</tr>
<tr>
<td>PM$_{2.5}$</td>
<td>6</td>
</tr>
</tbody>
</table>

Source: SCAQMD 2003.

Greenhouse Gases

Pursuant to the requirements of SB 97, the California Natural Resources Agency adopted amendments to the CEQA Guidelines for the feasible mitigation of GHG emissions or the
effects of GHG emissions in March 2010. These guidelines are used in evaluating the
cumulative significance of GHG emissions from the proposed Project. According to the
adopted CEQA Guidelines, impacts related to GHG emissions from the proposed Project
would be significant if the Project would:

- Generate greenhouse gas emissions, either directly or indirectly, that may have a
 significant impact on the environment; and/or
- Conflict with an applicable plan, policy or regulation adopted for the purpose of
 reducing the emissions of greenhouse gases.

Additionally, a proposed project would have a significant impact related to GHG
emissions if the project would generate more than 10,000 MT of CO\textsubscript{2}E per year. 10,000
MT CO\textsubscript{2}E is a commonly used threshold for GHG significance and is the only adopted
threshold identified by the SCAQMD. It should be noted that no air district has the power
to establish definitive thresholds that will completely relieve a lead agency of the
obligation to determine significance on a case-by-case basis (SCAQMD 2008b).

3.2.3.2 Impact Assessment Methodology

Criteria Pollutants

This air quality analysis for both construction and operational emissions conforms to the
methodologies recommended in the SCAQMD’s CEQA Air Quality Handbook1.

Construction emissions associated with development of the proposed Project were
calculated using the CalEEMod computer program developed for the SCAQMD by
estimating the types and number of pieces of equipment that would be used onsite during
each of the construction phases. It was assumed that all construction equipment would be
diesel-powered. These construction emissions are analyzed using the regional thresholds
for construction established by the SCAQMD (SCAQMD 1993).

Operational emissions associated with onsite development were also estimated using the
CalEEMod computer program. Operational emissions include mobile source emissions,
energy emissions, and area source emissions. Mobile source emissions are generated by
the increase in motor vehicle trips to and from the Project site associated with operation
of onsite development as identified in the Project traffic study (Overland Traffic

1 As updated per the SCAQMD web site: http://www.aqmd.gov/ceqa/hdbk.html.
3.2 AIR QUALITY

Consultants, Inc. 2012). Emissions attributed to energy use include electricity and natural gas consumption for space and water heating. Area source emissions are generated by landscape maintenance equipment, consumer products, and architectural coating. To determine whether a regional air quality impact would occur, the increase in emissions would be compared with the SCAQMD’s recommended regional thresholds for operational emissions (SCAQMD 1993).

Greenhouse Gases

Project impacts related to GHGs are measured through modeled emission calculations of CO₂, CH₄, and N₂O since these three types of emissions make up 98.9% of all GHG emissions by volume (IPCC 2007). They are also the GHG emissions that the Project would emit in the largest quantities. Fluorinated gases, such as HFCs, PFCs, and SF₆, were also considered for the analysis; however, the contribution from these types of emissions would be minimal since fluorinated gases are primarily associated with industrial processes. Emissions of all GHGs are converted into their equivalent weight in CO₂ (CO₂E). Minimal amounts of other main GHGs (such as chlorofluorocarbons) would be emitted, and these other GHG emissions would not substantially add to the calculated CO₂E amounts. Calculations quantify the Project’s amenities and design features based on the methodologies discussed in the California Air Pollution Control Officers Association (CAPCOA) CEQA and Climate Change white paper (January 2008) and included the use of the California Climate Action Registry (CCAR) General Reporting Protocol (January 2009). Current state and federal measures intended to reduce GHG emissions are also considered in the calculation. State and federal measures that are built into the emissions model calculation include Title 24 Energy Standards, Pavley (Clean Car Standards) and Low Carbon Fuel Standards. Specific amenities and design features that were included in the analysis, as described in Section 2.0, Project Description, included the installation of low-flow plumbing fixtures, the installation of energy efficient appliances, and the use of recycled water for landscape irrigation.

3.2.3.3 1986 and 1998 Project Environmental Review Findings

Developers have been attempting to permit and construct a hotel at the Project site for many years, and efforts to date have included obtaining CCC approval for a 300-room hotel in 1986, completion of a certified EIR in 1997 and approval of a previous 146-room
3.2 AIR QUALITY

hotel design by the Malibu City Council in 1998. Applicable findings of environmental review performed for these projects are described below.

California Coastal Commission 1986 Approval of a 300-Room Hotel

In January 1986, the California Coastal Commission (CCC) approved the following project (Permit No. 5-85-418) for the subject property: 300 room hotel (222,200 square feet), 32,800 square foot community center, offices, restaurant, information kiosk and art center, and 1,039 parking spaces. The CCC’s approval has been kept valid over the years and the most recent permit extension (the 26th extension) was issued by the CCC setting the new expiration date as January 7, 2014. The EIR completed for this project did not assess potential impacts to air quality.

Findings of the 1998 Project EIR

The 1998 EIR, certified by the Malibu City Council, determined that the potential impacts from a previously proposed hotel design on air quality would be less than significant. All construction and operation emissions were predicted to be below SCAQMD thresholds. Mitigation measures were incorporated to further reduce any impacts that occurred. These mitigation measures included, but were not limited to, reduced construction vehicle speeds on unpaved roads, use of solar or low-emission water heaters, shade trees to reduce building heat, and use of double-glass paned windows. Additionally, the prior proposed project was considered to be consistent with the AQMP for the Basin.

3.2.3.4 Project Impacts and Mitigation Measures

Impact Description

AQ-1 The proposed Project would result in potentially significant short-term construction-related air quality impacts from dust and air pollutant emissions generated by grading and construction equipment operation (Class II).
Construction Emissions

Project construction would generate short-term air pollutant emissions, particularly fugitive dust (PM$_{10}$ and PM$_{2.5}$) associated with grading and exhaust from heavy construction vehicles. Construction would generally consist of site preparation, grading, erection of the proposed buildings, and paving. In addition, during building construction, ROG and other emissions would be released during the application and drying phase of paints and architectural coatings.

The site preparation phase would involve the greatest amount of heavy equipment and the greatest generation of fugitive dust. Removal of the top five feet of soil from the site, construction of cut-and-fill slopes and excavation for subterranean structures would require extensive grading with associated dust generation. The proposed Project would involve over approximately 229,000 cubic yards (cy) of cut and 40,000 cy of fill, including export of approximately 190,000 cy utilizing approximately 9,500 truckloads with 20-cubic-yard capacity trucks with double trailers. For the purposes of modeling, it was assumed that the Project would comply with the SCAQMD Rule 403, which identifies measures to reduce fugitive dust and is required to be implemented at all construction sites located within the Basin. Specifically, Rule 403 requires the use of best available control measures, which include soil watering to the depth of the proposed cut, maintaining live vegetation where possible, limiting vehicular traffic and disturbances on soils, and the use of tarps or other suitable enclosures on haul trucks, among numerous other measures. Emission estimates from construction are provided in Table 3.2-6; haul truck trips associated with soil export from the Project site would generate emission exceeding the SCAQMD regional thresholds for NO$_x$ and PM$_{10}$.

LSTs apply to emissions within the Project site, including idling emissions during Project construction. LSTs are not applicable to mobile sources such as haul trucks on a roadway (SCAQMD 2003). The nearest sensitive receptor to the Project site is the Our Lady of Malibu Church and School, located approximately 600 feet to the east. Utilizing SCAQMD LST guidelines, estimated Project emissions would be well below LST thresholds. Long-term operational LSTs would be associated with delivery trucks idling at the Project site; however, such long-term emissions are anticipated to be minor.
Table 3.2-6. Estimated Construction Maximum Daily Air Pollutant Emissions (lbs/day)

<table>
<thead>
<tr>
<th>Construction Phase</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>PM$_{10}$ (Exhaust and Dust)</th>
<th>PM$_{2.5}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013 (On and Offsite)</td>
<td>19.91</td>
<td>174.60</td>
<td>101.26</td>
<td>326.41</td>
<td>10.68</td>
</tr>
<tr>
<td>2014 (On and Offsite)</td>
<td>7.40</td>
<td>46.78</td>
<td>47.72</td>
<td>6.46</td>
<td>2.81</td>
</tr>
<tr>
<td>2015 (On and Offsite)</td>
<td>57.39</td>
<td>30.19</td>
<td>21.53</td>
<td>2.76</td>
<td>2.56</td>
</tr>
<tr>
<td>Maximum lbs/day</td>
<td>57.45</td>
<td>174.60</td>
<td>101.26</td>
<td>326.41</td>
<td>10.68</td>
</tr>
<tr>
<td>SCAQMD Thresholds</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

| Maximum Onsite lbs/day | 97.47| 52.85 | 7.67 | 5.95 |
| Local Significance thresholds (LSTs)(Onsite only) | 250 | 4,383 | 84 | 29 |

| Threshold Exceeded? | n/a | No | No | No | No |

Notes: All calculations were made using the CalEEMod computer model. See Appendix X for calculations. Site Preparation, Grading, Paving, Building Construction and Architectural Coating totals include worker trips, construction vehicle emissions and fugitive dust.

* Site Preparation and Grading phases incorporate anticipated emissions reductions the conditions listed above, which are required by SCAQMD Rule 403 to reduce fugitive dust.

LSTs are for a five-acre project in SRA-2 within a distance of 656 feet from the site boundary. Sources: See Appendix B for CalEEMod program output.

As previously discussed, haul truck trips associated with soil export from the Project site would generate NOx and PM$_{10}$ emissions exceeding the SCAQMD regional thresholds; this impact would be potentially significant, but subject to feasible mitigation. Compliance with standard regulatory conditions, which include adherence to SCAQMD Rule 403 mandatory measures to reduce fugitive dust emissions, and incorporation of mitigation measures, would reduce construction emission impacts to less than significant levels.

Standard Regulatory Conditions

MM AQ-1a The following standard regulatory conditions shall be implemented during construction activities at the Project site, consistent with SCAQMD Rule 403:

- **Minimization of Disturbance.** Construction contractors should minimize the area disturbed by clearing, grading, earth moving, or excavation operations to prevent excessive amounts of dust.
• **Soil Treatment.** Construction contractors should treat all graded and excavated material, exposed soil areas, and active portions of the construction site, including unpaved onsite roadways to minimize fugitive dust. Treatment shall include, but not necessarily be limited to, periodic watering, application of environmentally safe soil stabilization materials, and/or roll compaction as appropriate. Watering shall be done as often as necessary, and at least twice daily, preferably in the late morning and after work is done for the day.

• **Soil Stabilization.** Construction contractors should monitor all graded and/or excavated inactive areas of the construction site at least weekly for dust stabilization. Soil stabilization methods, such as water and roll compaction, and environmentally safe dust control materials, shall be applied to portions of the construction site that are inactive for over four days. If no further grading or excavation operations are planned for the area, the area shall be seeded and watered until landscape growth is evident, or periodically treated with environmentally safe dust suppressants, to prevent excessive fugitive dust.

• **No Grading During High Winds.** Construction contractors should stop all clearing, grading, earth moving, and excavation operations during periods of high winds (20 miles per hour or greater, as measured continuously over a one-hour period).

• **Street Sweeping.** Construction contractors should sweep all onsite driveways and adjacent streets and roads at least once per day, preferably at the end of the day, if visible soil material is carried over to adjacent streets and roads.

• **Dust Accumulation:** In the event that substantial accumulation of dust in the air over the grading operations is observed and a combination of low wind speed and high stability results in substantial dust concentrations at the schools or condominium complexes for a continuous period of more than one hour, one or more of the following additional mitigation measures shall be put in place as appropriate until the wind conditions change to make these measures unnecessary: grading shall be halted, or; grading shall be moved to a location on the site more distant or such that substantial dust is no longer carried toward the schools or condominium complexes; or; water trucks shall spray continuously behind or in to grading vehicles to substantially reduce the amount of dust raised into the air.

Plan Requirements and Timing. The Applicant shall prepare a document outlining best management practices (BMPs) and methods of implementation during construction and submit it to the City for
Mitigation Measures

- **MM AQ-1b Soil Hauling Tarp Requirement.** All trucks hauling dirt, sand, soil, or other loose materials should be tarped with a fabric cover and maintain a freeboard height of 12 inches.

- **MM AQ-1c On-Road NOx Emission Control Technologies.** All trucks hauling dirt, sand, soil, or other loose materials should be equipped with CARB verified Level 3 Plus off-road engine emission control technologies.

- **MM AQ-1d Off-Road NOx Emission Control Technologies.** All mobile off-road equipment used during the site preparation and grading phases of project construction should meet Tier 4 standards.

- **MM AQ-1e Soil Hauling Daily Trip Limit.** Truck trips hauling soil export from the project site should be limited to a maximum of 130 trips per day.

- **MM AQ-1f Mobile Source Emission Reduction Credits.** Pursuant to SCAQMD Rule 2022, the project applicant shall reduce NOx emissions by purchasing MSERCs from SCAQMD for each pound of NOx emissions in excess of the daily SCAQMD regional NOx threshold of 100 pounds per day (lbs/day) during project construction. The total amount of MSERCs required to mitigate NOx emissions during the site preparation phase of project construction would be 2,661.7 (30.95 lbs/day * 86 days).

Plan Requirements and Timing. The Applicant shall prepare a document outlining best management practices (BMPs) and methods of implementation during construction and submit it to the City for review and approval prior to the issuance of grading permits.

Monitoring. The proposed BMPs shall be subject to review, modification and approval by City staff.
3.2 AIR QUALITY

Impact Description

AQ-2 Release of toxic diesel emissions during initial construction and long-term hotel operation could expose nearby sensitive receptors to such emissions (Class III).

The proposed Project would generate diesel particulate matter from construction and operational activities within 650 feet of Our Lady of Malibu Church and School, as well as in the vicinity of nearby Webster Elementary School, Pepperdine University and Winter Canyon residences. Diesel particulate matter is listed as a TAC by the CARB with no identified threshold. Construction and site preparation in 2013 would generate the greatest intensity of diesel emissions at 22.29 lbs/day for a relatively short duration of three to four months. Operational emissions from diesel truck deliveries to the Project site would chronically expose sensitive receptors to diesel particulate matter. Long-term hotel operation would generate diesel emissions from vehicles estimated to be about 19.04 lbs/day, including emissions from trucks idling while unloading or while backed up at nearby intersections (refer to Tables 3.2-6 and 3.2-7). These operational diesel emissions would expose sensitive receptors to diesel particulate matter over the long-term; however, with implementation of standard regulatory conditions, diesel emissions are considered to be less than significant.

Standard Regulatory Conditions

MM AQ-2a The Applicant shall implement the following Best Available Control Technology (BACT) for diesel-fueled construction equipment, where feasible, to minimize the exposure of diesel exhaust to sensitive receptors. BACT implementation could include, but is not limited to, maximizing use of equipment that meets the CARB’s 2003 or newer certification standards, install and use approved emission reduction retrofit devices, develop and implement a Diesel Emission Control Plan, limit idling to no more than three minutes and substituting gasoline for diesel powered equipment.

Plan Requirements and Timing. The Applicant shall prepare a Diesel Emission Plan and submit it to the City for review and approval prior to the issuance of grading permits. Clear signage shall be posted at loading
docks prohibiting idling and instructing delivery drivers to shut-off their engines.

Monitoring. The Diesel Emission Plan shall be subject to review and approval by City staff. The Applicant shall submit annual reports to the City, which identify its inventory of diesel-powered equipment, equipment that has been upgraded, and plans for equipment upgrades.

Mitigation Measures

No mitigation measures would be required.

Impact Description

AQ-3 Increased energy use and traffic generated by operation of the proposed Project would result in adverse, but not significant impacts due to increases in generation of criteria pollutant emissions and odors (Class III).

Operational Emissions

The majority of Project-related operational emissions would be due to vehicle trips to and from the site. The Institute of Transportation Engineers (ITE) traffic generation rates for retail, restaurant, and health club uses were used for the traffic analysis in order to provide a more conservative estimate of the potential traffic generation impacts. As shown in Table 3.2-7, Project-generated emissions would not exceed the SCAQMD thresholds for ROG, NOₓ, CO, SOₓ, PM₁₀ and PM₂.5. As discussed above, CO background levels are low; therefore, based on Project-related emissions, no exceedances of state or federal CO standards are anticipated.
Table 3.2-7. Project Operational Emissions

<table>
<thead>
<tr>
<th>Operation</th>
<th>Estimated Emissions (lbs/day)</th>
<th>ROG</th>
<th>NOₓ</th>
<th>CO</th>
<th>SOₓ</th>
<th>PM₁₀ (Exhaust and Dust)</th>
<th>PM₂.₅</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicles</td>
<td></td>
<td>9.18</td>
<td>21.07</td>
<td>83.95</td>
<td>0.15</td>
<td>16.14</td>
<td>1.44</td>
</tr>
<tr>
<td>Electricity and Natural Gas Consumption, Landscaping, Consumer Products</td>
<td></td>
<td>12.91</td>
<td>3.46</td>
<td>2.91</td>
<td>0.02</td>
<td>0.26</td>
<td>0.26</td>
</tr>
<tr>
<td>Maximum lbs/day</td>
<td></td>
<td>22.09</td>
<td>24.53</td>
<td>86.86</td>
<td>0.17</td>
<td>16.40</td>
<td>1.70</td>
</tr>
<tr>
<td>SCAQMD Thresholds</td>
<td></td>
<td>55</td>
<td>55</td>
<td>550</td>
<td>150</td>
<td>150</td>
<td>55</td>
</tr>
<tr>
<td>Threshold Exceeded?</td>
<td></td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Source: see Appendix B for CalEEMod computer model output.

Project-generated emissions would not exceed any SCAQMD emissions thresholds; therefore, impacts from operational emissions would be *less than significant*.

Odors

The proposed Project would develop an onsite wastewater treatment system (OWTS) to process onsite wastewater. The OWTS would utilize a membrane bioreactor system to treat sewage and effluent to a quality that would meet tertiary treatment standards for recycled water. Biomembrane reactors use an aerobic biochemical process for nutrient removal, which produces limited odors since CH₄ and hydrogen sulfide (H₂S) are not produced in the process² (Washington State University 2005). Impacts from objectionable odors from the proposed Project would be *less than significant*.

Mitigation Measures

No mitigation measures would be required.

Impact Description

AQ-4 Construction and operation of the proposed Project would not result in significant impacts to global climate change from the emissions of greenhouse gases (Class III).

² Sewage odors are often associated with septic systems that use anaerobic processes for nutrient removal. Anaerobic process require breakdown of organic matter where the end products of CH₄ and H₂S are released generating an odor.
3.2 AIR QUALITY

Construction Emissions

Construction activity is assumed to occur over a period of approximately 24 months. Based on CalEEMod results, construction activity for the Project would generate an estimated 1,762.44 MT of CO₂E (as shown in Table 3.2-8). Amortized over a 30-year period (the assumed life of the Project), construction of the proposed Project would generate about 58.75 MT of CO₂E per year. 58.75 MT CO₂E / year is below the SCAQMD adopted threshold of 10,000 MT CO₂E / year, therefore impacts from GHG emissions during construction are considered to be less than significant.

Table 3.2-8. Estimated Construction Emissions of Greenhouse Gases

<table>
<thead>
<tr>
<th>Year</th>
<th>Annual Emissions CO₂E</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>818.14 metric tons</td>
</tr>
<tr>
<td>2014</td>
<td>897.53 metric tons</td>
</tr>
<tr>
<td>2015</td>
<td>46.77 metric tons</td>
</tr>
<tr>
<td>Total</td>
<td>1,762.44 metric tons</td>
</tr>
<tr>
<td>Amortized over 30 years</td>
<td>58.75 metric tons</td>
</tr>
</tbody>
</table>

Note: Although construction activity is addressed in this analysis, CAPCOA does not discuss whether any of the suggested threshold approaches adequately address impacts from temporary construction activity. The SCAQMD has recommended amortizing construction-related emissions over a 30-year period in conjunction with the proposed Project’s operational emissions.

Sources: See Appendix B for CalEEMod computer program output and for GHG emission factor assumptions.

Operational Indirect and Stationary Direct Emissions

Operational emissions would be generated from energy use, solid waste, water use, and transportation. Energy use emissions assume installation of energy efficient appliances. Emissions from electricity are estimated at 1,083.08 MT CO₂E and 692.53 MT CO₂E from Natural Gas. Solid waste emissions assume implementation of a recycling program with a 50% diversion rate. Annual emissions from all generated solid waste would be approximately 129.59 MTCO₂E. Emissions from total waste diverted would be approximately 64.80 MT. Emissions from the total waste disposed in a landfill would be approximately 64.80 MTCO₂E. Water use emissions assume the installation of low flow plumbing fixtures and use of gray water (recycled wastewater) for landscaping. Emissions from water use would be approximately 35.77 MTCO₂E. GHG emissions associated with mobile sources were estimated using daily trips derived from the traffic...
3.2 AIR QUALITY

analysis prepared by Overland Traffic Consultants and by the total vehicle miles traveled (VMT) estimated in CalEEMod. Table 3.2-9 shows a summary of these emissions.

Table 3.2-9. Estimated Annual Emissions from Operation

<table>
<thead>
<tr>
<th>Emission Source</th>
<th>Annual Emissions (Carbon Dioxide Equivalent (CO2E))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Use</td>
<td>1,775.61 metric tons</td>
</tr>
<tr>
<td>Solid Waste</td>
<td>64.80 metric tons</td>
</tr>
<tr>
<td>Water Use</td>
<td>35.77 metric tons</td>
</tr>
<tr>
<td>Mobile Sources</td>
<td>2,613.07 metric tons</td>
</tr>
<tr>
<td>Total</td>
<td>4,453.48 metric tons</td>
</tr>
</tbody>
</table>

Sources: See Appendix B for CalEEMod computer program output and for GHG emission factor assumptions

Emissions would be approximately 4,453.48 MTCO2E. This estimate of annual operational emissions for the proposed Project is below the SCAQMD adopted threshold of 10,000 MTCO2E / year; therefore, the impact on GHG emissions from the proposed Project is less than significant. However, in order to minimize GHG emissions, MM AQ-4a is recommended below.

Recommended Mitigation Measures

MM AQ-4a The Applicant shall include the implementation of the following Green building techniques:

- Planting of native, drought resistant landscaping.
- Plant trees and vegetation near structures to shade buildings and reduce energy requirements for heating/cooling.
- The incorporation of onsite renewable energy production and/or other power production or conservation measures shall be considered to reduce or partially offset Project power demand by a minimum of 50%, including, but not limited to a combination of the following measures:
 - Installation of photovoltaic panels;
 - Installation of energy efficient appliances and energy efficient building installations;
 - Installation of alternative heating and cooling systems; and/or
 - Use of skylights, energy saving lighting, such as LEDs etc.
3.2 AIR QUALITY

- Electric plug-in charging stations shall be provided for some of the vehicle parking spaces. These may be preferentially placed near structure entrances.

- Energy-efficient LED light fixtures shall be considered for parking area lighting.

Plan Requirements and Timing. The Applicant shall prepare a set of building plans that clearly identify energy efficient and GHG-reducing measures incorporated into the Project. The Applicant shall submit such plans to the City for review and approval prior to the issuance of building permits.

Impact Description

AQ-5 Construction and operation of the proposed Project is consistent with the 2007 Air Quality Management Plan (Class III).

A project may be inconsistent with the AQMP if it would generate population, housing or employment growth exceeding the forecasts used in the development of the AQMP. The 2012 AQMP, the most recent AQMP adopted by SCAQMD in December 2012, incorporates in part local city general plans and SCAG’s Regional Transportation Plan socioeconomic forecast projections of regional population, housing and employment growth. The Applicant-prepared Air Quality Study has reviewed the consistency of the proposed Project with the 2007 AQMD (Appendix B).

The proposed Project involves the development of a 146-room luxury hotel and related facilities and would not involve the development of residential uses that would cause a direct increase in the City’s population. However, the proposed Project could cause an indirect increase in the City’s population through an increase in employment as a result of development of the Project (approximately eight acres of commercial hotel space). As discussed in Section 4.3.3, Other CEQA Sections, Population and Housing, the Project is anticipated to employ between 120 and 247 employees. SCAG forecasts that the Southern California region, including the six member counties, will add 2.5 million new jobs, between 2005 and 2035, for a total of 10.3 million jobs in 2035 (SCAG 2008).

Under the higher employment estimate of 247 new employees, the proposed Project would constitute approximately 0.02% of the new job growth in the region. Therefore,
3.2 AIR QUALITY

the proposed Project would be consistent with the AQMP forecasts and impacts would be
less than significant.

Mitigation Measures

No mitigation measures would be required.

3.2.3.5 Cumulative Impacts

The CEQA Guidelines define cumulative impacts as “two or more individual effects, which, when considered together, are considerable or which compound or increase other environmental impacts.” (Section 15355.) The Guidelines further state that the individual effects may include various changes resulting from a single project or the change resulting from a number of other closely related past, present, and reasonably foreseeable future projects.

The SCAQMD’s CEQA Air Quality Handbook has not identified thresholds to which the total emissions of all cumulative development can be compared. Instead, the SCAQMD’s methods are based on performance standards and emission reduction targets necessary to attain the federal and State air quality standards, as predicted in the AQMP. The 2012 AQMP was prepared to comply with state and federal requirements. According to the CEQA Air Quality Handbook, projects that are consistent with the AQMP performance standards and emission reduction targets should be considered cumulatively less than significant, unless there is other pertinent information to the contrary.

The proposed Project would contribute to both regional cumulative impacts from growth and development in the Basin, as well as from local pending developments. While the Whole Foods development is awaiting City Civic Center Wastewater Treatment Facility (CCWTF) construction, developments such as La Paz and the pending CCWTF may be constructed concurrently with the proposed Project sometime between 2013 and 2015. Concurrent construction of these projects would create increased emissions and particulate generation in the Civic Center area, particularly during grading and trenching. Long-term operation of these projects could also generate localized emission increases and potential odors associated with operation of OWTS. These issues are discussed below.
Impact Description

AQ-6 The proposed Project would contribute to significant cumulative air quality impacts (Class II).

Operational (long-term) emissions from all the projects on the City’s cumulative projects list, particularly those in the Civic Center area, along with the proposed Project, would contribute cumulatively to increased criteria air pollutant emissions. Major projects in the City that affect cumulative air quality include the construction of a number of developments such as La Paz, Whole Foods in the Park and the CCWTF. Cumulatively, these projects would contribute to localized emissions in the Civic Center area, in addition to regional emissions from development and population increase throughout the City.

The Applicant-prepared Air Quality Study indicates that the Project would result in less than significant, but nonetheless considerable, operational emissions of ROG, NOx, CO, and PM_{10} (see Appendix B). According to the CEQA Air Quality Handbook, projects that are consistent with the AQMP performance standards and emission reduction targets should be considered cumulatively less than significant, unless there is other pertinent information to the contrary. As discussed in Impact AQ-5, the proposed Project would be consistent with the AQMP. Additionally, the Civic Center Area projects would individually be required to be consistent with the AQMP. Therefore, cumulative air quality impacts associated with project operations would be less than significant.

CO emissions often results in localized “hot-spots” where the ambient air quality standards may be exceeded. Typically, this occurs in areas where there is heavy traffic and significant congestion. Areas with high vehicle density, such as congested intersections, have the potential to create high concentrations of CO, known as CO hot spots. A project’s localized air quality impact is considered significant if CO emissions create a hot spot where either the California 1-hour standard of 20 ppm or the federal and state 8-hour standard of 9.0 ppm is exceeded. This typically occurs at severely congested intersections (level of service, or “LOS”, E or worse). Pursuant to SCAQMD, a CO hotspot analysis should be conducted for intersections where the proposed Project would have a significant impact at a signalized intersection, causing the LOS to change to E or F or when the volume to capacity ratio (V/C) increases by 2% or more as a result of a proposed Project for intersections rated D or worse (SCAQMD 2003).
Three intersections potentially affected include the intersection of Pacific Coast Highway (PCH) and Malibu Canyon Road, PCH and Webb Way, and PCH and Cross Creek Road. At the time when the most recent traffic counts were taken, Malibu Canyon Road and PCH has an LOS rating of E during morning weekday peak hours and an LOS rating of D for afternoon peak hours and weekend mid-day traffic. PCH and Webb Way has an LOS rating of B during the morning peak hours and an LOS rating of D during the evening peak hours along with the mid-day weekend. Cross Creek at PCH has an LOS of C during morning peak hours and an LOS of F during evening peak hours. Based upon future traffic conditions in addition to the proposed Project, a V/C increase of 2% or more would result at the Malibu Canyon Road and PCH intersection and at the Webb Way and PCH intersection during weekday evening peak hour and weekend midday. This V/C change would exceed SCAQMD standards. Therefore, impacts are considered potentially significant, but subject to feasible mitigation.

Mitigation Measures

Traffic improvement measures identified in Section 3.11, Traffic and Transportation, would result in reduced traffic and lessen cumulative air quality impacts associated with CO. In particular, MM T-4a, T-4b, and T-5a would apply to this impact.

3.2.3.6 Residual Impacts

The projected emissions for the proposed Project were not found to be above the established CEQA thresholds for operation emissions; however, operational emissions would remain cumulatively unavoidable and significant for PM$_{10}$ and O$_3$ as the Basin is currently in non-attainment for these criteria pollutants.

Impacts due to the close proximity of sensitive receptors to diesel emissions during construction and operations are not significant for the Project, but would contribute incrementally to cumulative impacts on sensitive receptors in the vicinity. Mitigation measures would be implemented to reduce the diesel emissions and maintain emissions at a less than significant level.

Mitigation would be implemented to reduce onsite emissions from energy and water use. However, over 70% of GHG emissions associated with the Project come from mobile emissions related to the operation of the Project (refer to Table 3.2-9). Given that the
Project is a resort hotel, patrons would be traveling from a distance to utilize the visitor-serving uses proposed. While this would result in additional GHG emissions relative to existing condition, the proposed Project’s contribution only would be 2,613.07 metric tons and therefore would remain less than significant.
3.3 CULTURAL RESOURCES

This section provides a brief overview of the prehistory, history, and archaeology of the City of Malibu (City) area and describes existing known cultural resource sites in the vicinity and in the Rancho Malibu Hotel Project (Project) site. This section also examines the impact of the proposed Project on cultural resources and provides recommended mitigation measures to avoid or reduce potential adverse impacts. This section was developed using information from the City’s General Plan, regional cultural resources reports, the Legacy Park Environmental Impact Report (EIR), and the South Central Coastal Information Center (SCCIC) archaeological site records and reports completed for the Project site, as well as surrounding properties. These studies and reports have been subject to peer review and approval by the City Planning Department, including data interpretation, methodologies and conclusions. These studies and reports provide the basis for following analysis.

Cultural resources represent and document the activities, accomplishments, and traditions of past and present cultures and link current and former inhabitants of an area. Archaeological resources include areas where prehistoric or historic activity measurably altered the earth, and include physical remains (e.g., arrowheads, bottles, or dietary refuse), environmental indicators such as pollen or other plant remains, and the soils or sediments in which they are deposited. Architectural resources include standing buildings, districts, bridges, and other structures of historic or aesthetic significance. The proposed Project is located in an area that has been used and inhabited during multiple eras by Native American, Spanish, Mexican, and American people. Because of the presence of known prehistoric archaeological sites within the subject property and the potential occurrence of archeological remains from multiple periods of occupation, this EIR provides background information on these prehistoric and historic periods.

3.3.1 Existing Setting

The Project site is located on the Malibu Beach, CA 7.5’ United States Geological Survey (USGS) Quadrangle in Township 1 South, Range 17 west, within the unsectioned Rancho Topanga Malibu Sequit land grant area. The 27.8-acre Project site is located in the City at the base of the Santa Monica Mountains on an uplifted, wave-cut marine terrace overlooking the Civic Center area, Santa Monica Bay, and the Pacific Ocean. The Project site is located immediately to the west of Winter Canyon, a blue line stream,
which has been undergrounded during prior development of Civic Center Way. Approximately one mile to the east is Malibu Creek and the Malibu Lagoon. Historically, the Malibu Lagoon extended beyond its current boundaries. The delta sediments within the broad low-lying portion of the Civic Center area indicated that the Malibu Lagoon migrated within this delta setting over time. A substantial portion of the low-lying areas near the mouth of Malibu Creek was filled during the 1940s and 1950s and as a result, the Malibu Lagoon covers a very small portion of its historic area. A restoration project at the Lagoon began a couple of years ago and is in the process of being completed.

Malibu Bluffs Park and privately owned undeveloped blufftop are located to the south of Pacific Coast Highway (PCH), adjacent to the Project site. Malibu Bluffs Park is comprised of a gently sloping coastal blufftop with steep slopes as the site descends toward Malibu Road to the south, with several small drainages. The Project site was historically a continuation of this coastal blufftop prior to development of PCH. The natural topography to the west of the Project site has been altered by the development of Alumni Park at Pepperdine University (Pepperdine), which consists of gently sloping grass lawns, several small ponds, and university structures on terraced slopes. Immediately north of the Project site the topography rises steeply into the Santa Monica Mountains, which are undeveloped and consist primarily of natural vegetation.

3.3.1.1 Prehistoric Setting

The prehistoric occupation of Southern California is divided chronologically into four periods: the Paleoindian, Early, Middle, and Late Periods (Moratto 1984). The Paleoindian Period, began at the first appearance of people in the region (around 8,000 before present [B.P]) and continued until about 6,000 B.P. Paleoindian groups during this time likely focused on hunting terrestrial game, as indicated by the discoveries of large, fluted projectile points from this period occurring in a few documented southern California sites (King 1994). Plants and smaller animals were undoubtedly part of the Paleoindian diet as well, and when the availability of large game was reduced by climatic shifts near the end of the Pleistocene, the subsistence strategy changed to a greater reliance on these resources. The subsequent Early, Middle, and Late periods are based on a chronological sequence developed by Chester King (2000) for the Santa Monica Mountains region.
The Early Period (6,000 to 800 B.P.) came out of the Post-Pleistocene, marked by changes in climate and environmental conditions that are reflected in the local archaeological record. This period is characterized by widespread use of groundstone (manos and metates) which is its main diagnostic feature. Groundstones were used to grind hard seeds such as sage for consumption, and expanded the food resource base available to early populations in the area. This period appears to represent a diversification of subsistence activities and a more sedentary settlement pattern. Archaeological evidence suggests that hunting became less important and that reliance on collecting plant resources increased (King 1981). While archaeological debate still exists about the permanence of Early Period settlements, it is generally accepted that a few large settlements in the region were heavily used year-round with smaller settlements used on a seasonal basis (King 1994). In addition, the period saw an increase of larger settlements with associated larger scale cemeteries (King 2000).

The Middle Period (800 B.P. – 1100 common era [C.E.]) is characterized in the archaeological record by a shift from the use of milling stones to increased use of mortar and pestle, possibly indicating a greater reliance on acorns as a food source (King 2000; Moratto 1984). This may indicate a transition from seed gathering to oak tree acorn gathering and processing, a result of cooler temperatures and more expansive oak woodland habitats. Additionally, materials from Middle Period sites reflect a greater reliance on marine resources and include marine shells, fish remains, and fishhooks. Terrestrial resources continued to be exploited as evidenced by the presence of contracting-stemmed and corner-notched projectile points from Middle Period sites (Moratto 1984). Toward the end of the Middle Period the plank canoe was developed, making ocean fishing and trade with the Channel Islands safer and more efficient (Arnold 1987).

The Late Period (1100 – 1840 C.E.) is characterized by dense populations; diversified hunting and gathering subsistence strategies, including intensive fishing and sea mammal hunting; extensive trade networks; use of the bow and arrow, and a general cultural elaboration (Moratto 1984). Trade networks, as evidenced by a diversification and increase in shell-bead manufacture, may have expanded and played an important part in local culture for southern California groups. Shell beads, found throughout the Early and Middle Periods, increased in number and variety during the Late Period, and are thought to be related to status and social value within and between cultural groups (Glassow et al. 2007). The increased population and change in distribution/trade expanded and played an
important role in the reinforcement of craft specialization and status. By the end of the Late Period, the Chumash culture had been dramatically changed by the arrival of a Spanish expedition led by Gaspar de Portola in 1769. This contact paved the way for the establishment of the Missions of Santa Barbara, San Buenaventura, Santa Ynez, and La Purisima.

3.3.1.2 Ethnohistory

The Project site encompasses a border region between lands traditionally occupied by both the Chumash and the Tongva peoples. The Chumash occupied the region from San Luis Obispo to Malibu Canyon on the coast, the four northern Channel Islands, and inland regions as far as the western edge of the San Joaquin Valley (Grant 1978). The coastal Chumash are subdivided into subgroups based on six distinct language dialects: Barbareno, Ventureno, Purisimeno, Ynezeno, Obispeno, and Island. The Project site is situated within the southernmost territory of the Ventureno, a coastal Chumash group (Grant 1978); a name derived from the nearest Spanish mission, San Buenaventura. Evidence of large Chumash village sites occur along the coast from Malibu to San Luis Obispo, with some populations on the Santa Barbara Channel Islands, and others in the interior mainland valleys, such as Santa Ynez, Cuyama, and Santa Clara Valleys.

The Chumash population at the time of European contact has been estimated in excess of 10,000 individuals (Walker and Johnson 1994). The Chumash had a high level of social organization, and material object production (Moratto 1984). They were excellent craftsmen and were known for well-made tools and basketry, as well as the production of plank canoes, called tomols. Of note is the Chumash use of steatite, a type of soapstone, to create bowls and carvings of birds and other forms of sea life. Sometimes artifacts
were inlaid with colorful abalone shells. Class differentiation, inherited chieftainship, and inter-village alliances were all components of Chumash society (Glassow et al. 2007).

There are approximately 120 known archaeological sites in the City. Sites in the Santa Monica Mountains include village sites, burial grounds, camps or food processing areas, quarries and rock art sites. Within the boundaries of the City, four villages have been identified which were occupied during the period of recruitment to Spanish missions between 1785 and 1810. These villages were (east to west) Lisiqshi, Sumo, Lojostogni, and Humaliwo. Humaliwo village, located approximately 1.2 miles east of the Project site, was one of the most important Chumash villages in the region. Extensive cultural remains are present at this site as well as evidence of numerous human burials. Portions of the site may date as far back as 7,000 years B.P. (Gamble et al. 1995, 1996). The Humaliwo village site, which is listed on the National Register of Historic Places (NRHP), was originally recorded in 1959, and several excavations took place there in the 1960s and 1970s. It consists of five components: an Early/Middle Period deposit, a Middle Period deposit, a Middle Period cemetery, a Late Period deposit, and an historic era cemetery. Numerous artifacts and other cultural materials have been collected from the site, which includes an extensive shell midden. The site has more than 200 burial plots, some with tomols. Some burials included numerous shell and glass beads, and fish and whale effigies (Gamble et al. 1995, 1996).

The village of Sumo is the second largest Chumash site to have been identified in Los Angeles County. The village may have included the entire Point Dume area, potentially extending as far east as Malibu Canyon (King 1994).

The Tongva peoples, also referred to as the San Gabriel Band or Gabrielino (King 1994), are a historic Native American people who have inhabited the area of present-day Los Angeles and Orange counties, as well as Santa Catalina and San Clemente Islands. Tongva populations were smaller than neighboring Chumash, and are estimated at nearly 5,000 people at the time of European contact. 90% of the mainland Tongva territory lay in extremely resource rich areas consisting of high desert woodland and chaparral where abundant food resources included acorn, pine nut, small game, deer and quail (Welch 2006). The Tongva, much like their Chumash neighbors, created plank canoes, which they called *ti’ats* (King 1994). These plank canoes were caulked and coated with either pine pitch or, more commonly with tar that was available either from the La Brea Tar Pits, or as asphaltum that had washed up on shore from offshore oil seeps (Welch 2006).
Other aspects of the Tongva material culture are similar to the Chumash, including the manufacture and use of shell beads. Evidence from the registers at Mission San Gabriel and San Fernando indicate that the Tongva of the Santa Monica Mountains were members of the western Tongva group, and had few marriages between their eastern Tongva neighbors near the Los Angeles River drainage (King 1994).

3.3.1.3 Historical Setting

The first recorded European activity in the Malibu region occurred in 1542 when Spanish sailor Juan Cabrillo anchored near Malibu Lagoon to obtain fresh water. Sailing northward up the California coast, he claimed this landfall for the King of Spain. He stayed only a few days, filling his water casks and naming this tranquil lagoon and beach in his log the “Pueblo de las Canoas” (Town of the Canoes) because of the many Chumash and Tongva people in canoes that came to visit his ships from the adjacent village. After this, more than 200 years were to pass before further Spanish contact. An expedition led by Spanish explorer Juan Bautista de Anza camped at Malibu Creek in 1776. One member of this expedition, Jose Bartolome Tapia, rode down the canyon to the beach to explore the area. The Tapia family ultimately settled in Northern California where Jose Tapia became mayordomo of the San Luis Obispo Mission rancho (Doyle et al. 2009). The first Franciscan mission in Chumash territory was built in San Luis Obispo in 1772. Four additional missions were built in this cultural area: San Buenaventura (1782), Santa Barbara (1786), La Purisima Concepcion (1787), San Fernando (1797), and Santa Ynez (1804). Inhabitants of the Malibu area were recruited into these missions. By 1805, most
native inhabitants of the Malibu area had been incorporated into the Mission system, either at Mission San Fernando or Mission San Buenaventura, and many traditional Chumash and Tongva villages were abandoned (Gamble et al. 1996).

In 1800, Jose Tapia and his family returned to Southern California and began farming near San Gabriel. Tapia then applied for a grant of the land he had seen in 1776, and due to his previous service in the army, he was awarded an area of about 13,330 acres called Rancho Topanga Malibu Sequit (or Rancho Malibu). The rancho remained intact until the entire property was sold in 1848 to Leon Prudhomme, who acquired the property during the transition period between Mexican rule and United States (U.S.) administration of California. When the U.S. Land Commission began hearings in 1852, Prudhomme put in his claim for Rancho Malibu. No documents could be produced proving the early-day grant to Jose Tapia. A search of the surveyor general’s office in San Francisco proved futile, and in 1854, the commissioners turned down Prudhomme’s claim that year (Doyle et al. 2009). The lands in the Malibu and Topanga area changed ownership several times, but were used primarily for ranching throughout the mid-19th century when they were purchased in 1892 by Frederick Rindge. The ranch was used for raising cattle and grain and had been considered by the Rindges to be the “ideal farm” (Robinson and Powell 1958). The death of Frederick Rindge passed the Rancho to his wife, Rhoda May Knight “May” Rindge.

The land remained primarily for ranching until the State of California constructed and opened PCH in 1928. Residential and commercial development began by 1929 in both the Malibu and Topanga areas. May Rindge and her daughter, Rhoda Rindge Adamson, gradually sold off parcels of the property over time. By 1962, the sale of land reduced the family’s land holdings to 4,000 acres (Doyle et al. 2009). The City of Malibu was formally incorporated in 1991, and the Topanga area remains an unincorporated community of Los Angeles County.

3.3.1.4 Site Characterization

AMEC Environment and Infrastructure, Inc. (AMEC) completed the cultural resources assessment for the Project. The assessment included records searches at the appropriate California Historical Resource Information System (CHRIS) location, background research at additional information repositories, and review of site-specific cultural resource studies that were conducted for previous projects proposed for the Project site.
The Project site is located in an area with substantial prehistoric activity, as indicated through numerous significant archaeological sites in the vicinity. Cultural resources investigations within the Project site have shown that prehistoric use of the site left behind archaeological deposits that include lithic tools and various artifact scatters. Such deposits have the potential to yield information important in understanding the prehistory of the community. These archaeological deposits are further discussed below.

The Project site does not appear to have supported substantial historic activity during the Spanish, Mexican or early American periods. Review of historic aerial photographs indicates that during the 1940s, 1950s, and 1960s, level mesa-top portions of the Project site appear to have been part of a larger pasture that also encompassed areas on the adjacent now Pepperdine University Campus and Malibu Bluffs Park. These photos show an extended area of continuous grassland reaching from the top of the blufftop on the Project site that overlooks Winter Canyon extending west across that area now occupied by Malibu Canyon Road onto Pepperdine University property. Historical use of the Project site initially focused on cattle grazing and agricultural production, and later on tree cultivation.

The Project site supported a tree nursery operation from approximately 1971 through the early to mid 1980s. The 1971 aerial photo below shows a nursery arranged amid a grid pattern of internal dirt aisles or roads comprising much of the level portion of the blufftop. The nursery operated through the mid-1980s, after which the land fallowed. Since the nursery was abandoned, the land has largely returned to native and ruderal

Historic Aerials of the Project site (left, 1941; right, 1971). In 1941, the southern and western portions of the Project site appear to have been cleared of native vegetation and used as cattle pasture. Aerial photography records show the Project site being converted to a tree farm nursery between 1966 and 1971.
vegetation, although several remaining large palm trees located on the site are remnants of the previous nursery operations. Other than the gated entrance driveway of the former nursery located along Malibu Canyon Road approximately 250 feet north of PCH, no structures are presently located onsite. The Project site is currently vacant. Existing vegetation reflects both the past use of the Project site as a nursery and vegetative regrowth after it burned in the 2007 Canyon Fire. A network of unmaintained dirt roads provides limited access throughout the level terrace portion of the Project site from this existing entrance.

Records Searches and Background Research

A standard records search was performed by Project archaeologist Andrea Bardsley, RPA, on September 20, 2012 at the SCCIC, California State University, Fullerton. Ms. Bardsley meets the minimum professional qualifications in archaeology developed by the Secretary of the Interior (36 CFR Part 61). The records search included a review of all previously documented archaeological sites within a 1/2 mile radius of the Project site as well as a review of cultural resource reports on file. In addition, the California Points of Historical Interest (SPHI), the California Historical Landmarks (SHL), the California Register of Historic Resources (CRHR), the National Register of Historic Places (NRHP), and the California State Historic Resources Inventory (HRI) listings were reviewed for the Project site. Additionally, the historic USGS 15’ quadrangle maps of Calabasas (1903) were reviewed.

The results of the records search indicate that 42 cultural resource studies have been conducted within 1/2 mile of the Project site.\(^1\) Nine of these studies were conducted partially or wholly within the Project site. Within 1/2 mile of the Project site, the records search identified eight archaeological sites, including two prehistoric archaeological sites within the Project site (Table 3.3-1). Noted habitation sites within the vicinity include site CA-LAN-2790, known as Croasdale’s Metate Site, which contained a large assemblage of grinding tools when surveyed in 1963 (King 1963). No aboveground historic resources were identified within 1/2 mile of the Project site.

\(^1\) There are 27 additional investigations located on the Malibu Beach, CA 7.5’ USGS Quadrangle that are potentially within a 0.5-mile radius of the Project site; however, these reports are not mapped by SCCIC due to insufficient locational information.
Table 3.3-1. Known Cultural Resources within 1/2 Mile of Project Site

<table>
<thead>
<tr>
<th>Trinomial</th>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA-LAN-31</td>
<td>Prehistoric</td>
<td>Surface site on small knoll with shell midden. Metate fragments, manos, cores, scrapers, and point fragment.</td>
</tr>
<tr>
<td>CA-LAN-319</td>
<td>Prehistoric</td>
<td>Open site on slope below small rockshelter, with shell midden. Core tools, mano fragments, ollercla, shell bead, shell midden.</td>
</tr>
<tr>
<td>CA-LAN-406</td>
<td>Prehistoric</td>
<td>Scattered flakes and cores in an area of approximately 200 sf.</td>
</tr>
<tr>
<td>CA-LAN-2790</td>
<td>Prehistoric</td>
<td>Large assemblage of stone grinding tools (manos and metates). Cores, core fragments, hammerstones, flakes. Shell midden.</td>
</tr>
<tr>
<td>CA-LAN-2937</td>
<td>Prehistoric</td>
<td>Sparse lithic scatter, flakes, and limestone shatter.</td>
</tr>
<tr>
<td>CA-LAN-1417</td>
<td>Prehistoric</td>
<td>Possible hearth of oven due to fire-affected rock, charcoal. Site buried 4-5 feet. Shell and flake debitage with small amounts of bone and fire-affected rock and charcoal. cores, flakes</td>
</tr>
<tr>
<td>CA-LAN-266*</td>
<td>Prehistoric</td>
<td>Lithic scatter of ground and chipped lithics. Shallow/surface site. Abundant debitage, flakes, tools, ground stone, cores, hammerstones.</td>
</tr>
<tr>
<td>CA-LAN-1715*</td>
<td>Prehistoric</td>
<td>Light lithic scatter of ground and chipped lithics. Shallow/surface site. Small unifacial mano, 3 cores, numerous flakes</td>
</tr>
</tbody>
</table>

* Located within the Project site.

Source: SCCIC 2012.

Native American Consultation

The City has been in consultation with the Native American Heritage Commission (NAHC) and Native American representatives regarding the proposed Project. Correspondence on 16 July 2012 was distributed to the Santa Ynez Tribal Elders Council as well as 14 other Native American groups via post and to the City of Malibu Native American Cultural Resources Advisory Committee (NACRAC). NACRAC discussed the proposed Project at a public meeting (9 May 2012) and provided recommendations regarding development and impact mitigation. NACRAC recommendations included: 1) capping of 90 percent of the site and maintenance of the Cultural Resources Management Plan; 2) that the developer provide a 3,000 square foot Native American Cultural Resources Center as part of the Project or negotiate an offsite location; and, 3) the developer utilize the services of Committee Member Salazar as the Native American Monitor.
3.3 CULTURAL RESOURCES

A copy of the correspondence letter to the NAHC, Native American Consultation list, and additional details on these consultations, are available in Appendix A.

3.3.1.5 Documented Cultural Resources

As a result of the prior studies described above, two cultural resources have been documented on the Project site and are further discussed below (Table 3.3-2).

Table 3.3-2. Cultural Resources within the Project Site

<table>
<thead>
<tr>
<th>Site</th>
<th>Description</th>
<th>CRHR/NRHP Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA-LAN-266</td>
<td>Lithic scatter of ground and chipped lithics. Shallow/surface site. Abundant debitage, flakes, tools, ground stone, cores, hammerstones.</td>
<td>Not evaluated formally, but considered eligible.</td>
</tr>
<tr>
<td>CA-LAN-1715</td>
<td>Light lithic scatter of ground and chipped lithics. Shallow/surface site. Small unifacial mano, 3 cores, numerous flakes</td>
<td>Not evaluated formally, but considered ineligible.</td>
</tr>
</tbody>
</table>

Site CA-LAN-266

Portions of the Project site were first inspected in 1961, when Michael Glassow and Chester King conducted a large-scale survey along the Malibu coast (Bissell 1984). Glassow and King were the first to identify and document site CA-LAN-266, which is entirely within the Project site. The site consisted of a surface site occupying a rocky knoll. The site dimensions were 20 by 40 yards and artifacts included flake scrapers, core scrapers, and chert, quartzite and basalt lithic materials. Fourteen artifacts were collected during the initial survey and were curated at the University of California, Los Angeles (UCLA) Fowler Museum Archaeological Repository (Padon 1980; Teeter 2012). In addition, other chert flakes, two mano fragments and a mano were found, but not collected.

In 1980, site CA-LAN-266 was revisited, updated, and described at that time as a low density lithic and groundstone scatter (Padon 1980). The 1980 investigation expanded the site boundaries from the previous 1961 descriptions and noted that site might be even larger than described; however, “private property” and “locked gates” associated with the nursery operation prohibited a full survey of portions of the site. The 1980 survey also indicated that the site CA-LAN-266 might be associated with the nearby village site of Humaliwu (Padon 1980; Wlodarski 1995). The Project site could also have been
associated with the village of Sumo, which may have extended from Point Dume to Malibu Canyon (King 1994).

Site CA-LAN-266 was investigated again in 1984 (Bissell 1984). This report noted that a plant nursery created disturbances in the southern portions of the site. At that time, it was noted that the presence of both flaked lithic material and groundstone indicated a larger and prolonged habitation at site CA-LAN-266, consistent with earlier observations that the site may be associated with larger prehistoric village sites within the Malibu vicinity (Bissell 1984; Wlodarski 1995).

The most detailed survey and analysis of the site was performed in 1990 by Ron Bissell, who performed a Phase II level field investigation and subsequently developed what he described as a “position paper” to support conclusions of that fieldwork in 1995 (Bissell 1995). During this survey, surface artifacts were collected and test excavations were conducted at site CA-LAN-266. During this survey, another smaller locus of artifacts was recorded within the subject property as site CA-LAN-1715 (Bissell 1995).

In 2007, a close-interval pedestrian survey (less than 20-meter survey transects) was conducted of the least disturbed and highest artifact density portions of site CA-LAN-266. That survey identified 18 artifacts. Additionally, monitoring during boring and trenching associated with a geotechnical investigation of the Project site, identified two groundstone fragments at 39 centimeters (cm) and 60 cm below ground surface, respectively. In addition, surface surveys during this monitoring identified fire-affected rock scatter and one lithic flake.

Artifacts collected indicate the site was most likely a hunting encampment, with hard seed collecting and processing an important secondary activity (Bissell 1995). Vegetable fiber work, animal hide processing and woodwork are also indicated by the tools in the collection (Bissell 1995; Wlodarski 1996). The presence of manos, metates, and pestles indicate seed processing, which in association with stone tool development indicate the potential for CA-LAN-266 to be a habitation site. The intact condition of the northern

A cobble tool collected from Site CA-LAN-266 in 2007.
portion of the site has the potential to yield a substantial number of additional subsurface artifacts, potentially providing additional information on the chronology and site function of site CA-LAN-266.

Site CA-LAN-1715

Site CA-LAN-1715 was discovered and documented on January 12, 1990 during the investigation of CA-LAN-266 by Bissell, and is considered a possible locus of site CA-LAN-266 (Bissell 1995). The site was described at the time as a light surface scatter of chipped and groundstone artifacts located within the abandoned tree farm. The site investigation revealed eight artifacts consisting of five flakes, two cores, and a one mano. One unit was excavated within site CA-LAN-1715, which revealed extensively disturbed subsurface soils and no artifactual materials (Wlodarski 1996). Site CA-LAN-1715 appears to be disturbed from historic nursery operations, which would have included disturbance from internal roadways and salable tree excavation holes. This disturbance is reinforced by the disturbed nature of subsurface soils noted by Bissell. Therefore, the site is anticipated to retain low integrity; however, insufficient information and testing has been performed to make a formal eligibility determination.

3.3.2 Regulatory Setting

Several state preservation laws guide actions that concern cultural resources. These include the California Environmental Quality Act (CEQA) (Public Resources Code 21000 *et seq.*), the Health and Safety Code (HSC), and the Public Resources Code. At the local level, the City requires protection of archaeological and historical resources to the greatest extent feasible. All of the following regulations apply to the proposed Project.

3.3.2.1 Federal Policies and Regulations

The proposed Project does not include any federal lands. No federal permits or authorizations are required for its implementation, and federal funds will not be used. Therefore, the proposed Project is not considered a federal undertaking for the purposes of the National Historic Preservation Act (NHPA) or a Project under the National Environmental Policy Act (NEPA), and no federal laws or regulations governing cultural resources apply.
3.3 CULTURAL RESOURCES

3.3.2.2 State Policies and Regulations

CEQA

Public Resources Code Section 21083.2(g) states that if an archaeological resource is determined to be “unique” and the project will have a significant effect, then the EIR must address such resources. For unique archaeological resources, a lead agency may require reasonable efforts that would allow unique archaeological resources to be preserved in place or left undisturbed. However, the CEQA Guidelines further state that if an archaeological site is determined to be a historically significant, Section 21083.2 does not apply and Public Resources Code Section 21084.1 applies instead.

Section 15064.5(a)(3) of the CEQA Guidelines (as amended) states that a resource shall be considered by the lead agency to be “historically significant” if the resource meets the criteria for listing on the CRHR (Pub. Res. Code § 5024.1; Title 14 CCR, § 4852). A resource may be listed as a historical resource in the CRHR if it:

1) Is associated with events that have made a significant contribution to the broad patterns of California’s history and cultural heritage;

2) Is associated with the lives of persons important in our past;

3) Embodies the distinctive characteristics of a type, period, region, or method of construction, or represents the work of an important creative individual, or possesses high artistic values; or

4) Has yielded, or may be likely to yield, information important in prehistory or history.

Cultural resources meeting one or more of these criteria are defined as “historical resources” under CEQA (Office of Historic Preservation 2000). Resources included in a local register of historical resources (pursuant to Section 5020.1(k) of the Public Resources Code), or identified as significant in an historical resources survey (meeting the criteria in Section 5024.1(g) of the Public Resources Code), also are considered “historical resources” for the purposes of CEQA.

The fact that a resource is: (1) not listed in, or determined to be eligible for listing in the CRHR; (2) not included in a local register of historical resources; or (3) not identified in
an historical resources survey, does not preclude a lead agency from determining that the
resource may be an historical resource as defined in Public Resources Code Sections
5020.1(j) and 5024.1.

Codes Governing Human Remains

The disposition of human remains is governed by Section 7050.5 of the California HSC
and Sections 5097.94 and 5097.98 of the Public Resources Code, and falls within the
jurisdiction of the NAHC. If human remains are discovered, the County Coroner must be
notified immediately and there should be no further disturbance to the site where the
remains were found. If the remains are determined by the coroner to be Native American,
the coroner is responsible for contacting the NAHC within 24 hours. The NAHC,
pursuant to Section 5097.98, will immediately notify those persons it believes to be most
likely descended from the deceased Native Americans so they can inspect the burial site
and make recommendations for treatment or disposal.

3.3.2.3 Local Polices and Regulations

City of Malibu Local Coastal Program (LCP)

The purpose of the LCP is to protect coastal resources while accommodating appropriate
land use development within the Coastal Zone, including providing a range of policies to
ensure adequate avoidance of historic, prehistoric, archaeological, and other classes of
cultural sites.

LCP Land Use Plan (LUP)

- **LUP Policy 5.60:** New development shall protect and preserve archaeological,
historical and paleontological resources from destruction, and shall avoid and
minimize impacts to such resources.

- **LUP Policy 5.61:** Where development would adversely impact archaeological or
paleontological resources as identified by the State Historic Preservation Officer,
reasonable mitigation measures shall be required.

- **LUP Policy 5.62:** The City should coordinate with appropriate agencies, such as the
UCLA Archaeological Center, to identify archaeologically sensitive areas. Such
information should be kept confidential to protect archaeological resources.
3.3 CULTURAL RESOURCES

- **LUP Policy 5.63**: Coastal Development Permits for new development within archaeologically sensitive areas shall be conditioned upon the implementation of the appropriate mitigation measures.

- **LUP Policy 5.64**: New development on sites identified as archaeologically sensitive shall include onsite monitoring of all grading, excavation and site preparation that involve earth moving operations by a qualified archaeologist(s) and appropriate Native American consultant(s).

- **LUP Policy 5.65**: The establishment of a museum/visitor center to display local archaeological and or paleontological artifacts and to provide public educational information on the cultural and historic value of these resources shall be encouraged.

LCP Local Implementation Plan (LIP)

LIP Chapter 11, *Archaeological/Cultural Resources*, contains provisions to avoid damage to or destruction of important cultural resources within the City. LIP Section 11.3 provides various steps and stages for evaluation of the cultural resources, provisions to evaluate the resources, and provisions for mitigation programs to reduce impacts on cultural resources. The chapter provides a detail procedure of dealing with cultural resources if encountered during development activities.

Malibu Municipal Code (M.M.C.)

The M.M.C. Chapter 17.54 contains provisions to avoid the damage to or destruction of important cultural resources within the City required for all projects prior to the issuance of a planning approval, development permit, geological/geotechnical exploratory excavation permit, sewer permit, building permit, grading permit, or prior to the commencement of government-initiated or funded works except those projects necessary for emergency purposes.

For example, M.M.C. Section 17.54.040(E)(2) states that “Phase III mitigation programs are intended to mitigate adverse impacts upon important cultural resources. These programs shall be designed on a project-specific basis to meet the particular needs of each project and shall be guided by a research design/work plan that clearly articulates the scope of mitigation based on the recommendations developed in the prior Phase II evaluation of the affected site.”
City of Malibu General Plan

The City’s General Plan was adopted in 1996 and last revised in 2004 (City of Malibu 1996). The General Plan is primarily a policy document that sets goals concerning the community and gives direction to growth and development. In addition, it outlines the programs that were developed to accomplish the goals and policies of the General Plan, and includes a Conservation Element.

Conservation Element

The Conservation (CON) Element of the General Plan serves as a guide for the conservation, protection, restoration, management, development, and appropriate and responsible utilization of the City’s existing natural resources. The CON Element has the following goals and policies as well as implementation measures pertaining to archaeological resources:

- **CON Goal 2.** Cultural resources preserved and protected.

- **CON Objective 2.1:** Historic, Cultural, and Archeological resources preserved for future generations and scientific study.

- **CON Policy 2.1.1.** The City shall identify, designate, protect, and preserve areas, sites, or structures of historic, cultural, paleontological, and/or archeological significance.

- **CON Policy 2.1.2.** The City shall avoid the destruction or alteration of cultural resources.

- **CON Policy 2.1.3.** The City shall provide incentives to property owners of historical structures to encourage preservation of designated cultural resources.

- **CON Implementation Measure 76.** Work with appropriate agencies, such as the UCLA Archeological Center, to keep current maps of significant archeological areas.
• CON Implementation Measure 77. Maintain archives and a database of completed research and studies.

• CON Implementation Measure 78. Review all applications for development to determine whether the development may have an adverse impact on cultural resources.

• CON Implementation Measure 79. Require site surveys to be performed by qualified technical personnel for projects located in areas identified as archaeologically/paleontologically sensitive. Data derived from such surveys shall be used to formulate mitigation measures for the project, and all such feasible mitigation measures shall be applied to the project.

• CON Implementation Measure 80. Adopt standards for replacement expansion, remodel, and restoration of designated historic structures to preserve integrity of design.

• CON Implementation Measure 81. Cooperate with volunteer organizations to preserve and restore historic sites and structures.

• CON Implementation Measure 82. Encourage proper curation, and prohibit casual collection of significant artifacts.

• CON Implementation Measure 83. Support the establishment of a museum/study center in the study area to display archeological/paleontological artifacts and to present continuing programs to acquaint the public with the cultural and historic value of these resources.

• CON Implementation Measure 84. Explore all available measures; including purchase, tax relief, and purchase or transfer of development rights to avoid development on historic, prehistoric, archeological, and other classes of cultural sites.
3.3 CULTURAL RESOURCES

3.3.3 Environmental Impacts

3.3.3.1 Thresholds for Determining Significance

If a project may cause a substantial adverse change in the characteristics of a resource that convey its significance or justify its eligibility for inclusion in the CRHR or a local register, either through demolition, destruction, relocation, alteration, or other means, then the project is judged to have a significant effect on the environment (CEQA Guidelines, §15064.5(b)). Direct impacts may occur by:

1. Physically damaging, destroying, or altering all or part of the resource;
2. Altering characteristics of the surrounding environment that contribute to the resource’s significance;
3. Neglecting the resource to the extent that it deteriorates or is destroyed. Indirect impacts primarily result from the effects of project-induced population growth. Such growth can result in increased construction as well as increased recreational activities that can disturb or destroy cultural resources;
4. The incidental discovery of cultural resources without proper notification; or
5. Conflicts with established cultural resource protection plans or policies.

Direct impacts can be assessed by identifying the types and locations of proposed development, determining the exact locations of cultural resources within the Project site, assessing the significance of the resources that may be affected, and determining the appropriate mitigation.

Indirect impacts primarily result from the effects of Project-induced population growth. Removal, demolition, or alteration of cultural resources can destroy the historic fabric of an archaeological site, structure, or historic district. Due to their nature, indirect impacts are much harder to assess and quantify.

3.3.3.2 Impact Assessment Methodology

For cultural resources, impact assessment is based on a comparison of known resource locations with the placement of ground disturbing Project activities that have the potential to remove, relocate, damage, or destroy the physical evidence of past cultural
activities. If such ground disturbance overlaps recorded site locations, then a direct
impact may occur. Indirect impacts may occur if activities occur near, but not directly on,
known cultural resources.

AMEC performed the impact analysis on the locations of known sites and elements of the
proposed Project. As several previous cultural resource studies have been conducted
within the current Project site in conjunction with previous iterations of hotel
development on the Project site, it was necessary to use information from prior studies
provided by the City or the Applicant to complete the impact analysis. Additionally, the
Applicant has developed a Cultural Resources Management Plan (CRMP 2012) for the
site CA-LAN-266. The CRMP was prepared by Dr. Mitchel Marken, PCR Services, in
July 2007 and updated in April 2012. The Applicant has proposed adherence to measures
contained within the CRMP to reduce potential impacts of the proposed Project. These
studies and reports have been subject to peer review and approval by the City Planning
Department, including data interpretation, methodologies and conclusions. These studies
and reports provide the basis for following analysis.

3.3.3.3 1986 and 1998 Project Environmental Review Findings

Developers have been attempting to permit and construct a hotel at the Project site for
many years, and efforts to date have included obtaining CCC approval for a 300-room
hotel in 1986, completion of a certified EIR in 1997 and approval of a previous 146-room
hotel design by the Malibu City Council in 1998. Applicable findings of environmental
review performed for these projects are described below.

California Coastal Commission 1986 Approval of a 300-Room Hotel

In January 1986, the California Coastal Commission (CCC) approved the following
project (Permit No. 5-85-418) for the subject property: 300 room hotel (222,200 square
feet), 32,800 square foot community center, offices, restaurant, information kiosk and art
center, and 1,039 parking spaces. The CCC’s approval has been kept valid over the years
and the most recent permit extension (the 26th extension) was issued by the CCC setting
the new expiration date as January 7, 2014. The EIR completed for this project did not
analyze potential impacts to cultural resources.
Finding of the 1998 Project EIR and Subsequent Plans

The Project site was subject to cultural resources review and consultation during the 1998 EIR process. The City Council approved an alternative of the proposed Project that avoided all construction within the most sensitive portions of site CA-LAN-266. The approved project also included a Cultural Resource Institute of approximately 9,000 square feet within the main hotel building, which would house local artifacts and provide public information on local cultural history. The most sensitive portions of the site were proposed to be capped and covered with sterile fill to ensure protection and preservation of approximately 90% of the site. Previous design and cultural protection measures are included below:

- **Review of Cultural Resources Information for Rancho Malibu (May 1995):**

 “The site was divided into areas of archaeological sensitivity: Areas A, B, and C. Area A consisted of the extremely sensitive site CA-LAN-266; Area B consisted of the sensitive site CA-LAN-1715; and Area C is considered clear of archaeological constraints.

 In-situ preservation of Area A was the preferred manner of avoiding damage to CA-LAN-266. This would involve a Project redesign to avoid any disturbance to Area A by leaving the area in its natural state. No subsurface disturbances of any kind would be allowed within the boundaries of Area A. Furthermore, a buffer zone of 50 feet would be established, whereby if soil is removed within that zone, an archaeologist must be onsite to monitor grading or disturbances to this area. If total avoidance is not feasible, then the entire area could be capped with a layer of imported soil (fill). This would allow for limited use of the area, including parking and landscaping. No other uses which would impact the subsurface portions of Area A below the capped soil zone would be permitted.”

- **City Council Resolution No. 98-001 (March 23, 1998):** The Rancho Malibu Hotel project included in-situ preservation of prehistoric cultural resources by capping or covering the deepest and most sensitive portion of the CA-LAN-266 site, including the CA-LAN-1715 area. About 90% of the site would be capped. In addition, the City would require the developer to implement a cultural resource management plan (CRMP) covering 100% of the site. The CRMP’s conditions would be incorporated into deed restrictions for the property to ensure the
3.3 CULTURAL RESOURCES

protection of this archaeological site in perpetuity for future generations. The implementation of the CRMP would preserve 90% of the CA-LAN-266 site, including the CA-LAN-1715 area, and protect the remaining 10% of the undisturbed area.

- **Revised CA-LAN-266 CRMP (July 31, 2007):** A revised CRMP was prepared by the Applicant in 2007. In this plan, site CA-LAN-266 was proposed for mitigation through controlled excavation in areas previously slated for vegetation removal and capping.

- **2012 CRMP Update (April 18, 2012):** The revised CRMP calls for excavation of the top five feet or more of soil within the area of archaeological sensitivity and development of Project facilities in these areas. These areas were previously slated for preservation through vegetation removal and capping; however, the revised plan proposes mitigation through controlled excavation and data recovery. If intact features or cultural deposits are discovered during vegetation removal they will be archaeologically excavated and cataloged.

3.3.3.4 Project Impacts and Mitigation Measures

The eligibility of a site is judged not only by its integrity, but by its ability to satisfy one or more of the NRHP significance criteria set out in 36 CFR 60.4. The criterion most frequently satisfied by prehistoric sites is Criterion D, which states that a site must be able to “yield... information important in prehistory or history.” The importance of information is measured by its relevance to identified research questions that can be addressed through analysis of particular data types. An archaeological site is thus evaluated in terms of the availability, or potential availability, or specific data classes necessary to address relevant research domains.

The two cultural resource sites present within the Project site would be directly affected by proposed development. The intact condition of portions of site CA-LAN-266 has the potential to yield a substantial number of additional subsurface artifacts, potentially providing additional information on the chronology and site function of the site. Therefore, site CA-LAN-266 appears to be eligible for CRHR/NRHP status under Criterion D based upon available information. Site CA-LAN-1715 appears to have been subject to historic disturbance and contains a low density of artifacts and therefore is
anticipated to be ineligible for CRHR/NRHP status; however, the scarcity of information regarding this site makes a final determination of significance difficult.

Specific impacts on these resources, and measures for the mitigation of such impacts, are presented below. Briefly, the mitigation measures proposed would require avoidance of the sensitive portions of site CA-LAN-266 (MM CR-1a and CR-1b), as well as monitoring during construction within CA-LAN-1715 (MM CR-2a), and other measures to ensure adequate study, consultation, and public understanding of cultural resources (MM CR-3a, CR-3b, and CR-3c), with appropriate evaluation and treatment if previously unidentified resources are discovered (MM CR-1d). The analysis in this section is based upon the Applicant-prepared CRMP, targeted updates performed by the Project archaeologist, and City direction on approach. Specific impacts on these resources, and measures for the mitigation of such impacts, are presented below (Table 3.3-3).

Table 3.3-3. Cultural Resource Impacts and Mitigation Measures

<table>
<thead>
<tr>
<th>Site</th>
<th>Site Type/CRHR Status</th>
<th>Potential Impacts</th>
<th>Mitigation Measure(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA-LAN-266</td>
<td>Prehistoric/Not formally evaluated, considered eligible</td>
<td>CR-1: parking lot, road, OWTS, building footprints</td>
<td>CR-1a, -1b, -1c, -1d</td>
</tr>
<tr>
<td>CA-LAN-1715</td>
<td>Prehistoric/Not formally evaluated, considered ineligible</td>
<td>CR-2: Building footprint, service road</td>
<td>CR-2a</td>
</tr>
</tbody>
</table>

Impact Description
CR-1 Construction of the employee parking lot, onsite wastewater treatment system, fire service road, and main hotel and secondary hotel buildings would result in potentially significant impacts to prehistoric archaeological site CA-LAN-266 (Class II).

CA-LAN-266 is located on a portion of the Project site that would be developed with a service and fire access road, employee parking lot, onsite wastewater treatment system (OWTS), the northern portion of the main hotel building, as well as three of the secondary hotel buildings. Development of these structures and Project elements would entail extensive grading to a depth of five feet or more below existing grade within site CA-LAN-266 and likely removal or disturbance of all remaining artifacts and archaeological remains associated with this pre-historic site.
3.3 CULTURAL RESOURCES

The 2012 CRMP proposes controlled excavation of site CA-LAN-266 prior to the complete excavation of this area for Project construction. This would entail grubbing/vegetation removal and an intensive archaeological survey, controlled mechanical stratigraphic excavation in 2-5 cm layers, archaeological data recovery, artifact processing and curation, and preparation of a final mitigation report. While data recovery through excavation of archaeological sites can constitute mitigation of significant impacts to cultural resources, consistent with CEQA Section 15126.4(c), such mitigation is discouraged when preservation in place may be accomplished per CEQA Section 15126.4(b)(3)(A), which states: “Preservation in place is the preferred manner of mitigating impacts to archaeological sites.” In addition, the City’s General Plan CON Policies 2.1.1 and 2.1.2, and LCP LUP Policy 5.60 require the preservation of cultural resources. Therefore, although the CRMP contains measures that would partially mitigate development with data recovery through excavation, such an approach would be inconsistent with City policies and not aligned with the preferred approach to mitigation under CEQA. Further, this approach would be contrary to the 1998 previously-approved hotel project which included requirements for onsite preservation of the majority of archaeological resources, as described above.

Despite measures in the 2012 CRMP, the proposed Project would result in development within site CA-LAN-266, which would physically alter, damage, or destroy all or part of the resource and would be in conflict with CEQA’s preferred approach to mitigation. As with the prior hotel project onsite, sufficient space is available within the Project site to accommodate preservation in place of the most sensitive portions of site CA-LAN-266 while accommodating development of the majority of hotel facilities (refer to MM CR-1c). Therefore, rather than proceed with the mitigations proposed in the 2012 CRMP, MM-CR-1a, CR-1b, CR-1c, and CR-1d are proposed, which would adjust the development envelope south to avoid the most sensitive portions of the site and require protection of previously unidentified cultural resources. With incorporation of these mitigation measures, this impact would be Class II, significant but subject to feasible mitigation in a manner most consistent with the preferred approach under CEQA and City policy.

Mitigation Measures

MM CR-1a Impacts to site CA-LAN-266 shall be avoided by reducing the size of the development envelope to prohibit development and any attendant
disturbance to the area within the most sensitive site boundary, identified as Area A within the 2007 CRMP.

Plan Requirements and Timing. The City shall receive, review, and approve final plans that demonstrate that all grading is located outside of Area A of site CA-LAN-266 prior to the issuance of grading permits.

MM CR-1b Archaeological site CA-LAN-266, shall be incorporated into the Project design as unbuildable open space where no grading, construction, utility placement, landscaping, or other ground disturbance or development can occur. This area shall be seeded with shallow-rooted native vegetation to protect the site from erosion, discovery, etc. The Applicant shall post a performance bond with the City to establish and maintain plantings for a two year period from seeding in order to establish shallow-rooted native vegetation. During construction, the archaeological site and 50-foot buffer area shall be temporarily fenced with chain link flagged with color or other material authorized by the City.

Plan Requirements and Timing. The City shall receive, review, and approve final plans prior to issuance of grading permits. A performance bond shall be posted and fencing installed prior to issuance of grading permits. The site shall be seeded during the rainy season (extending from November 1 to March 1) to optimize the chances of successful sprouting.

Monitoring. The City shall verify installation of fencing by reviewing photo documentation or by site inspection prior to issuance of grading permits, and shall ensure fencing remains in place throughout grading and construction through site inspections. The City Biologist shall inspect the Project site to ensure installation and maintenance of plantings according to plan and sign off release of the performance bond when appropriate.

MM CR-1c The final plans shall include a notation designating the known archaeological site as unbuildable area where no grading, construction, utility placement, landscaping, or other ground disturbance or development can occur. The area shall not be identified as a sensitive resource area on the plans. This site, plus the 50 foot buffer shall be
fenced during grading. The grading plan shall be modified to provide for a gradual grade transition from this sensitive area to surrounding developed areas.

Plan Requirements and Timing. The City shall receive, review, and approve final plans prior to issuance of grading permits.

MM CR-1d In the event archaeological remains are encountered during grading or other earth disturbance, work must immediately cease until a qualified archaeologist can provide an evaluation of the nature and significance of the resources, and until the Planning Director can review this information. Where, as a result of this evaluation, the Director determines that the Project may have an adverse impact on cultural resources, a Phase II Evaluation of cultural resources must be required pursuant to M.M.C. Section 17.54.040.D, funded by the Applicant. If remains are found to be significant, they shall be subject to a Phase III mitigation program consistent with City procedures included in the City Planning Department’s Archaeological Evaluation and Inventory Information document and funded by the Applicant.

If human bone or any other human remains are discovered, the procedures described in Section 7050.5 of the Health and Safety Code must be followed. The property owner or his/her representatives (i.e. architect, engineer, contractor, etc.) must notify the Los Angeles County coroner. If the coroner determines that the remains are those of a Native American, the applicant must notify the Native American Heritage Commission by phone within 24 hours. Following notification of that organization, the procedures described in Section 5097.94 and 5097.98 of the Public Resources Code must be followed.

Plan Requirements and Timing. The conditions for monitoring and treatment of discoveries shall be printed on all building and grading plans. Prior to issuance of grading permits, the applicant shall submit a contract or Letter of Commitment with an archaeologist to complete the monitoring work. The contract must include a project description and
3.3 CULTURAL RESOURCES

scope of work, and shall be prepared, executed, and submitted to the City Planning Department for review and approval.

Monitoring. City Planning Department staff shall confirm monitoring by the archaeologist and City Building and Safety Division inspectors shall spot check field work during the grading phase of the Project.

Impact Description

CR-2 Construction of a secondary hotel building and fire access road would result in potentially significant impacts to the prehistoric archaeological site CA-LAN-1715 (Class II).

Site CA-LAN-1715 is situated on the eastern portion of the Project site. This portion of the Project site would be developed with a service and fire access road and a secondary hotel building. Development of this structure and Project element, as well as overall site grading and leveling, would entail extensive alteration within site CA-LAN-1715.

Site CA-LAN-1715 is anticipated to retain low integrity due to historic disturbance from nursery operations. Documentation of the site noted that the Project archaeologist considered the one test unit and surface artifact collection to constitute complete mitigation of the site (Wlodarski 1996); however, the site may still contain intact features and additional artifacts. Implementation of MM CR-2a would require a qualified archaeologist, as defined in the LCP, and qualified Chumash cultural resources monitor to be present during any grading or other ground disturbance within 50 feet of site CA-LAN-1715. With incorporation of mitigation measures MM CR-2a and CR-2b, impacts to site CA-LAN-1715 would be significant, but subject to feasible mitigation.

MM CR-2a The Applicant shall retain a qualified archaeologist and a qualified Chumash cultural resources monitor to monitor all earth disturbances within 50 feet of site CA-LAN-1715 to ensure that previously unidentified buried archaeological deposits are not inadvertently exposed and damaged. In the event archaeological remains are encountered during grading or other earth disturbance, work must immediately cease until a qualified archaeologist can provide an evaluation of the nature and significance of the resources, and until the Planning Director can review this information. Where, as a result of this evaluation, the Director
determines that the project may have an adverse impact on cultural resources, a Phase II Evaluation of cultural resources must be required pursuant to M.M.C. Section 17.54.040.D, funded by the Applicant. If remains are found to be significant, they shall be subject to a Phase III mitigation program consistent with City procedures included in the City Planning Department’s Archaeological Evaluation and Inventory Information document and funded by the Applicant.

If human bone or any other human remains are discovered, the procedures described in Section 7050.5 of the Health and Safety Code must be followed. The property owner or his/her representatives (i.e. architect, engineer, contractor, etc.) must notify the Los Angeles County coroner. If the coroner determines that the remains are those of a Native American, the applicant must notify the Native American Heritage Commission by phone within 24 hours. Following notification of that organization, the procedures described in Section 5097.94 and 5097.98 of the Public Resources Code must be followed.

Plan Requirements and Timing. The conditions for monitoring and treatment of discoveries shall be printed on all building and grading plans. Prior to issuance of grading permits, the applicant shall submit a contract or Letter of Commitment with both the qualified archaeologist and the qualified Chumash cultural resources monitor. The contracts must include a project description and scope of work, and shall be prepared, executed, and submitted to the City Planning Department for review and approval.

Monitoring. City Planning Department staff shall confirm monitoring by the archaeologist and Chumash cultural resources monitor and City Building and Safety Division inspectors shall spot check field work during the grading phase of the Project.

3.3.3.5 Cumulative Impacts

For cultural resources, the geographic extent of cumulative impacts encompasses a relatively broad area because the importance of any individual resource can only be judged in terms of its regional context and relationship to other resources. Thus, the
significance of impacts on any given resource or group of resources must be examined in light of the integrity of the regional resource base. Because the number of cultural resources is finite, limited, and non-renewable, any assessment of cumulative impacts must take into consideration the impacts of the proposed project on resources within the Project site; the extent to which those impacts degrade the integrity of the regional resource base; and impacts other projects may have on the regional resource base. If these effects, taken together, result in a collective degradation of the resource base, then those impacts are considered cumulatively considerable.

The regional resource base is defined geographically, ethnographically, and with reference to the specific relevant administrative and management units. The geographic scope of the cumulative impact analysis takes in a region encompassing the Malibu coast, which is generally bounded by the Santa Monica Mountains to the north, the Pacific Ocean to the south, the City of Santa Monica to the east, and Point Mugu to the west. The analysis also takes into consideration the cultural geography of the Chumash and Tovanga people who occupied the region prehistorically, considering the integrity of the entire suite of resources that make up the cultural patrimony of this group. Finally, the cumulative impact analysis takes into account the resource base under the direct management and care of the City.

The classes of resources found within the Project site vicinity reflect the types of sites expected to be found within the broader geographic, cultural, and administrative region considered for the cumulative analysis. Trends that have led to degradation of the regional cultural resource base, and are expected to continue in the future, include pending, planned, and proposed commercial and residential development; continuing population growth and the associated demand for new housing and infrastructure; continuing and increasing recreational use of the regional landscape; and on-going transportation development and improvement.

Prehistoric sites in good condition are extremely rare along the Los Angeles County coastline, given the intensity of late 20th and early 21st century development (Bissell 1984). The coastal region has been extensively built up in the period since the end of World War II, with many sites destroyed with little or no research having been accomplished prior to the enactment of protection laws in the 1960s (Bissell 1995). The General Plan Conservation Element notes that many of the sites within the City have already been destroyed or disturbed (City of Malibu 1995).
According to the City’s Cumulative Project List (refer to Section 5.0, Cumulative Projects), 35 projects are either pending, approved, or are under construction within the City. Within the immediate Project vicinity, approximately 274,000 square feet of commercial development located on 60 acres is either approved for development or currently undergoing planning review; in addition, nearby developments include an additional nine single-family homes on the Crummer and Towing site properties. In addition to these pending private development projects, the City is planning for the construction of a public Civic Center Wastewater Treatment Facility (CCWTF). Both the City’s list and projection methods of identifying foreseeable projects are appropriate for defining cumulative impacts on cultural resources.

Impact Description

CR-3 Construction of the proposed Project would result in cumulatively potentially significant impacts to cultural resources on the Malibu Coast (Class II).

Based on the current analysis, two prehistoric sites on the proposed Project site may be adversely affected by the proposed Project. Both of these sites are presumed to be significant resources, though neither has been formally evaluated. Early Period sites, particularly ones of the integrity and density of CA-LAN-266, are considered extremely rare along the Los Angeles County coastline, given the intensity of late 20th and early 21st century development (Bissell 1984). There are two primary reasons why so few sites exist. First, the population at this early age was smaller. Consequently, there were fewer sites than were created in later times, and they were less complex, since the technological base was not as broad. Secondly, the coastal region has been extensively developed in the period since the end of World War II, with many sites degraded or destroyed as a result of urban development.

The pending, planned, and approved development within the Civic Center area has the potential to result in further degradation of regional coastal cultural resources, particularly given the extent of ground disturbance that would occur in previously undeveloped areas. Implementation of CEQA review for individual projects would potentially reduce individual impacts on specific sites; however, the overall disturbance to cultural resources has the potential to significantly degrade the regional resource base. Impacts to individual sites can be mitigated to less than significant through application of the proposed mitigation measures; however, the overall loss of cultural resources and
cumulative degradation of the regional resource base would be significant without implementation of proposed mitigation measures.

General Plan CON Implementation Measure 83 and LUP Policy 5.65 encourage the establishment of a museum/visitor center to display local archaeological artifacts and to provide public educational information. Therefore, additional Native American consultation (MM CR-3a) and preparation of an enthnohistory and descendant genealogy of the archaeological sites (MM CR-3b) would provide regional cultural resources overviews and research designs, and synthetic analysis and interpretation of cultural resources in regional perspective. Implementation of these measures would lessen the proposed Project’s contribution to cumulative degradation of the regional resource base. With implementation of individual site protection mitigation measures and MM CR-3a and CR-3b, the Project’s contribution to cumulative effects on Native American cultural resources would be significant, but subject to feasible mitigation.

Mitigation Measures

MM CR-3a The Applicant shall fund additional consultations with the Santa Ynez Tribal Elders Council, the archaeology expert on the City’s Environmental Review Board, and other interested Native American representatives to ensure their concerns are taken into account during the course of the Project.

Plan Requirements and Timing. The additional consultations shall be completed prior to initiation of the data collection program so that descendants may participate in the archaeological fieldwork and subsequent interpretation of the remains, if they so desire. Upon completion of consultation, the archaeologist shall supply a brief report to City indicating that the work has been completed satisfactorily and providing any additional recommendations.

Monitoring. The City Planning Department shall monitor compliance with this requirement and ensure its results are incorporated into the final cultural resource reports.
3.3 CULTURAL RESOURCES

MM CR-3b The Applicant shall fund a qualified ethnohistorian to prepare an ethnohistory and descendant genealogy of the archaeological site area.

Plan Requirements and Timing. The ethnohistory and genealogy shall be undertaken prior to initiation of the data collection program described in Mitigation Measure CR-3a so that descendants may participate in the archaeological fieldwork and subsequent interpretation of the remains, if they so desire.

Monitoring. The City Planning Department shall monitor compliance with this requirement and ensure its results are incorporated into the final cultural resource reports.

3.3.3.6 Residual Impacts

With the incorporation of specified mitigation measures, cultural resource impacts would be reduced to less than significant levels. MMs CR-1a, CR-1b, CR-2a and CR-3a would reduce direct impacts to less than significant levels.
3.4 BIOLoGICAL RESOURCES

This section describes the floral and faunal characteristics of the Project site and vicinity, with an emphasis on sensitive habitats, special-status plant and wildlife species, and potential habitat linkages. Potential Project-related impacts to biological resources are analyzed and corresponding mitigation measures to avoid or reduce significant impacts are provided.

This analysis incorporates information from biological studies previously conducted on the Project site. General and resource-specific biological surveys were conducted in 1995 and 1997 during review of a previous hotel project proposed for the subject property (Tierra Madre Consultants, Inc. 1995 1997), and more recently in studies prepared by the Applicant for the proposed Project (Rincon Consultants, Inc. 2007 2011 2012). Descriptions of the Project site’s biological characteristics are incorporated from these previous studies, as well as federal and state natural resource databases and studies. These studies have been subject to peer review and approval by the City of Malibu (City) Planning Department and the City Biologist. Approval of the data, methodologies, and conclusions of these studies provides the basis for the following analysis.

3.4.1 Existing Conditions

3.4.1.1 Regional Setting

The Project site is located in the City of Malibu (City), which encompasses the coastal terraces and canyons along the shoreline and foothills of the Santa Monica Mountains. This region is characterized by coastal and alluvial plains, marine terraces, and low-lying hills. Coastal sage scrub and chaparral are the dominant vegetative communities within this region (Griffith et al. 2011). Coastal sage scrub communities, which in this region have been significantly reduced in extent due to urban and agricultural development, are typically comprised of chamise (Adenostoma fasciculatum), white sage (Salvia apiana), black sage (Salvia mellifera), California buckwheat (Eriogonum fasciculatum), golden yarrow (Eriophyllum confertiflorum), and coastal cholla (Cylindropuntia prolifera). The chaparral-covered hills include such species as ceanothus (Ceanothus sp.), manzanita (Arctostaphylos sp.), scrub oak (Quercus sp.), and mountain mahogany (Cercocarpus sp.). Coast live oak (Quercus agrifolia), canyon live oak (Quercus chrysolepis), poison
oak (*Toxicodendron pubescens*), and California black walnut (*Juglans californica*) are also known to occur within this area (Griffith et al. 2011).

The Santa Monica Mountains in the region are typified by steep slopes and canyons generally running north to south, and primarily ephemeral and intermittent streams that drain to the Pacific Ocean. Several perennial streams, such as Malibu Creek, also occur. Within drainages and stream channels are riparian communities, generally composed of cottonwood (*Populus fremontii*), sycamore (*Platanus racemosa*), willow (*Salix* spp.), and oak trees (*Quercus* spp.). The City contains several coastal lagoons at the intersections of streams and the Pacific Ocean, including the Malibu Lagoon, located approximately 0.8 mile southeast of the Project site. Malibu’s coastline supports highly productive intertidal and marine communities, including rocky intertidal habitat and kelp beds.

3.4.1.2 Local Setting

The Project site is located at the base of the Santa Monica Mountains atop an uplifted marine terrace characterized by a relatively flat mesa top bound to the northeast, east, and south by steep slopes. It is also bordered to the east by Winter Canyon, which supports a partially channelized and undergrounded ephemeral stream that drains to the Pacific Ocean, located approximately 1/4 mile to the south of the Project site.

Development has altered habitats in the vicinity of the Project site; however, the site is near important undeveloped open space and native habitat areas, in particular the 85-acre Malibu Bluffs Park to the southwest, Malibu Creek and Lagoon to the east, and undeveloped areas in the Santa Monica Mountains to the north. Additionally, the open lawns, water features and non-native trees of Pepperdine University’s (Pepperdine) Alumni Park are located just east of the Project site.

Further, the Project site is situated adjacent to the Civic Center, which is characterized by residential, institutional and commercial development, undeveloped non-native grasslands, wetlands, fragmented areas of coastal sage scrub and chaparral, and riparian woodlands along Malibu Creek; however, much of this open land is planned for future private development (refer to Section 5.0, *Cumulative Projects*). Vegetation types in the area are primarily non-native grasses; however, native plant species also occur in this area including mature sycamore trees, telegraph weed (*Heterotheca grandiflora*),
3.4 BIOLOGICAL RESOURCES

California buckwheat (*Eriogonum fasciculatum*), and narrow-leaved milkweed (*Asclepias fascicularis*).

3.4.1.3 Project Site Setting

The Project site spans 27.8 acres and supports a mix of disturbed and intact coastal sage scrub, native grasses, and ruderal or weedy vegetation. Small areas of native trees and groves of non-native trees also occur within the boundaries of the Project site. These habitats are discussed in the following sections.

Vegetative Communities

The vegetation on the Project site is generally comprised of coastal sage scrub and native grasslands, but also contains many nursery trees and shrubs (part of a former nursery that operated on the Project site), and patches of ruderal grassland. The central portions of the site are generally disturbed; however, the majority of the landscape is succeeding to coastal sage scrub habitat. Onsite vegetative communities have been subject to repeated burning in recent wildfires, including during the October 1996 Calabasas fire and the 2007 Malibu Canyon Fire (National Resources Conservation Service [NRCS] 1996; United States Forest Service [USFS] 2008). Since preparation of the 1998 EIR for a previous project on the subject property, wildfires have altered the vegetative cover on the Project site. While the plant communities remain similar to those described in 1997, the biological survey conducted in 2007 revealed the continued succession of coastal sage scrub in the abandoned nursery area, as well as the establishment of native foothill needlegrass (*Nassella lepida*) and saltgrass-fasciculed tarplant grasslands.¹ The most recent survey conducted in 2011 identified five plant communities, with successional coastal sage scrub dominating the central and western portions of the Project site, and dense, intact coastal sage scrub dominating the northeastern and eastern perimeter (Table 3.4-1 and Figure 3.4-1). These plant communities are further described below.

¹ Ecological succession is the observed process of change in the species structure of an ecological community over time.
Vegetative Communities at the Project Site

FIGURE 3.4-1
Table 3.4-1. Summary of Vegetative Community Coverage

<table>
<thead>
<tr>
<th>Community Type</th>
<th>1997 Survey</th>
<th>2011 Survey¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dense, Intact Coastal Sage Scrub</td>
<td>8.0</td>
<td>10.75</td>
</tr>
<tr>
<td>Foothill Needlegrass Patches</td>
<td>0</td>
<td>0.61</td>
</tr>
<tr>
<td>Successional Coastal Sage Scrub with Ornamentals</td>
<td>18.0</td>
<td>14.06</td>
</tr>
<tr>
<td>Saltgrass-Fasciculed Tarplant Fields</td>
<td>0</td>
<td>1.84</td>
</tr>
<tr>
<td>Disturbed/Ruderal</td>
<td>1.8</td>
<td>0.88</td>
</tr>
<tr>
<td>Eroded Canyon</td>
<td>0</td>
<td>0.15</td>
</tr>
<tr>
<td>Total</td>
<td>27.8</td>
<td>28.3</td>
</tr>
</tbody>
</table>

Note: ¹Area calculations are based on GIS data and may not perfectly match real property acreages.

Dense, Intact Coastal Sage Scrub

The north- and east-facing slopes of the site in Winter Canyon above Civic Center Way support approximately 10.75 acres of dense, intact coastal sage scrub. The established coastal sage scrub is dominated by laurel-leaf sumac (*Malosma laurina*). Associate species of the intact coastal sage scrub onsite include California sagebrush (*Artemisia californica*), coyote brush (*Baccharis pilularis*), Southern California black walnut (*Juglans californica* var. *californica*), coast ash buckwheat (*Erigonum cinereum*), white sage (*Salvia apiana*), purple sage (*Salvia leucophylla*), bush poppy (*Dendromecon rigida*), and sawtooth goldenbush (*Hazardia squarrosa*). Openings within this area contain foothill needlegrass patches, as discussed below (Rincon Consultants, Inc. 2011). The Applicant-prepared biological study, which was reviewed and approved by the City Biologist, concluded that plant community does not qualify as Environmentally Sensitive Habitat Area (ESHA) as defined by the Malibu Local Coastal Program (LCP) (Rincon Consultants, Inc. 2011).
3.4 Biological Resources

Foothill Needlegrass Patches

The foothill needlegrass patches observed onsite are located along the top of the north-facing slope on level portions of the mesa top, immediately south of the dense, intact coastal sage scrub. These patches are dominated by foothill needlegrass, but also include cudweed aster (*Lessingia filaginifolia*), soap plant (*Chlorogalum pomeridianum* var. *pomeridianum*), and small-flowered melicgrass (*Melica imperfecta*), with elements of coastal sage scrub mixed in at the margins of the patches (Rincon Consultants, Inc. 2011). Such pockets of native grasslands are not unusual features in coastal sage scrub habitats, particularly during successional phases after disturbance such as wildfires.

Successional Coastal Sage Scrub with Ornamentals

The majority of vegetation on the Project site is comprised of remnant and successional coastal sage scrub with abandoned ornamental plantings, remnants of historic nursery uses onsite. The successional coastal sage scrub dominates the level mesa top areas of the site, comprising approximately 14.06 acres. This community is generally less dense and more disturbed than coastal sage scrub habitat that occurs on the slopes. This vegetative community is dominated by laurel-leaf sumac and similar species to those present in the dense, intact coastal sage scrub; however, this area also includes non-native tree species, such as Mexican fan palm (*Washingtonia robusta*) and Tasmanian blue gum (*Eucalyptus globules*), as well as non-native understory of species, such as red brome (*Bromus madritensis* spp. *rubens*), soft chess (*Bromus hordeaceus*), sweet fennel (*Foeniculum vulgare*) and black mustard (*Brassica nigra*). Additionally, five coast live oaks are located within this area. Openings in this somewhat disturbed vegetation community also support sensitive native vegetation including saltgrass-fasciculed tarplant fields, which are discussed below (Rincon Consultants, Inc. 2011).
3.4 BIOLOGICAL RESOURCES

Saltgrass-fasciculed Tarplant Fields

Several large openings on the mesa are dominated by two native species, alkaline saltgrass (*Distichlis spicata*) and fasciculed tarplant (*Deinandra fasciculate*). Other associated species include western ragweed (*Ambrosia psilostachya var. californica*), scarlet pimpernel (*Anagallis arvensis*), southwestern carrot (*Daucus pusillus*), green everlasting (*Pseudognaphalium californicum*), deerweed (*Lotus scoparius*), and coast prickly-pears (*Opuntia littoralis*) (Rincon Consultants, Inc. 2011). The Applicant-prepared biological study, that was reviewed and approved by the City Biologist, concluded that this plant community does not qualify as ESHA per the LCP (Rincon Consultants, Inc. 2011).

Disturbed/Ruderal

The Project site also contains several open dirt areas with sparse, ruderal vegetation. Species observed here include horsetail (*Conyza canadensis*), summer mustard (*Hirschfeldia incana*), tree tobacco (*Nicotiana flauca*), and annual grasses (Rincon Consultants, Inc. 2011).

Wildlife Resources

Vegetative communities on the Project site provide suitable habitat for a variety of wildlife species, particularly reptiles, birds, and small mammals. Wildlife observed or indirectly detected onsite during biological surveys are listed in Table 3.4-2. The species identified on the Project site are primarily considered common to the region; however, special status or rare species have the potential to occur on the Project site, and are further discussed below.

In addition, previously prepared biological resource studies identified 15 additional common species that are expected to utilize the site, but were not observed during field surveys, including two reptiles, 10 birds, and three mammals (Rincon Consultants, Inc. 2011).
3.4 BIOLOGICAL RESOURCES

Table 3.4-2. Wildlife Species Documented on the Project Site

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reptiles</td>
<td></td>
</tr>
<tr>
<td>Maticophis sp.</td>
<td>Whipsnake</td>
</tr>
<tr>
<td>Sceloporus occidentalis</td>
<td>Western fence lizard</td>
</tr>
<tr>
<td>Uta stansburiana</td>
<td>California side-blotched lizard</td>
</tr>
<tr>
<td>Birds</td>
<td></td>
</tr>
<tr>
<td>Anas sp.*</td>
<td>Duck</td>
</tr>
<tr>
<td>Aphelocoma coerulescens</td>
<td>Scrub jay</td>
</tr>
<tr>
<td>Aredea herodia*</td>
<td>Great blue heron</td>
</tr>
<tr>
<td>Buteo lieatus</td>
<td>Red-shouldered hawk</td>
</tr>
<tr>
<td>Calypte anna</td>
<td>Anna’s hummingbird</td>
</tr>
<tr>
<td>Carpodacus mexicanus</td>
<td>House finch</td>
</tr>
<tr>
<td>Chamaea fasciata</td>
<td>Wrentit</td>
</tr>
<tr>
<td>Corvus brachyrhynchose</td>
<td>American crow</td>
</tr>
<tr>
<td>Corvus corax*</td>
<td>Common raven</td>
</tr>
<tr>
<td>Geococcyx californianus</td>
<td>Greater roadrunner</td>
</tr>
<tr>
<td>Larus sp.*</td>
<td>Gull</td>
</tr>
<tr>
<td>Melospiza melodia</td>
<td>Song sparrow</td>
</tr>
<tr>
<td>Melozone crissalis</td>
<td>California towhee</td>
</tr>
<tr>
<td>Mimus polyglottos</td>
<td>Northern mockingbird</td>
</tr>
<tr>
<td>Psaltriparus minimus</td>
<td>Bushtit</td>
</tr>
<tr>
<td>Regulus calendula</td>
<td>Ruby-crowned kinglet</td>
</tr>
<tr>
<td>Sturnus vulgaris*</td>
<td>European starling</td>
</tr>
<tr>
<td>Thyomanes bewikii</td>
<td>Bewick’s wren</td>
</tr>
<tr>
<td>Toxostoma redivivum</td>
<td>California thrasher</td>
</tr>
<tr>
<td>Zenaida macroura</td>
<td>Mourning dove</td>
</tr>
<tr>
<td>Zonotrichia leucophyrs</td>
<td>White-crowned sparrow</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mammals</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Canis latrans</td>
<td>Coyote</td>
</tr>
<tr>
<td>Neotoma sp.</td>
<td>Wood rate</td>
</tr>
<tr>
<td>Spermophilus beecheyi</td>
<td>California ground squirrel</td>
</tr>
<tr>
<td>Sylvilagus audubonii</td>
<td>Audubon’s cottontail</td>
</tr>
<tr>
<td>Thomomys bottae</td>
<td>Botta’s pocket gopher</td>
</tr>
</tbody>
</table>

Note: * Observed flying over the Project site during the biological assessment conducted in 1995. Sources: Tierra Madre Consultants 1995 and Rincon Consultants, Inc. 2007, 2011.
Special-Status Biological Resources

Special-status biological resources are biotic communities, taxa, or other unique features that are afforded special protection by local land use policies and/or state and federal regulations. Biotic communities may warrant special status if they are of limited distribution, support protected plants and wildlife, or are particularly vulnerable to disturbance. Special-status plant or wildlife taxa are those that are listed as threatened or endangered under the California Endangered Species Act (CESA) and/or Federal Endangered Species Act (FESA) or those that appear on various “watch lists” compiled by wildlife agencies, academic institutions, and conservation organizations.

Special-Status Plants

No federally or state-listed threatened or endangered plant species were observed during the biological surveys conducted on the Project site. However, two special status plant species have been documented onsite, including Plummer’s baccharis (Baccharis plummerae ssp. plummerae) and Southern California black walnut (Rincon Consultants, Inc. 2011). Both of these species are California Rare Plant Rank (CRPR) 4, indicating that they are of limited distribution throughout a broad area in California (California Native Plants Society [CNPS] 2012).

Additionally, suitable habitat exists within the Project site for four additional special status plant species including Coulter’s saltbush (Atriplex coulteri), slender mariposa-lily (Calochortus clavatus var. gracilis), Plummer’s mariposa-lily (Calochortus plummerae) and Santa Monica dudleya (Dudleya cymosa ssp. ovatifolia). None of these special-status plant species was observed during the 2007 and 2011 biological surveys; however, a moderate potential exists for these species to occur onsite within the dense, intact coastal sage scrub area (Rincon Consultants, Inc. 2011).

While coast live oak, Southern California black walnut, and toyon were each observed within the Project site, none of these trees met the combined two-trunk, 8-inch diameter at breast height requirement for protection under LCP Local Implementation Plan (LIP) Chapter 5, Native Tree Protection. However, observed individuals were generally healthy with new shoot growth and no sign of disease (Rincon Consultants, Inc. 2011).
Special Status Wildlife

No species listed on the FESA, CESA, or California Department of Fish and Wildlife (CDFW) species of special concern list were observed during the biological surveys conducted on the Project site (Tierra Madre Consultants 1995; Rincon Consultants, Inc. 2011). However, there is suitable habitat for three special status wildlife species including the coastal whiptail (Aspidoscelis tigris stejnegeri), San Diego desert woodrat (Neotoma lepida intermedia), and coast horned lizard (Phynosoma blainvillii), all of which are CDFW species of special concern (Rincon Consultants, Inc. 2012; CDFW 2011). While none of these species was observed on the Project site, a moderate potential exists for these species to occur onsite within the dense, intact coastal sage scrub (Rincon Consultants, Inc. 2011).

In addition to these species, a number of additional CDFW species of special concern could visit or utilize the Project site, including two reptile species, six bird species, and five mammal species (Tierra Madre Consultants 1995). Sensitive wildlife species that have been identified in previous studies as having a potential to occur within the Project site are included in Table 3.4-3, below.
3.4 BIOLOGICAL RESOURCES

Table 3.4-3. CDFW Species of Special Concern with the Potential to Occur within the Project Site

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name</th>
<th>Occurrence Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reptiles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anniellia pulchra pulchra</td>
<td>Silvery legless lizard</td>
<td>High</td>
</tr>
<tr>
<td>Aspidoscelis tigris stejnegeri</td>
<td>Coast whiptail</td>
<td>Moderate†</td>
</tr>
<tr>
<td>Phrynosoma blainvillii</td>
<td>Coast horned lizard</td>
<td>Moderate†</td>
</tr>
<tr>
<td>Salvadora hexalepis virgultea</td>
<td>Coast patch-nosed snake</td>
<td>High</td>
</tr>
<tr>
<td>Birds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aimophila ruficeps canescens*</td>
<td>Southern California rufous-crowned sparrow</td>
<td>High</td>
</tr>
<tr>
<td>Aquila chrysaetos</td>
<td>Golden eagle</td>
<td>Expected (Foraging)</td>
</tr>
<tr>
<td>Buteo regalis</td>
<td>Ferruginous hawk</td>
<td>Expected (Winter/Migration)</td>
</tr>
<tr>
<td>Eremophila alpestris actia</td>
<td>California horned lark</td>
<td>High (Winter)</td>
</tr>
<tr>
<td>Falco columbaris</td>
<td>Merlin</td>
<td>Expected (Foraging/Migration)</td>
</tr>
<tr>
<td>Lanius ludovicianus</td>
<td>Loggerhead shrike</td>
<td>High</td>
</tr>
<tr>
<td>Mammals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eumops perotis californicus</td>
<td>California mastiff bat</td>
<td>High (Foraging)</td>
</tr>
<tr>
<td>Lepus californicus bennettii</td>
<td>San Diego black-tailed jackrabbit</td>
<td>High</td>
</tr>
<tr>
<td>Neotoma lepida intermedia</td>
<td>San Diego desert woodrat</td>
<td>Moderate</td>
</tr>
<tr>
<td>Onychomys torridus ramona</td>
<td>Southern grasshopper mouse</td>
<td>High</td>
</tr>
<tr>
<td>Plecotus townsendii pallescens</td>
<td>Townsend’s big-eared bat</td>
<td>Moderate</td>
</tr>
<tr>
<td>Taxidea taxus</td>
<td>American badger</td>
<td>High</td>
</tr>
</tbody>
</table>

Occurrence Probability

- **Expected**: Expected to occur on the site, at least occasionally.
- **High**: Observed in a similar habitat type within the region or habitat on the site is a type often utilized by the species and the site is within the known range of the species.
- **Moderate**: Sightings have been recorded in the surrounding region or the site is within the known range of the species and the habitat on the site is a type occasionally used by the species.

Notes:
- *Species is listed as a CDFW Watch List species not as a Species of Special Concern.
- † Species were assigned a moderate probability of occurrence by Rincon Consultants, Inc. (2011), but were assigned a high probability of occurrence by Tierra Madre Consultants (1995).

Sources: Tierra Madre Consultants 1995 and Rincon Consultants, Inc. 2011.
Additionally, coastal sage scrub and large trees (i.e., *Eucalyptus* spp.) on the Project site may be attractive for nesting bird species, which are protected under the California Fish and Game Code. However, accessible trees and shrubs onsite were examined during biological surveys and no active nests were observed (Rincon Consultants, Inc. 2011).

Environmentally Sensitive Habitat Area (ESHA)

ESHA is accorded special status under the City’s LCP due to its biological productivity, rarity or ecological importance. The Project site does not support any mapped ESHA (see the LCP ESHA and Marine Resources Map). Additionally, while unmapped coastal sage scrub or native grassland can still meet the requirements for ESHA in accordance with LCP Land Use Plan (LUP) Policy 3.4, the areas within the Project site do not qualify for the following reasons (Rincon Consultants, Inc. 2011):

- Although a small area of riparian habitat occurs in Winter Canyon just offsite to the southeast, no riparian or wetland habitat that would qualify as ESHA occurs onsite (Rincon Consultants, Inc. 2011). Additionally, coastal sage scrub habitat and native grassland patches that occur within the Project site are relatively small and isolated from other known ESHA. Consequently, the Project site does not support any habitat area that is rare or especially valuable from a local, regional, or statewide basis;

- The native grassland patches are relatively small, isolated from other known ESHA grasslands in the area to the southwest, and do not contain rare plant species (Rincon Consultants 2011). Intact, dense high quality coastal sage scrub habitat lacks direct high quality connectivity to other nearby large native habitat blocks due to the surrounding roadway. While two locally important plant species were observed onsite, the presence of these species does not qualify the onsite habitat to be ESHA. They also are not designated as 1B (rare or endangered in California and elsewhere) or 2 (rare, threatened or endangered in California but more common elsewhere) by the California Native Plant Society, which are considered worth of rarity status as stated in LUP Policy 3.4(d). Consequently, the Project site does not support any areas that contribute to the viability of plant or wildlife species designated as rare, threatened, or endangered under state or federal law;
• No species listed on the FESA, CESA, or CDFW species of special concern list have been observed on the Project site (Tierra Madre Consultants 1995; Rincon Consultants, Inc. 2011). While species of special concern may be transient visitors to the Project site, suitable habitat on the Project site is limited. Therefore, the Project site does not support any areas that contribute to the viability of species designated as Fully Protected or Species of Special Concern under state law or regulations; and

• Plant species that are considered to be especially valuable or rare (i.e. CRPR 1 or 2) do not occur on the Project site. Consequently, the Project site does not support any areas that contribute to the viability of plant species for which there is compelling evidence of rarity, for example, those designated 1B (rare or endangered in California and elsewhere) or 2 (rare, threatened or endangered in California but more common elsewhere) by the California Native Plant Society.

Mapped ESHA located nearest to the Project site occurs within Malibu Bluffs Park, approximately 300 feet to the southwest. This habitat is characterized by coastal sage scrub, areas of chaparral, and also includes Coulter’s saltbush (*Atriplex coulteri*) (CRPR 1B.2) (CDFW 2012).

Wetlands and Streams

No jurisdictional wetlands occur within the boundaries of the Project site and the majority of the segment of Winter Creek along or adjacent to the site has been undergrounded in a culvert. The nearest wetland in the vicinity of the Project site is located approximately 400 feet to the east of the site boundary in what appears to be a 300 foot-long segment of open channel of Winter Creek. The United States Fish and Wildlife Service (USFWS) National Wetland Survey lists this 0.11-acre area as a freshwater forested/shrub wetland (USFWS 2012). A culvert conveys Winter Creek under Pacific Coast Highway (PCH) where it daylights into an open, shallow channel for about 500 feet before entering the Winter Canyon Drain, which routes the flow beneath Malibu Road and the beachfront properties before emptying into the Pacific Ocean (Figure 3.4-2).
Biological Resources within the Vicinity of the Project Site

Sources: Santa Monica Mountains Conservancy (2012); Malibu Local Coastal Program (2002); Malibu General Plan (1995); Rincon Consultants, Inc. (2011); and City of Malibu (1998).
3.4 BIOLOGICAL RESOURCES

The gully located on the hillsides in the southeast corner of the Project site does not appear to exhibit wetland characteristics (e.g., definable bed, bank, channel, or ordinary high water mark) and appears to be erosional in nature (Rincon Consultants, Inc. 2011). Finally, two man-made detention ponds, which are approximately 0.99 acres and 1.22 acres in area, are located to the east of the Project site in Pepperdine’s Alumni Park (USFWS 2012).

The nearest major undeveloped stream in the Project vicinity is Malibu Creek, located approximately 0.8 miles to the east. Malibu Creek is federally-designated critical habitat for the tidewater goby (Eucyclogobius newberryi) and the southern steelhead (Oncorhynchus mykiss) (CNDDB 2012). The Project site is separated from Malibu Creek and its watershed by Civic Center Way and a ridge approximately 1,000 feet east of the Project site. The Project site is located within the Solstice-Canyon-Frontal Santa Monica Bay watershed (Hydraulic Unit Code 180701040404). The nearest water feature within this watershed is the Winter Canyon Montaine Drainage (City of Malibu 1995).

Habitat Linkages

Habitat linkages connect discrete areas of natural habitat otherwise separated or fragmented by topography, changes in vegetation, and other natural or human-induced factors, such as urbanization. The fragmentation of natural habitat creates isolated “islands” of vegetation that may not provide sufficient area or resources to accommodate sustainable species populations and thus, adversely affects both genetic and species diversity. The City maintains a map of identified migratory wildlife corridors in the City’s General Plan (1995). There are no regional or migratory wildlife corridors identified within the Project site (see Figure CO-3, “Environmentally Sensitive Resource Protection Areas,” within the Conservation Element of the General Plan).

The undeveloped habitats on the Project site currently support both intact and disturbed areas of primarily coastal sage scrub habitat. Although surrounded by two- and four-lane roads on all sides as well as urban development to the east and the landscaped areas of Alumni Park to the west, onsite habitats exhibit some degree of linkage to surrounding open lands in the Santa Monica Mountains to the north and the Malibu Bluffs Park to the south. Open land to the north includes steep coastal sage scrub-covered hillsides as well as the open natural channel of Winter Creek. To the south, open lands of Malibu Bluffs Park include the Crummer property and the City-owned portion of Malibu Bluffs Park.
south of the Project site, and the Santa Monica Mountains Conservancy-owned Malibu Bluffs Park to the southwest. The Crummer property supports open grassland and coastal sage scrub habitat, coast live oaks, and two drainages. The City’s portion of Malibu Bluffs Park supports primarily developed recreational fields, while the Conservancy-owned portion of Malibu Bluffs Park contains an assemblage of coastal sage scrub, chaparral, and coastal bluff vegetation elements that are now rare in the Santa Monica Mountains (Santa Monica Mountains Conservancy 2012).

Given the proximity of the site to open lands to the north and south, birds residing in these open lands may use habitats on the site for foraging or a relatively undisturbed flyway to transit from the Santa Monica Mountains to Malibu Bluffs Park. Even larger mammals, such as coyote, bobcat or deer, may cross Alumni Park and the two-lane segment of Malibu Canyon Road to access the Project site, particularly during nighttime hours when traffic volumes are low. Access between the Project site and Malibu Bluffs Park for mammals may be more constrained due to the presence of PCH, but the Winter Creek culvert provides access for mammals to the Crummer and Towing properties and larger mammals may cross PCH, particularly during night time hours when traffic volumes are low. Thus, although constrained by roads and intervening development, the Project site appears to provide one of only two habitat linkages between the Santa Monica Mountains and the Malibu Bluffs Park, with the other being Puerco Canyon to the west (Figure 3.4-2) (Santa Monica Mountains Conservancy 2012).

3.4.2 Regulatory Framework

3.4.2.1 Federal Regulations

Endangered Species Act (ESA) (16 USC § 1531 et seq.). The ESA provides for the conservation and management of federally listed threatened or endangered plants and wildlife and their designated critical habitats. Section 3 of the ESA defines threatened and endangered categories as:

- **Endangered** – a plant or wildlife species that is in danger of extinction throughout all or a significant portion of its range.

- **Threatened** – a plant or wildlife species that is likely to become an endangered species within the foreseeable future throughout all or a significant portion of its range.
Section 7 of the ESA requires a permit to take threatened or endangered species during lawful project activities. The USFWS is the administering agency charged with managing and enforcing the ESA for terrestrial, avian, and most freshwater aquatic species.

Migratory Bird Treaty Act (MBTA) (16 USC § 703 et seq.). The MBTA implements various treaties and conventions providing protection for “migratory birds” as defined in 16 USC Section 715j. The MBTA makes it unlawful for any person to take, kill, capture, collect, possess, buy, sell, trade, ship, import, or export any migratory bird, including feathers, parts, nests, or eggs. The MBTA applies to incidental take of migratory birds (e.g., the destruction of an active nest due to vegetation clearing); however, the MBTA does not protect the habitats of migratory birds in the absence of protected species.

Clean Water Act (CWA) (33 USC § 1251 et seq.). The CWA aims to restore and maintain the chemical, physical, and biological integrity of the Nation’s waters. Under Section 401, states have authority to review federal permits that may result in a discharge to wetlands or water bodies under state jurisdiction. Under Section 404, a program is established to regulate the discharge of dredged or fill material into the Nation’s waters, including wetlands.

3.4.2.2 State Regulations

California Fish and Game Code. The California Fish and Game Code provides specific protection and listing for several types of biological resources including:

- Fully protected species;
- Streams, rivers, sloughs, and channels;
- Significant natural areas; and,
- Designated ecological reserves.

Fully Protected Species are listed in Fish and Game Code Section 3511 (Fully Protected birds), Section 4700 (Fully Protected mammals), Section 5050 (Fully Protected reptiles and amphibians), and Section 5515 (Fully Protected fishes). The Code prohibits the taking of species designated as Fully Protected.
Species may qualify for formal protection under the CEQA. Public Resources Code Section 15380 defines “rare” and “endangered” species as follows:

Endangered – species survival and reproduction in the wild is in immediate jeopardy from one or more causes, including loss of habitat, competition, disease, or other factors; or

Rare –

- Although not presently threatened with extinction, the species is existing in such small numbers throughout all or a significant portion of its range that it may become endangered if its environment worsens; or,

- The species is likely to become endangered within the foreseeable future throughout all or a significant portion of its range and may be considered “threatened” as that term is used in the ESA.

Wildlife or plants shall also be presumed to be rare or endangered as it is listed in:

1. Sections 670.2 or 670.5, Title 14, California Administrative Code; or
2. Title 50, CFR Sections 17.11 or 17.12 pursuant to the ESA as rare, threatened, or endangered.

Species may, under certain circumstances, be protected by CEQA statutes, even if they are not registered under federal or state programs. These include the majority of plants on the CNPS Lists 1B as well as others that are identified as rare, threatened, or endangered, regardless of recognition by the USFWS, CDFW, or CNPS. Section 15380 also states that:

- A species not included in any listing identified in subsection (c) [federal or state listing] shall nevertheless be considered to be rare or endangered if the species can be shown to meet the criteria in subsection (b) [CEQA definition of ‘rare’ or ‘endangered’].

Sections 1600 through 1616 of the California Fish and Game Code regulate impacts to the natural flow, bed, channel and embankments of state waters, including lakes and
3.4 BIOLOGICAL RESOURCES

streams. This Code section, otherwise known as the Lake and Streambed Alteration Program, is administered by the CDFW. Typical activities that require a Streambed Alteration Agreement include excavation or fill placed within a channel, vegetation clearing, structures for diversion of water, installation of culverts and bridge supports, cofferdams for construction dewatering, and bank reinforcement.

California Endangered Species Act (CESA) (California Fish and Game Code §§ 2050 et seq.). The CESA states that all native species of fishes, amphibians, reptiles, birds, mammals, invertebrates and plants, and their habitats, threatened with extinction and those experiencing a significant decline that, if not halted, would lead to a threatened or endangered designation, will be protected or preserved. However, CESA allows for take incidental to otherwise lawful development projects, with a CESA Incidental Take Permit. CESA emphasizes early consultation to avoid potential impacts to rare, endangered, and threatened species and to develop appropriate mitigation planning to offset project caused losses of listed species populations and their essential habitats.

3.4.2.3 Local Policies and Regulations

City of Malibu Local Coastal Program. The California Coastal Act requires that its goals and policies be implemented by local governments through the LCP. The Malibu LCP consists of two subparts, the Land Use Plan (LUP) and the Local Implementation Plan (LIP).

LCP Land Use Plan

Malibu LCP policies are contained within the LUP. The policies pertaining to biological resources identified in the LUP and relevant to the proposed Project are listed below:

- **Policy 3.1**: Areas in which plant or wildlife or their habitats are either rare or especially valuable because of their special nature or role in an ecosystem and which could be easily disturbed or degraded by human activities and developments are ESHA. The ESHA in the City of Malibu include, riparian areas, streams, active woodlands, native grasslands/savannas, chaparral, coastal sage scrub, and wetlands, unless there is site-specific evidence that establishes that a habitat area is not especially valuable because of its special nature or role in the ecosystem.

- **Policy 3.4**: Any area not designated on the LUP ESHA Map that meets the ESHA criteria is ESHA and shall be afforded all the protection provided for ESHA in the
LCP. The following areas shall be considered ESHA, unless there is compelling
site-specific evidence to the contrary:

- Any habitat area that is rare or especially valuable from a local, regional, or
 statewide basis.
- Areas that contribute to the viability of plant or wildlife species designated as
 rare, threatened, or endangered under state or federal law.
- Areas that contribute to the viability of species designated as Fully Protected
 or Species of Special Concern under state law or regulations.
- Areas that contribute to the viability of plant species for which there is
 compelling evidence of rarity, for example, those designated 1B or 2 by the
 CNPS.

- **Policy 3.59**: All new development shall be sited and designed to minimize
 required fuel modification and brushing to the maximum extent feasible in order
 to minimize habitat disturbance or destruction, removal or modification of natural
 vegetation, and irrigation of natural areas, while providing for fire safety.
- **Policy 3.63**: New development shall be sited and designed to preserve oak,
 walnut sycamore, alder, toyon, or other native trees that are not otherwise protect
 as ESHA. Removal of native trees shall be prohibited except where no other
 feasible alternative exists. Structures, including roads or driveways, shall be sited
 to prevent any encroachment into the root zone and to provide an adequate buffer
 outside of the root zone of individual native trees in order to allow for future
 growth.

LCP Local Implementation Plan

The purpose of the LIP is to carry out the policies of the LUP. The Chapters of the LIP
pertaining to biological resources and relevant to the proposed Project are listed below.
For specific development standards within these chapters, please refer to the LIP:

- **Chapter 4 – ESHA Overlay**: The purpose of the ESHA overlay zone is to
 protect and preserve areas in which plant or animal life or their habitats are either
 rare or especially valuable because of their special nature or role in an ecosystem,
 which could easily be disturbed or degraded by human activities and
 development.
- **Chapter 5 – Native Tree Protection**: The purpose of the Native Tree Protection
 Chapter is to 1) recognize the importance of native oak, walnut, sycamore, alder
 and toyon trees in preventing the erosion of hillsides and stream banks,
 moderating water temperatures in streams through shading, contributing nutrients
to streams, supporting a wide variety of wildlife species through the provision of food, nesting, and roosting cover, and contributing to the scenic quality of the community; and 2) to provide for the protection and preservation of these native trees.

- **17.40.080(f) – Commercial development standards.** Where feasible, all structures shall be set back a minimum of 100 feet from an ESHA and other designated environmentally sensitive areas.

- **17.43.070(B) – Types of restorative action.** Where removal of vegetation is required, replacement by appropriate native species shall be considered.

- **17.62.050 – Environmental Review Board Review.** Projects shall be referred to the Environmental Review Board for review when a Project is in an ESHA or within 100 feet of an ESHA.

City of Malibu General Plan (1995). The City’s General Plan is primarily a policy document that sets goals and policies concerning the community and gives direction to growth and development. In addition, it outlines the programs that were developed to accomplish the goals and policies with it sets forth.

Conservation Element

The General Plan contains several objectives and policies for land development in the Conservation (CON) Element.

- **CON Objective 1.1:** Natural Resources Managed in Accordance with this Comprehensive Natural Resources Protection and Management Plan.

 o **CON Policy 1.1.1:** The City shall minimize disruption of natural systems and areas rich in biodiversity and avoid consumption of ecologically sensitive lands including ESHA, significant watersheds, wildlife habitat linkages, disturbed sensitive resource areas, blueline streams and significant oak woodlands.

 o **CON Policy 1.1.2:** The City shall protect riparian areas and undisturbed areas within significant watersheds and wildlife habitat linkages through the use of open space or conservation easements or equivalent measures.
o **CON Policy 1.1.3**: The City shall protect and preserve, and where reasonable and feasible reclaim, the delicately balanced ecosystem of the Santa Monica Mountains and adjacent coastline area.

o **CON Policy 1.1.4**: The City shall protect ESHA as a priority over development and against any significant disruption of habitat values.

o **CON Policy 1.1.5**: The City shall protect and reclaim Malibu’s threatened natural resources such as the beaches, estuaries, intertidal zone and marine habitats, estuaries, marine life, ocean, tide pools, streams, waterfalls, wetlands, wildlife and plant life and their habitats.

• **CON Objective 1.2**: Wildlife and Biota Resources Preserved, Protected and Reclaimed.

 o **CON Policy 1.2.1**: The City shall preserve wildlife habitats and habitat linkages.

 o **CON Policy 1.2.2**: The City shall protect, preserve and reclaim very threatened plant community types that occur in Malibu, as inventoried by the Department of Fish and Game with special emphasis on these: Southern Coastal Bluff Scrub; Southern Dune Scrub; Valley Needlegrass Grassland; Southern Foredunes; Venturan Coastal Sage Scrub; Coastal Brackish Marsh; Coastal and Valley Freshwater Marsh; Southern Willow Scrub; California Walnut Woodland; and Valley Oak Woodland.

 o **CON Policy 1.2.3**: The City shall mitigate net loss of very threatened plant communities.

 o **CON Policy 1.2.5**: The City shall discourage plant species which are invasive in the Santa Monica biogeographic area where such invasive plant species would degrade native plant communities.

 o **CON Policy 1.2.6**: The City shall discourage the use of insecticides, herbicides or toxic chemical substances (excepting non-regulated home pesticides) within the City or if ESHA, raptors, and other wildlife could be adversely affected except in an emergency which threatens wildlife or the habitat itself.

 o **CON Policy 1.2.7**: The City shall reduce impacts resulting from night lighting so as not to disturb natural habitats.

 o **CON Policy 1.2.9**: The City shall apply setback requirements, determined by site-specific analysis, to new septic systems for protection of oak and riparian woodlands, and to prevent lateral seepage into stream or coastal waters.
3.4.3 Environmental Impacts

3.4.3.1 Thresholds of Significance

In accordance with Appendix G of the CEQA Guidelines, the proposed Project would result in a significant effect under CEQA if it were to:

a) Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the CDFW or USFWS;

b) Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, or regulations, or by the CDFW or USFWS;

c) Have a substantial adverse effect on federally protected wetlands as defined by Section 404 of the Clean Water Act (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means;

d) Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites;

e) Conflict with any local policies or ordinances protecting biological resources, such a tree preservation policy or ordinance; or

f) Conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan.

3.4.3.2 Impact Assessment Methodology

Impacts were analyzed by evaluating the Project’s effects on vegetative communities, individual occurrences of plant and wildlife species, and habitat linkages. The configuration of the Project site was considered in relation to the present biological setting based on site-specific information obtained from several sources, as described in Section 3.4.1. Significance criteria were then developed and used to evaluate potential impacts.
3.4 BIOLOGICAL RESOURCES

3.4.3.3 1986 and 1998 Project Environmental Review Findings

Developers have been attempting to permit and construct a hotel at the Project site for many years, and efforts to date have included obtaining CCC approval for a 300-room hotel in 1986, completion of a certified EIR in 1997 and approval of a previous 146-room hotel design by the Malibu City Council in 1998. Applicable findings of environmental review performed for these projects are described below.

California Coastal Commission 1986 Approval of a 300-Room Hotel

In January 1986, the California Coastal Commission (CCC) approved the following project (Permit No. 5-85-418) for the subject property: 300 room hotel (222,200 square feet), 32,800 square foot community center, offices, restaurant, information kiosk and art center, and 1,039 parking spaces. The CCC’s approval has been kept valid over the years and the most recent permit extension (the 26th extension) was issued by the CCC setting the new expiration date as January 7, 2014. The EIR completed for this project did not assess potential impacts to biological resources.

Findings of the 1998 Project EIR

The 1998 EIR determined that grading and development associated with that project would impact 19.76 acres of disturbed grassland/coastal sage scrub, ornamental landscaping, and disturbed vegetation, as well as 2.0 acres of the total 8.04 acres of undisturbed coastal sage scrub habitat. However, the EIR determined that with the entire undisturbed coastal sage scrub community would be impacted by proposed fuel modification and waste water disposal. The EIR also determined that impacts to coastal sage scrub would indirectly impact wildlife that use this habitat, particularly birds and large mammals that move between Malibu Bluffs Park and the Santa Monica Mountains via the Project site. Consequently, the EIR and the City Council (Resolution No. 98-001) required the purchase of a conservation easement, which was required to have similar physical and biological characteristics, as well as an acreage, that would achieve a replacement ratio no less than 2:1. Additionally, the 1998 EIR determined that Southern California black walnut trees located within the coastal sage scrub areas would be affected by the fuel modification plan, and required inclusion of this species in site landscaping and revegetation.
3.4.3.4 Project Impacts and Mitigation Measures

Impact Description

BIO-1 The proposed Project would result in the direct removal of/or damage to approximately eight to 10 acres of Dense, Intact Coastal Sage Scrub (Class II).

The proposed Project would include site clearance, grading and construction that would remove approximately three to four acres of dense, intact coastal sage scrub. Additionally, proposed fuel modification would require the removal and/or significant modification of an additional two acres of this vegetative community. The majority of remaining dense, intact coastal sage scrub would be adversely impacted by trenching and grading for installation of wastewater discharge drip lines on the hillsides above Winter Canyon. This community would be further impacted indirectly by the percolation of effluent through the soil, as disposal of large volumes of wastewater would likely lead to type conversion of this vegetative community due to an increased moisture regimen. Removal of and disturbance to these habitat areas would conflict with LUP Policy 3.59, which requires new development to minimize habitat disturbance or destruction, removal or modification, and CON Policy 1.22, which calls for protection of coastal sage scrub habitat.

While Project development would significantly affect coastal sage scrub on the site, impacts have been largely mitigated in accordance with requirements of the 1998 EIR and City Council Resolution No. 98-001. The 1998 EIR determined that the Project impacts on coastal sage scrub would be significant, but feasibly mitigated through the acquisition of a conservation easement that exhibited similar physical and biological characteristics, and would meet a replacement ratio of no less than 2:1. The 1998 EIR identified a 30-acre parcel located on the southwest side of Malibu Canyon Road, known as the Francisco Property, as a replacement for the 8.04 acres of coastal sage scrub that would be removed from the Project site. The EIR determined that while the Francisco Property is dominated by chaparral species, which are distinct from the coastal sage scrub plant community that occurs on the Project site, the higher replacement ratio (i.e., 3.7:1) provided a substantial biological benefit that compensated for the difference in vegetation between the two sites. The Deed of Conservation Easement for Wildlife Habitat and Open Space Resources was recorded between the prior applicant and the City in July.
2001. Therefore, although the most recent biological survey identified 10.75 acres of dense, intact coastal sage scrub, an increase of approximately 2.8 acres from the area identified and mitigated in the prior 1998 EIR, the previously required 30-acre conservation easement would lead to replacement of the impacted 10.75 acres habitat at a 2.7:1 ratio, which exceeds the 2:1 ratio previously required by the City. Therefore, the loss of 10.75 acres of intact coastal sage scrub habitat, while potentially significant, has been successfully mitigated.

Mitigation Measures

No additional mitigation is required.

Impact Description

BIO-2 The proposed Project would result in the direct removal of/or damage to sensitive vegetative communities and sensitive plant species listed by the California Native Plant Society (Class II).

Following the 2007 Malibu Canyon fire a number of sensitive vegetation communities became established within the previously described disturbed coastal sage scrub habitat areas. During the 2011 biological inventory of the Project site, approximately 0.61 acres of foothill needlegrass patches were documented within the openings of the dense, intact coastal sage scrub. Additionally, approximately 1.64 acres of saltgrass-fasciculed tarplant fields were documented within the successional coastal sage scrub. While these native grassland patches do not qualify as ESHA under the LCP, they are CDFW sensitive communities (i.e., State Rank 3, highly imperiled) (Rincon Consultants, Inc. 2011). Damage to or direct removal of these vegetation communities as a result of the proposed grading, development, and fuel modification would be considered a potentially significant impact.

Project development could also impact sensitive plant species, including individual southern California black walnut trees and Plummer’s baccharis within intact coastal sage scrub habitat, particularly in the site’s southeastern corner (Rincon Consultants, Inc. 2011). Both of these species are CRPR 4 and are on the Watch List as “limited in distribution” throughout California (Rincon Consultants, Inc. 2011). Additionally, four special status plant species have a moderate potential to occur onsite within the intact coastal sage scrub (Rincon Consultants, Inc. 2011). Consequently, these species (if
present) would also be removed or significantly impacted by the implementation of the proposed Project. Impacts to sensitive plant species would be potentially significant, but subject to feasible mitigation.

Mitigation Measures

MM BIO-2a The Applicant shall prepare and implement a landscape and native habitat enhancement plan to design remaining and disturbed hillside open spaces on the Project site to support native plant communities and sensitive plant species habitat. This plan shall emphasize restoration of disturbed hillsides with appropriate native habitats and species that are consistent with fire safety and potential use of hillsides for effluent disposal. At a minimum, these plans shall include planting of Southern California black walnut, foothill needle grassland, saltgrass- fascicled tarplant fields, coastal sage scrub species, and oak woodland species and those more adapted to a higher moisture regimen, such as California sycamores. In addition, Southern California black walnut shall be planted along the banks of the onsite stormwater detention basins, as well as along the any open drainage within the Project site to the satisfaction of the City Biologist.

Plan Requirements and Timing. Prior to the commencement of any construction activity, Southern California black walnut, fasciculated tarplant seeds and saltgrass rhizomes shall be collected onsite or locally, and planted from containers as seedlings or saplings. Prior to issuance of building permits, the Applicant shall file a performance bond with the City to complete and maintain plantings until pre-established performance criteria are met.

Monitoring. A qualified biologist approved by the City shall monitor for compliance with restoration and revegetation plans. Maintenance shall be confirmed through site inspections. City Biologist approval is required for performance bond release.

MM BIO-2b The fuel modification plan shall limit the removal of the foothill needlegrass. In these areas, fire risk shall be abated via the thinning of
native vegetation rather than the complete removal and replanting of native vegetation.

Plan Requirements and Timing. Prior to the commencement of any construction activity, the Applicant shall submit a landscape and habitat enhancement plan for remaining hillside open space areas. Prior to issuance of building permits, the Applicant shall file a performance bond with the City to complete and maintain plantings until pre-established performance criteria are met. Restoration work shall commence immediately following construction shall and be completed prior to release of the performance bond. These landscape and habitat enhancement plan shall also be incorporated into the Applicant’s fuel modification plans prior to its submittal to LACFD for review and approval.

Monitoring. A qualified biologist approved by the City shall monitor for compliance with restoration and revegetation plans. Maintenance shall be confirmed through site inspections. City Biologist approval is required for performance security release.

Impact Description

BIO-3 The proposed Project would potentially result in direct and indirect impacts to wildlife, including sensitive species, during Project construction and operation (Class II).

While no species of special concern or nesting birds have been documented on the Project site, a number of these species have a moderate to high potential to occur, particularly in the area of dense, intact coastal sage scrub (refer to Table 3.4-3). Consequently, construction-related activities within the Project site have the potential to directly impact sensitive avian, mammal, and reptile species through incidental take. However, these potential impacts would be reduced to less than significant levels through the incorporation of mitigation measures including pre-construction surveys. Additionally, sensitive species may also be indirectly impacted during construction via increased noise levels and increased exposure to human presence, both of which would
reduce the suitability of habitat for both species of special concern as well as nesting birds.

Operation of the proposed Project would introduce increased noise, light, and human presence in remaining natural areas. This would create indirect adverse impacts to wildlife species utilizing remaining or modified native habitats along the northern and eastern slopes onsite. The quantity of remaining natural habitat areas within the Project site is anticipated to be minimal, as hillsides may also be transitioned out of coastal sage scrub due to fuel modification and use of hillsides for drip disposal of treated wastewater. Habitat quality in these areas would be further reduced due to increased human presence onsite including lighting located on buildings and event lawns, increased noise from automobiles, human activity, truck loading, outdoor events, and other similar activities. These modifications would alter the remaining and transitional habitats in these areas and reduce their potential function as a wildlife corridor; however, it is anticipated that hillside and open space vegetation on the Project site would continue to be utilized by species tolerant of human presence (e.g., raccoons, rabbits).

The prior purchase of the 30-acre Francisco property mitigated the direct loss of habitat onsite. Incorporation of mitigation measures would further reduce direct and indirect impacts to species potentially present on the site. Additionally, as special status wildlife species have not been documented on or adjacent to the Project, this impact is potentially significant, but feasibly mitigated.

Standard Conditions of Approval

MM BIO-3a Night lighting from exterior and interior sources shall be minimized. All exterior light shall be low intensity and shielded so it is directed downward and inward to eliminate offsite glare or lighting of natural habitat areas. Up-lighting of landscape trees shall be prohibited.

Plan Requirements and Timing. A lighting plan, incorporating mitigation measures, shall be developed and approved prior to Project construction.
Monitoring. An Applicant-funded qualified biologist approved by the City shall assist City staff in review and approval of the lighting plan. City Biologist approval is required for performance bond release.

MM BIO-3b Necessary boundary fencing of any single area exceeding 1/2 acre shall be of an open rail-type design with a wooden rail at the top, shall be less than 40 inches high, and shall have a space greater than 14 inches between the ground and the bottom post or wire. A split rail design that blends with the natural environment should be considered.

Plan Requirements and Timing. Project plans shall identify areas of proposed fencing prior to Project construction and shall comply with mitigation measures.

Monitoring. The City Biologist shall monitor for compliance. City Biologist approval is required prior to City issuance of the Certificate of Occupancy.

Mitigation Measures

MM BIO-3c If grading is scheduled between February 1 and August 30, nesting bird surveys shall be conducted by an Applicant-funded qualified biologist prior to initiation of grading activities. A report discussing the results of nesting bird surveys shall be submitted to the City Biologist prior to any vegetation removal on site.

Plan Requirements and Timing. Should active nests be identified, a buffer area no less than 300 feet (500 feet for raptors) shall be observed until it is determined by a qualified biologist that the nest is no longer active. The nesting bird survey shall be submitted to the City Biologist prior to grading or vegetation removal.

Monitoring. CDFW and the City of Malibu shall be notified and consulted regarding the presence of a nesting species onsite. The City Biologist or approved biological monitor shall ensure buffer areas are maintained throughout the period while the nest is active.
Prior to ground disturbance, the Applicant shall fund a qualified biologist who shall conduct wildlife clearance surveys for wildlife within the proposed areas of disturbance. The biologist shall also be present during initial ground disturbance activities and until clearance has been completed.

Plan Requirements and Timing. The wildlife clearance survey shall be submitted to the City Biologist prior to grading or vegetation removal. If sensitive species are found within the grading or fuel modification footprint, work in the immediate vicinity shall be stopped until the identified individual(s) leave the Project area or a qualified biologist is able to relocate the individual(s) to suitable undisturbed habitat away from the edge of the disturbed area.

Monitoring. CDFW and the City shall be notified and consulted regarding the presence of a special-status wildlife species onsite. If a federally-listed species is found prior to grading of the site, the USFWS shall also be notified. Only a USFWS-approved biologist would be permitted to handle and relocate these species pursuant to the necessary take authorization. Such authorization may require the development and approval of an ESA Section 10 Habitat Conservation Plan.

Impact Description

The proposed Project may directly or indirectly impact adjacent riparian/wetland habitat via trenching, vegetation removal, erosion and alterations in hydrology (Class II).

The proposed Project includes substantial hillside grading associated with installation of storm drains and spray dispersal for treated wastewater, which may potentially create direct or indirect impacts to the riparian and wetland habitats southeast of the Project site. The proposed Project would include construction trenching to install a 30-inch diameter pipeline, a riprap channel and an energy dissipater and detention basin, and a 30-foot-high retaining wall just to the north of the 30-inch pipeline.
These construction activities would substantially alter the topography and vegetation cover of the southeastern corner of the Project site, and could create impacts to adjacent downstream riparian habitats just offsite. The proposed 30-inch storm drain would be expected to convey large volumes of stormwater presumed to be routed into the residual 300-foot-long open natural channel of Winter Creek; however, site plans do not clearly depict how drainage would be conveyed from the site into the existing creek. Construction of stormwater conveyance systems into Winter Creek has the potential to create both direct and indirect adverse impacts to the creek through increased erosion and sedimentation and possible removal of riparian vegetation for construction of a downdrain and energy dissipater in the creek. However, Winter Canyon is not mapped as ESHA within the City’s LCP (see the LCP ESHA and Marine Resources Map). Consequently, this impact is considered *potentially significant, but subject to feasible mitigation*.

Mitigation Measures

MNO BIO-4a The Applicant shall prepare a riparian protection and restoration plan to ensure that the riparian and wetland vegetation in Winter Creek is protected and restored to mitigate the impacts of Project-related drainage improvements. The plans shall limit the removal of native riparian and other vegetation, include replacement plantings for any riparian vegetation removed, set forth erosion control measures, as well as short-term measures to minimize construction-related impacts to on- and offsite areas that may be affected by Project-related drainage improvements.

Plan Requirements and Timing. The landscape and native habitat enhancement plan required in MM BIO-2b shall address habitat protection and restoration associated with conveyance of drainage in the site’s southeast corner. Restoration work shall commence immediately following construction and shall be completed prior to the issuance of a certificate of occupancy.

Monitoring. A qualified biologist approved by the City shall monitor for compliance with the riparian protection and restoration plan. Maintenance shall be confirmed through site inspections. City Biologist approval is required for performance bond release.
3.4 BIOLOGICAL RESOURCES

3.4.3.5 Cumulative Impacts

The Project would result in two types of cumulative effects: 1) overall loss of habitat in the City, particularly within the Civic Center area; and 2) disruption of a moderate habitat linkage between ESHA and other open space on public trust lands.

The cumulative loss of native habitat from pending development was identified in the 1998 EIR as an unavoidable and significant impact. Circumstances have changed since the previous EIR, with substantially more development pending and proposed in the vicinity. Proposed development in the vicinity of the Project site would result in the conversion of cumulatively 75 acres of native and non-native habitats, which include coastal sage scrub, grasslands, sycamore groves, and oak woodlands (refer to Figure 3.0-2). The Project would result in an adverse contribution to this loss of habitat; however, the Project’s contribution to loss of habitat and open space has already been addressed through purchase of the Francisco Property. Therefore, while the cumulative loss of native habitats would remain a significant and unavoidable impact, the Project’s contribution to this impact has been substantially mitigated. Impacts related to the disruption of habitat linkage are discussed in Impact BIO-5.

Impact Description

BIO-5 The proposed Project, in combination with pending projects, would result in a cumulatively considerable contribution to loss of natural open habitat linkages between habitats within Malibu Bluffs State Park and those within the Santa Monica Mountains (Class II).

The proposed Project would replace approximately 16 acres of mesa top successional coastal sage scrub habitat with hotel buildings, roads and landscaping. In addition to construction on the mesa top, the majority of dense, intact coastal sage scrub on northern and eastern slopes of the Project site would be removed and/or significantly impacted through fuel modification, grading, development, planting of nine acres of tall fescue turf lawns for wastewater effluent disposal, and drainage improvements. Further, long-term maintenance of the fuel modification zones and use of the hillsides for wastewater disposal could result in permanent type conversion of existing coastal sage scrub habitat over much of the hillsides above Winter Canyon. The removal of vegetation and construction of Project-related facilities would significantly alter and reduce the
3.4 BIOLOGICAL RESOURCES

vegetative cover and impair or eliminate the site’s function as a natural habitat linkage between the ESHA within the public trust lands of Malibu Bluffs Park to the south and the larger open spaces within the Santa Monica Mountains to the north. This loss of connectivity would impact wildlife corridors and movement and may also potentially conflict with CON Policy 1.1.1 which mandates protection of wildlife linkages and with LUP Policy 1.1.4, which protects ESHA (e.g., Malibu Bluffs Park) from disruption of habitat values.

While the Project site is surrounded by three heavily-traveled roads, it is one of the two habitat linkages or wildlife corridors with remaining areas of native vegetation located between Malibu Bluffs Park and the Santa Monica Mountains (Figure 3.4-3). The other is Puerco Canyon located approximately 0.7 miles west of the Project site (Santa Monica Mountains Conservancy 2012). An additional open space habitat linkage occurs adjacent to the west of the Project site on Pepperdine’s Alumni Park, but this provides limited value as it is mostly characterized by a manicured lawn, with some shrub cover and two ponds. Although habitat corridors on the Project site and Puerco Canyon between Malibu Bluffs Park and Santa Monica Mountains are dissected by major roads, wildlife regularly cross such barriers to move between habitats, particularly during nighttime hours when traffic volumes are lower (Ng, et al. 2003).

The implementation of the proposed Project would substantially reduce the size of one of the two native habitat linkages between Malibu Bluffs Park and the Santa Monica Mountains. Additionally, the development on the Crummer Property and redevelopment of the Towing Site located south of the Project site and east of Malibu Bluffs Park would also adversely impact this habitat linkage. Development of these sites would largely obstruct movement from remaining natural portions of Winter Creek west into Malibu Bluffs Park (refer to Figure 3.4-3). Further, new development constructed within Puerco Canyon at 24903 PCH would further encroach on the remaining naturally vegetated habitat linkage. Development of these three properties would remove approximately 50 acres of undeveloped open space from within these two potential wildlife corridors, substantially limiting wildlife movement.

Approved and pending development within these wildlife corridors is a substantial change in circumstances since previous consideration of this issue in the 1998 EIR, which makes impacts to the habitat linkages and wildlife corridors substantially more
LEGEND
- Project Site
- Malibu Bluffs State Park
- Potential Wildlife Corridor
- Potential Secondary Wildlife Corridor

Source: Santa Monica Mountains Conservancy (2012).

Santa Monica Mountains National Recreation Area

Habitat Connectivity and Cumulative Development

FIGURE 3.4-3
3.4 Biological Resources

severe than that identified in the 1998 EIR. The proposed Project’s contribution to the loss of habitat linkage would result in a significant impact, which was not and could not have been addressed in the 1998 EIR, due to factors specified below.

- The circumstances under which the Project would occur have changed. Three developments in the vicinity of the Project site and Malibu Bluffs Park are pending that were not proposed at the time of the 1998 EIR. Development of approximately 50 acres of open natural habitat near the Malibu Bluffs Park would remove coastal sage scrub, grassland, and oak woodlands, directly removing habitat and indirectly reducing native vegetative cover that provides a link from the Santa Monica Mountains to ESHA on the Malibu Bluffs Park.

- The Santa Monica Mountains Conservancy, the state agency that owns and is charged with the management of the ESHA on the public trust lands of Conservancy-owned portion of Malibu Bluffs Park and the Santa Monica Mountains, has asserted that loss of habitat linkages would be a significant impact and has provided a letter to that effect (Santa Monica Mountains Conservancy 2012).

- Project would contribute in a considerable manner to the loss of open space adjacent to Malibu Bluffs Park, which would directly impact wildlife linkages and ESHA, potentially in conflict with adopted policy. Specifically, CON Policy 1.1.1, which mandates protection of wildlife linkages, CON Policy 1.1.4, which requires that the City protect ESHA as a priority over development and against any significant disruption of habitat values, and LUP Policy 3.8, which requires protection of ESHA against the disruption of habitat value, are applicable to this Project.

- Although the Project Applicant made a good faith effort to mitigate Project-specific impacts to habitats through purchase of the Francisco Property, this effort did not directly mitigate impacts associated with disruption of the wildlife corridor between the Santa Monica Mountains and the Malibu Bluffs Park. The 30-acre Francisco property is located well north of this wildlife corridor.
Although Puerco Canyon would continue to provide a natural open space linkage between the Malibu Bluffs Park and the Santa Monica Mountains, implementation of the proposed Project would result in a cumulative considerable contribution to elimination or substantial disruption to one of these two remaining natural habitat linkages. Species tolerant of human presence and non-native habitats may continue to use the Project site, Crummer and Towing Site properties, and Puerco Canyon for movement between Malibu Bluffs Park and the Santa Monica Mountains; however, mammals such as deer, weasels, badgers, and bobcats, and more sensitive bird species would be constrained due to the reduction in or elimination of native cover vegetation and substantially increased levels of human activity and disturbance. For these species, the pending and proposed development would further isolate ESHA within the public trust lands of Malibu Bluffs Park from larger more genetically diverse populations in the greater open space areas in the Santa Monica Mountains.

The Project’s contribution to the cumulative disruption and loss of potential wildlife corridors and habitat linkages would be considered cumulatively considerable and significant, but subject to feasible mitigation.

Standard Condition of Approval

MM BIO-5a In order to protect native hillside habitats within Winter Canyon and ensure their retention as undeveloped native habitats and open space, the
Applicant shall record an offer to dedicate an easement include deed restrictions that surrender any development rights.

Plan Requirements and Timing. Appropriate habitat protection measures shall be identified and incorporated in consultation with the City to ensure long-term protection of hillside habitat and corridor values.

Monitoring. City Planning Department approval is required for performance bond release.

Mitigation Measures

MM BIO-5b The Applicant shall prepare and submit a hillside open space management plan which prioritizes continuation and restoration of native habitats on undeveloped hillsides overlooking Winter Canyon and undeveloped onsite areas southwest of the intersection of Malibu Canyon Road and Civic Center Way. These undeveloped areas shall be managed as an open space and a wildlife corridor management zone with native habitat to facilitate continued passage of wildlife between the Santa Monica Mountains and Malibu Bluffs Park (refer to Figure 3.4-4). This open space area would be located adjacent to the roadside trail required by LUP Policy 2.49 and MM T-4a. To the extent feasible, dense, intact coastal sage scrub within this area shall be protected and restored as specified under MM BIO-2b. Management of this area shall also include transitioning of appropriate portions of this area to native oak and riparian woodlands, such as the area at the intersection of Malibu Canyon Road and Civic Center Way and the hillsides being used for sewage effluent disposal. To the maximum extent feasible, removal or modification of vegetation within this area for fuel management purposes shall be performed in accordance with its management as a wildlife corridor.

Plan Requirements and Timing. The preservation of a native vegetation corridor shall be developed by a qualified biologist under direction of the City Biologist. These measures shall be incorporated into the landscape and native habitat enhancement plan required in MM BIO-2b. Revegetation and management of this corridor shall occur concurrently.
with Project construction and landscaping. This area shall be fenced and appropriately protected from runoff, trash, etc. during site construction (i.e., straw bales and runoff retention) to limit potential effects of adjacent construction. Fencing and protection measures shall be implemented prior to construction.

Monitoring. A qualified biologist approved by the City shall monitor for compliance and appropriate maintenance. Maintenance shall be confirmed through site inspections. City Biologist approval is required for performance bond release.

MM BIO-5c Undeveloped areas in the northern portion of the Project site near the intersection of Malibu Canyon Road and Civic Center Way shall be restored to a native woodland adjacent to the roadside trail required by LUP Policy 2.49 and MM T-4a. Restoration of a native woodland may be more appropriate than other types of native vegetation due to its fire retardant nature, potential changes in the water regime, and the enhanced aesthetic qualities provided.

Plan Requirements and Timing. The restoration of native woodlands in the northern portion of the Project site shall be developed in coordination with City staff and incorporated into the landscape and native habitat enhancement plan required in MM BIO-2b. Restoration shall occur concurrently with Project construction and landscaping. This area shall be fenced and appropriately protected from runoff, trash, etc. during site construction (i.e., straw bales and runoff retention) to limit potential effects of adjacent construction. Fencing and protection measures shall be implemented prior to construction.

Monitoring. A qualified biologist approved by the City shall monitor for compliance and appropriate maintenance. Maintenance shall be confirmed through site inspections. City Biologist approval is required for performance bond release.
3.4 BIOLOGICAL RESOURCES

3.4.3.6 Residual Impacts

The acquisition of a conservation easement, as was already done in response to the 1998 EIR, would offset the proposed Project’s significant adverse impacts to the coastal sage scrub (MM BIO-1). This would reduce this impact to less than significant.

With the incorporation of specified mitigations, the impact to sensitive vegetative communities and sensitive plant species (MM BIO-2), wildlife and sensitive wildlife species (MM BIO-3), and offsite riparian and wetland habitat (MM BIO-4) would be reduced to less than significant.

The loss of habitat in the City and Civic Center area in particular would result in a cumulatively significant impact; however, the Project’s contribution to this loss of habitat has been adequately addressed through purchase of the 30-acre Francisco property.

The Project’s contribution to the loss of connectivity between the Santa Monica Mountains and Malibu Bluffs Park that would result from development of the Project site, the nearby Crummer Property, and the Towing Site, would be cumulatively significant, but the Project’s contribution to these impacts would be feasibly mitigated through the implementation of onsite measures to provide and protect native habitats that could function as a stepping stone between ESHA and larger open space areas (MM BIO-5).
The geologic resources of an area consist of all soil and bedrock materials. For purposes of this section, the terms “soil” and “rock” refer to unconsolidated and consolidated earth materials, respectively, regardless of depth. “Geologic resources” include mineral deposits, important landforms, and tectonic features. Disturbances to geological resources may result in geological hazards such as landslides, unstable soils, and/or faulting. Depending on the severity of these hazards, they may present substantial obstacles to new development.

A site-specific geotechnical evaluation was conducted for the proposed Project site (GeoSoils Consultants Inc. 2012) (see Appendix C). This study has been subject to peer review and approval by the City of Malibu (City) Planning Department and the City Geologist. Approval of the data, methodologies, and conclusions of this study provides the basis for following analysis.

3.5.1 Existing Setting

3.5.1.1 Regional Geologic Setting

The Project site is located in Southern California, which is a geologically complex and seismically-active region. More specifically, the Project site occurs within the Transverse Ranges Geomorphic Province, an east-west trending series of steep mountain ranges and valleys extending from Point Arguello on the west to the Pinto and Eagle Mountain in eastern California (California Geological Survey 2002). The province is unique in that its east-west structural grain extends across the northwest-southeast trending San Andreas Fault, which is the primary structural...
boundary between the Pacific and North American tectonic plates as well as the major source of regional seismicity.

As the Pacific Plate moves to the northwest at a rate of about 45 millimeters per year, both compressional and lateral forces are created in the terrain to the north and south of the plate boundary (Young 2010). These forces are created by the “Big Bend,” a portion of the San Andreas Fault that deviates to the west from its predominant northwest trend. The compressional deformation associated with this segment of the fault is largely responsible for the creation of the Transverse Ranges (Bartolomeo 2010). In addition to the San Andreas Fault, numerous faults surround the Malibu area including the Malibu Coast Fault, the Anacapa Fault, and the Santa Monica Fault (Figure 3.5-1). However, these faults are not well defined, as they are not generally visible on the surface (City of Malibu 1995).

3.5.1.2 Local Setting

Topography

The 27.8-acre Project site, located in the City of Malibu (City), includes approximately 16 acres of gently sloping mesa top bounded by 12 acres of steep slopes on the northeast, east, and south; approximately seven acres of which exhibit a steep 1:4 (horizontal to vertical) slope gradient (Van Beveren and Butelo 2007). These slopes drain toward a culverted stream in Winter Canyon along Civic Center Way on the Project site’s eastern side, as well as to the south towards Pacific Coast Highway (PCH). The maximum elevation within the Project site, approximately 250 feet above mean sea level (msl), is

1 This employs the same non-standard horizontal to vertical approach employed in applicant prepared studies in order to maintain consistency.
Regional Faults within the Vicinity of the Project Site

LEGEND

- Fault

located in the site’s northwest corner portion; the lowest elevation, approximately 120
feet above msl, is located in Winter Canyon adjacent to Civic Center Way. In addition, an
erosional ravine occurs just north of PCH on the eastern margin of the Project site.

Soils

Soils on the Project site are characterized by thick marine and non-marine terrace
deposits, which are underlain by a bedrock unit consisting of Monterey, Trancas, Conejo
Vocanics, Vaqueros, and Sespe Formations (GeoSoils Consultants Inc. 2012). These
terrace deposits consist of interbedded silts, clays, and sands, with occasional gravel and
cobbles (GeoSoils Consultants Inc. 2011). The northeastern corner of the Project site is
underlain by volcanic bedrock (GeoSoils Consultants Inc. 2012).

The soils on the Project site can be generally classified as Danville-Urban Land Complex
(0-9% slopes) on the western half of the Project site and Calcic Argixerolls (30-75%
slopes) on the eastern half of the Project site. Each of these soils is highly erodible by
wind and is potentially moderately affected by water erosion (Natural Resources

Faulting, Seismicity, and Earthquakes

The Project site, like most of Southern California, is located in a seismically-active area.
Between 1850 and 2011, 51 earthquakes of a magnitude greater than 5.5 occurred within
a 100-mile radius of the Project site. The largest quake, with an epicenter approximately
90 miles from the Project site, occurred in 1857 and had an estimated magnitude of 7.9.
The closest active fault to the Project site is a trace of the Malibu Coast Fault, located
approximately two miles to the west of the site at the southern base of the Santa Monica
Mountains, near Latigo Canyon. This trace has exhibited Holocene faulting (i.e.,
movement in the last 11,000 years) and has consequently been zoned as an Earthquake
Fault Rupture Hazard Zone (Van Beveren and Butelo, Inc. 2007). Several fault traces
within the onshore portion of the Malibu Coast Fault Zone are identified as active in the
Seismic Element of the County of Los Angeles. However, while traces have been
determined to be active, the Malibu Coast Fault Zone has not been officially designated
as an active fault zone by the State of California (City of Malibu 1995).
The Malibu Coast Fault Zone also traverses the southern portion of the Project from east to west (see Figure 3.5-2) (Van Beveren and Butelo, Inc. 2007). The Malibu Coast Fault trace that traverses the Project site was classified as potentially active under state criteria (Michael Phipps, CEG, former City Geologist 1996). However, analysis of recent trenching on the site performed by the Applicant’s geotechnical engineers concluded that the sediments overlying this fault trace have not been displaced in at least 100,000 years and potentially in up to 200,000 years (Van Beveren and Butelo, Inc. 2007; GeoSoils Consultants Inc. 2011). The Applicant’s team of geologists and engineering geologists concluded that the traces of the fault zone that cross the Project site are not active based upon site-specific geologic and seismic investigations (Van Beveren and Butelo, Inc. 2007; GeoSoils Consultants Inc. 2011). This conclusion has been reviewed and approved by the geotechnical/geological firm retained by the City to review such studies (Fugro Consultants, Inc. 2012). Therefore, the trace of the Malibu Coastal Fault that crosses the site is not active and there are no onsite active faults on the Project site (Van Beveren and Butelo, Inc. 2007; GeoSoils Consultants Inc. 2012).

Additionally, previous investigations revealed an inferred, buried trace of the Malibu Bowl Fault, which traverses the site just north of the Malibu Coast Fault. However, the Malibu Bowl Fault terminates or is cut off by the Malibu Coast Fault, which indicates that the former is older than the latter (Van Beveren and Butelo, Inc. 2007). Consequently the sediments overlying the other trace faults within the Project site have also not been displaced in over 100,000 years and therefore, these faults are also considered not to be active (Van Beveren and Butelo, Inc. 2007).

In a review of potential ground shaking from nearby active faults, GeoSoils Consultants Inc. (2011) determined that the maximum ground acceleration at the Project site would be 0.86 times that of gravity (g), associated with a 6.7-magnitude earthquake along the active traces of the Malibu Coast Fault located approximately 2.1 miles from the Project site (GeoSoils Consultants Inc. 2011). Offshore faults have the potential to trigger tsunamis (i.e., long resonant waves created by ground shaking in enclosed or partially enclosed bodies of water); however, the Project site is located outside of the Tsunami Inundation Zone (California Emergency Management Agency 2009).

2 A potentially active fault is one that has had Quaternary activity (i.e., movement in the last 1.6 million years), but lacks activity during the Holocene (California Geological Survey 2007)

3 G-force is a unit of force equal to the force exerted by gravity and is used to indicate the force to which a body is subjected when it is accelerated, in this case from seismic ground shaking.
Geologic Hazards at the Proposed Rancho Malibu Hotel Project Site

FIGURE 3.5-2
Surface rupture involves the displacement and cracking of the ground surface along a fault trace. Surface ruptures are visible instances of horizontal or vertical displacement, or a combination of the two, typically confined to a narrow zone along the fault. Surface rupture is more likely to occur in conjunction with active fault segments where earthquakes are large, or where the location of the movement is shallow. The possibility of displacement cannot be ruled out, as additional faults could be present below the terrace deposits; however, no evidence of surface rupture or displacement within the last 11,000 years has been observed on the Project site. Trenching analysis has indicated that surface rupture has not occurred along the subject Malibu Coast Fault trace in more than 100,000 years and that this fault is not considered to be active (Van Beveren and Butelo, Inc. 2007; GeoSoils Consultants Inc. 2011).

Expansive Soils

Expansive soils tend to swell with seasonal increases in soil moisture and shrink during the dry season as soil moisture decreases. Soils sample taken from the Project site exhibited slight swelling upon the addition of water; however, soil shrink was limited and appears not to pose a substantial hazard to the Project site. The results of these tests indicate that the soils within the Project site have a moderate expansion potential (GeoSoils Consultants Inc. 2011).

Liquefaction

Liquefaction is a form of earthquake-induced ground failure that occurs primarily in relatively shallow, loose, granular, water-saturated soils. Liquefaction is defined as the transformation of a granular material from a solid state into a liquefied state.

The underlying earth material on the Project site consists of terrace deposits and bedrock, and is therefore not subject to liquefaction (GeoSoils Consultants Inc. 2012). Additionally, there are no designated liquefaction hazard zones on the Project site (Department of Conservation 2001). The nearest soils with a high potential for liquefaction occur immediately to the east of the Project site at the bottom of Winter Canyon, where artificial fill and alluvium, both of which have a high potential for liquefaction, are present near the surface (Department of Conservation 2001).
Landslides and Slope Instability

The stability of slopes is affected by a number of factors including rock and soil type, amount of water present, and amount of vegetation present. Events that can cause a slope to fail include sudden movements such as those during a seismic event, modification of the slope by nature or humans, undercutting caused by erosion, and changes in hydrologic characteristics, including heavy rains that can saturate the soil (Caltrans 2001).

A deep historical landslide is located along the eastern perimeter of the Project site, descending toward Civic Center Way (see Figure 3.5-2). However, soil testing indicates that the landslide sediments have been covered with alluvium, which has stabilized the ground in the vicinity of this area (Van Beveren and Butelo, Inc. 2007).

The remaining slope areas on the Project site, primarily along the northern, western, and eastern perimeters are located within zones of potential seismic slope instability (Department of Conservation 2001). Three geologic cross-sections were taken along the steep northern slope of the Project site. The results of slope stability analyses performed on these cross-sections indicate factors of safety below minimum requirements set by the Local Coastal Program (LCP) Local Implementation Plan (LIP) Chapter 9, Hazards, and Malibu Building Code requirements for two of the three cross sections that were analyzed (see Figure 3.5-2) (GeoSoils Consultants Inc. 2011). Surficial slope stability analyses were performed along the other slopes surrounding the Project site. The results of these analyses indicated factors of safety at or above the appropriate level for all of the existing slopes, with the exception of a portion of slope north of PCH, located along the eastern edge of the Project site (see Figure 3.5-2). The results of the testing in this area indicated lower slope stability than what is required by City codes for development (GeoSoils Consultants Inc. 2011).
Erosional Ravines

Erosional ravines are created by active downcutting and bank erosion that can be largely attributed to high levels of stormwater runoff. Actively eroding ravines often exhibit cut banks, slumping, and slope failure.

A gully is located in the southeast corner of the Project site. The gully does not have a definable bed, bank, or channel, nor does it have an ordinary high water mark. Consequently, the gully appears to be erosional in nature. Erosion rates have not been determined for this location on the Project site; however, the gully occurs in Calcic Argixerolls (30-75% slopes) soils, which have a moderate potential for water erosion (NRCS 2006).

3.5.2 Regulatory Setting

3.5.2.1 Federal Regulations

Clean Water Act Section 402 (National Pollutant Discharge Elimination System [NPDES] Program). This act mandates that certain types of construction activity comply with the requirements of the United States Environmental Protection Agency (U.S. EPA) NPDES program. Under State Water Resources Control Board (SWRCB) enforcement, the Los Angeles Regional Water Quality Control Board (RWQCB) implements the NPDES program in the City. The program requires a General Construction Activities Permit, including implementation of established Best Management Practices (BMPs) for management of stormwater, erosion control, and/or siltation. More information regarding this regulation is provided in Section 3.7, Hydrology and Water Quality.

3.5.2.2 State Policies and Regulations

Alquist-Priolo Earthquake Fault Zoning Act (1972). The purpose of this act is to regulate types of development near active faults to mitigate the hazard of surface rupture. Under this act, the State Geologist is required to delineate earthquake fault zones along known active faults in California.

California Coastal Act (1976). This act states in part that new development shall be sited in such a way that it will not be subject to or contribute to erosion or stability hazard over
the course of its design life. The act does not specify a particular value for design life, through many Local Coastal Programs (the implementation of the California Coastal Act at the local government level) do.

California Building Code (CBC) (2007). The State of California provides a minimum standard for building design through the CBC, which is based on the Universal Building Code (UBC), but has been modified to account for California’s unique geologic conditions. The CBC is selectively adopted by local jurisdictions, based on local conditions, and the City adopted the CBC, 2010 edition as its Building Code (Malibu Municipal Code [M.M.C.] Section 15.04.010). Chapter 16 of the CBC contains specific requirements for seismic safety. Chapter 18 of the CBC regulates excavation, foundations, and retaining walls. Chapter 33 of the CBC contains specific requirements pertaining to site demolition, excavation, and construction to protect people and property from hazards associated with excavation cave-ins and falling debris or construction materials. Appendix J of the CBC regulates grading activities, including drainage and erosion control.

3.5.2.3 Local Policies and Regulations

City of Malibu Local Coastal Program (LCP). The California Coastal Act requires that its goals and policies be implemented by local government through the LCP. The Malibu LCP consists of two subparts, the Land Use Plan (LUP) and the LIP. LCP policies are contained within the LUP, while the purpose of the LIP is to implement and carry out the policies of the LUP.

LCP Land Use Plan

The policies pertaining to geology and soils identified in the LUP and relevant to the Project are listed below:

- **LUP Policy 4.1**: The City and the Santa Monica Mountains Coastal Zone contains areas subject to hazards that present substantial risks to life and property. These areas require additional development controls to minimize risks and include, but shall not be limited to, the following:
 - Low Slope Stability and Landslide/Rockfall Potential: Hillside areas that have the potential to slide, fail, or collapse.
Fault Rupture: Malibu Coast-Santa Monica Fault Zone.

Seismic Ground Shaking: Shaking induced by seismic waves traveling through an area as a result of an earthquake on a regional geologic fault.

Liquefaction: Areas where water-saturated materials (including soil, sediment, and certain types of volcanic deposits) can potentially lose strength and fail during strong ground shaking.

LUP Policy 4.2: All new development shall be sized, designed and sited to minimize risks to life and property from geologic, flood, and fire hazard.

LUP Policy 4.3: Information should be provided to the public concerning hazards and appropriate means of minimizing the harmful effects of natural disasters upon persons and property relative to siting, design, and construction.

LUP Policy 4.4: On ancient landslides, unstable slopes and other geologic hazard areas, new development shall only be permitted where an adequate factor of safety can be provided, consistent with the applicable provisions of Chapter 9 of the certified LIP.

LUP Policy 4.5: Applications for new development, where applicable, shall include a geologic/soils/geotechnical study that identifies any geologic hazards affecting the proposed project site, any necessary mitigation measures, and contains a statement that the project site is suitable for the proposed development and the development will be safe from geologic hazard. Such reports shall be signed by a licensed Certified Engineering Geologist (CEG) or Geotechnical Engineer (GE) and subject to review and approval by the City Geologist.

LUP Policy 4.6: The remediation or stabilization of landslides that affect existing structure or that threatens public health or safety may be permitted. Alternative remediation or stabilization techniques shall be analyzed to determine the least environmentally damaging alternative. Maximum feasible mitigation shall be incorporated into the project in order to minimize adverse impacts to resources.

LUP Policy 4.7: Hillside Management Program requirements shall be applicable to proposed development on steep slopes.

LUP Policy 4.8: Grading and/or development-related vegetation clearance shall be prohibited where the slope exceeds 40% (i.e., 2.5:1), except that driveways
3.5 GEOLOGY AND SOILS

and/or utilities may be located on such slopes, where there is no less
environmentally damaging feasible alternative means of providing access to a
building site, provided that the building site is determined to be the preferred
alternative and consistent with all other policies of the LCP.

- **LUP Policy 4.11**: New development involving a structure dependent on a
 wastewater disposal system shall utilize secondary treatment, at a minimum, and
evapotranspiration waste disposal systems or other innovative measures, where
feasible.

- **LUP Policy 4.14**: New development shall be prohibited on property or in areas
 where such development would present an extraordinary risk to life and property
due to an existing or demonstrated potential public health and safety hazard.

LCP Local Implementation Plan

The Chapters of the LIP pertaining to geology and soils and relevant to the Project are
listed below. For specific development standards within these chapters, please refer to the
LIP:

- **LIP Chapter 3, Part 3.10 – Landscaping and Fuel Modification**: All new
development shall minimize the removal of natural vegetation including native
trees and plants in order to minimize erosion and sediment, impacts to scenic and
visual resources, and impacts to sensitive resources.

- **LIP Chapter 8 – Grading**: Development shall be planned to fit the topography,
soils, geology, hydrology, and other conditions existing on the site so that grading
is kept to an absolute minimum. Grading is also subject to compliance with
maximum dimensions put forth in the LIP.

- **Chapter 9 – Hazards**: All proposed new development located in or near an area
subject to geologic hazards shall be required to submit a
geologic/soils/geotechnical study report. Additionally, all recommendation of the
consulting CEG or GE and/or the City geotechnical staff shall be incorporated
into all final designs.

City of Malibu General Plan. The City’s General Plan is primarily a policy document that
sets goals and policies concerning the community and gives direction to growth and
development. In addition, the General Plan outlines the programs that were developed to accomplish its goals and policies.

3.5 GEOLOGY AND SOILS

3.5-13 Public Draft EIR

General Plan Safety Element (S)

California Government Code Section 65302(g)(1) requires that each local government prepare and adopt a Safety Element as a component of its general plan. This involves identifying and mapping natural hazards and the administration of zoning and subdivision regulations that account for the safety hazards. The policies and implementation measures contained in this element provide direction and a course of possible future action for the various City departments. Below is a list of goals, objectives, and policies related to geologic hazards in the City as set forth in the Safety and Conservation elements:

- **S Goal 1**: A community that is free from all avoidable risks to safety, health and welfare from natural and man-made hazards.
 - **S Policy 1.1.1**: The City shall protect people and property from environmental hazards.
 - **S Policy 1.1.7**: The City shall minimize the risks from landslides and debris flows.
 - **S Policy 1.2.1**: The City shall require development to provide for analyses of site safety related to potential hazards of fault rupture, earthquake ground shaking, liquefaction, and rockfalls.
 - **S Policy 1.2.2**: The City shall require development to provide site safety analyses related to landsliding, debris flows, expansive soils, collapsible soils, erosion/sedimentation, and groundwater effects.

- **Conservation (CON) Goal 1**: Natural Resources Preserved and Protected
 - **CON Policy 1.1.8**: The City shall protect land formations and soils by avoiding vegetation removal in Resource Protection Areas (RPAs) and in other areas of high potential erosion hazard.

City of Malibu Municipal Code (1993). The City’s M.M.C. includes the laws of the City. Title 17 of the M.M.C. specifically discusses the zoning regulations pertaining to new development. The following are pertinent M.M.C. sections related to geology and soils:
3.5 GEOLOGY AND SOILS

- **Section 16.24.050(C)(1) – Hillside management criteria.** In addition to the general finds, no parcel map or tentative map application may be approved unless the planning commission finds that the proposed project is located and designed so as to protect the safety of current and future community residents, and will not create significant threats to life and/or property due to the presence of geologic, seismic, slope instability, fire, flood, mud flow, or erosion hazards.

- **Section 17.40.040C) – Commercial development standards.** Residential buildings located with floodplains, liquefaction or earthquake fault zones shall comply with other site-specific hydrologic, geologic and seismic conditions based on the required hydrology soils and geotechnical reports and final recommendations from the City Geologist or City Engineer.

3.5.3 Environmental Impacts

3.5.3.1 Thresholds for Determining Significance

In accordance with Appendix G of the CEQA Guidelines, the proposed Project would result in a significant effect under CEQA if it were to:

- a) Expose people or structures to potential substantial adverse effects, including the risk of loss, injury, or death involving:
 - i. Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault;
 - ii. Strong seismic ground shaking;
 - iii. Seismic-related ground failure, including liquefaction; or
 - iv. Landslides;

- b) Result in substantial soil erosion or the loss of topsoil;

- c) Be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the Project, and potentially result in on or offsite landslide, lateral spreading, subsidence, liquefaction, or collapse;
3.5 GEOLOGY AND SOILS

d) Be located on expansive soil, as defined in Table 18-1-B of the Uniform Building Code (1994), creating substantial risks to life or property; or
e) Have soils incapable of adequately supporting the use of septic tanks or alternative water disposal systems where sewers are not available for the disposal of wastewater.

3.5.3.2 Impact Assessment Methodology

The impact assessment methodology used in this analysis consisted of evaluating two types of impacts: 1) impacts to the proposed Project resulting from local and regional geologic conditions (e.g., fault rupture, seismic shaking, liquefaction, landslides, expansive soils); and 2) potential impacts to local and regional geologic conditions resulting from the proposed Project (e.g., soil erosion or loss of top soil). To accomplish this, existing conditions, including the configuration of the Project site in relation to the present geologic environment, were established based on site-specific information obtained from several sources, as described in Section 3.5.1. Significance criteria were then developed and used to evaluate potential impacts.

3.5.3.3 1986 and 1998 Project Environmental Review Findings

Developers have been attempting to permit and construct a hotel at the Project site for many years, and efforts to date have included obtaining CCC approval for a 300-room hotel in 1986, completion of a certified EIR in 1997 and approval of a previous 146-room hotel design by the Malibu City Council in 1998. Applicable findings of environmental review performed for these projects are described below.

California Coastal Commission 1986 Approval of a 300-Room Hotel

In January 1986, the California Coastal Commission (CCC) approved the following project (Permit No. 5-85-418) for the subject property: 300 room hotel (222,200 square feet), 32,800 square foot community center, offices, restaurant, information kiosk and art center, and 1,039 parking spaces. The CCC’s approval has been kept valid over the years and the most recent permit extension (the 26th extension) was issued by the CCC setting the new expiration date as January 7, 2014. The EIR completed for this project determined that site soils were generally impermeable and of high shrink-swell character. The EIR also noted the sites proximity to active fault zones. The EIR also found that the
geologic composition of the site could make slopes susceptible to mudflows during heavy seasonal rains. The EIR required four geotechnical mitigations: 1) use of foundation designs which are appropriate and which mitigate against the hazards of existing soil-types; 2) completing detailed geological investigations for exact building site locations to determine or verify existence and location of faults; 3) maintaining 50-100’ setbacks from verified potentially active or active faults; and 4) design and construction of buildings to withstand damage from strong ground shaking and to meet the standards and provision of the UBC. Impacts were determined to be less than significant with incorporation of mitigation measures.

Findings of the 1998 Project EIR

The 1998 EIR determined the Project site was at risk from earth movement and contained unstable slopes in the eastern portion of the site. However, the Project site was not located in an area known to be at risk from flooding or liquefaction. The EIR and City Council Resolution No. 98-001 incorporated into the previously proposed project a building setback zone ranging from 70 to 95 feet wide along the Malibu Coast Fault across the southern portion of the site. All habitable structures were located outside of this zone. Additionally, remedial grading to re-engineer slopes was required in the eastern portion of the site to meet safety standards. A maximum of 119,000 cubic yards (cy) of grading was permitted onsite.

3.5.3.4 Project Impacts and Mitigation Measures

Impact Description

GEO-1 The proposed Project would expose people or structures to adverse effects from seismicity or seismically induced hazards including surface rupture or ground shaking (Class II).

A section of the Malibu Coast Fault runs through the southern portion of the Project site and would underlie the parking garage, the main hotel building, the central pool complex, and a number of the secondary hotel buildings (see Figure 3.5-2). While this fault trace was previously identified by the State as potentially active (Michael Phipps, CEG, former City Geologist 1996), having exhibited seismic activity in the last 1.6 million years, a site-specific investigation concluded that surface rupture or displacement has not
occurred in over 100,000 years and that the fault is not active (Van Beveren and Butelo, Inc. 2007; GeoSoils Consultants Inc. 2012). This conclusion was reaffirmed by the City’s consulting geotechnical engineering firm (Fugro Consultants, Inc. 2012), consistent with LUP Policy 4.5. Therefore, expert review has concluded that there is no significant risk associated with fault rupture. Additionally, expert review has concluded that there is no need for structural setbacks from the onsite trace of the Malibu Coast Fault and that potential impacts associated with fault rupture would be insignificant.

A review of the potential maximum earthquake magnitude from nearby active faults revealed that the maximum ground acceleration that would potentially be experienced at the Project site would be up to 0.86 g (GeoSoils Consultants Inc. 2011). This level of ground acceleration would have the potential to cause severe damage to buildings and infrastructure; therefore, impacts potentially resulting from seismic shaking are considered potentially significant. However, such seismic hazards are common throughout California and while measures can be taken to reduce potential structural damage, nothing can be done to absolutely ensure that structures do not fail during significant seismic events. Nonetheless, through the incorporation of proper engineering measures in accordance with existing regulations, building codes, and the application of the engineering recommendations provided in the approved geotechnical investigation, risks to life and property would be minimized (GeoSoils Consultants Inc. 2011). Therefore, the impacts potentially resulting from seismic shaking are considered to be potentially significant, but subject to feasible mitigation.

Standard Condition of Approval

MM GEO-1a The Project shall comply with the site-specific recommendations, put forth in the approved geotechnical engineering report, which are in accordance with applicable sections of the CBC and City of Malibu Building Code, which is a compilation of building standards adopted by state agencies, adopted and adapted from the national model code standards, and authorized by the California legislature (see Appendix C). The preliminary recommendations for grading, backfill, and foundations developed during the preparation of the approved site-specific geotechnical investigation shall be incorporated into the Project design as recommended, unless additional measures are deemed necessary based on the results of structural and chemical testing of the final grade samples.
All structures shall be designed to conform to the updated seismic design parameters for the Project site based on the 2009 International Building Code, Section 1613. At a minimum, the structures shall be designed to withstand ground shaking in exceedance of 0.86 g, the maximum that would be expected to be generated by active fault traces in the vicinity of the Project site.

Mitigation Measure

MM GEO-1b Post grading sampling shall be conducted after the completion of grading during Phase II of the proposed Project. Soil sampling shall consist of both structural and chemical component testing and shall inform the final geotechnical design recommendations, which shall be approved by the City Geologist.

Plan Requirements and Timing. The recommendations in the approved geotechnical report are considered preliminary. Final seismic design recommendations shall be determined at the completion of grading, based on structural and chemical testing of the final grade samples. The final recommendations shall be approved by the City Geologist prior to any additional construction activities.

Monitoring. The Applicant shall retain a geotechnical engineer and an engineering geologist to make recommendations and to inspect and verify field conditions prior to and during the implementation of critical Project components (e.g., site preparation, grading, and construction of foundation slabs). The Applicant-retained geotechnical engineer and engineering geologist shall also inspect the site prior to the final site inspection by the City building inspectors.

Impact Description

GEO-2 The proposed Project would expose people or structures to adverse effects resulting from slopes that do not meet the safety standards for slope stability and may be subject to future landslides (Class II).
The proposed Project would include construction of three secondary hotel buildings along the perimeter and internal access roads and utilities in the northeastern segment of the site overlooking Winter Canyon in an area where soils have been identified as potentially unstable (see Figure 3.5-2). Although a historic landslide exists along the eastern portion of the site, this area has been found to be stable and consequently would not require special foundation treatment or other mitigation (GeoSoils Consultants Inc. 2011). Additionally, an area just north of PCH adjacent to one secondary hotel building, which is proposed for construction of the perimeter access road and utilities, has exhibited a factor of safety below the required minimum (GeoSoils Consultants, Inc. 2012; refer to Appendix C and Cross Sections A-A’ and B-B’ in Figure 3.5-2).

The proposed Project would include a range of engineering design specifications to address these potential hazards, consistent with City policies and as identified in the geotechnical report prepared by GeoSoils Consultants Inc. in 2011 and approved by the City Geologist in 2012 to minimize the potential for adverse effects resulting from slope instability (Figure 3.5-2). Such specifications would include construction of approximately 144 feet of 6-foot tall caisson-supported retaining walls through the primary area of concern to support proposed fill slopes in this area, depicted by Cross-Section Lines of Unstable Area A-A and B-B in Figure 3.5-2. Additionally, engineering specifications would include compaction of potentially unstable soils and installation of appropriate drainage controls to carry water away from this area. Consequently, potential impacts arising from geologic and soils hazards would be potentially significant, but subject to feasible mitigation.

Mitigation Measure

MM GEO-2a The Project shall comply with site-specific recommendations in accordance with the applicable sections of the CBC and Title 15 of the Malibu Municipal Code which adopts the California Building Code. The recommendations for grading, backfill, and the construction of the retaining walls developed during the preparation of the approved site-specific geotechnical investigation shall be incorporated into the Project design, unless additional measures are deemed necessary based on the results of structural and chemical testing of the final grade samples. Specific applicable measures outlined in the approved geotechnical report include but are not limited to the following:
3.5 GEOLOGY AND SOILS

- Fill slopes and cut slopes shall have a maximum slope ratio no greater than 2:1 (horizontal to vertical).

- The reinforced concrete piles used to support the retaining walls shall be designed to extend below the critical failure surface on the slopes along the northern perimeter of the Project site.

- In addition to grading and compaction requirements, deepened foundations, as described by GeoSoils Consultants Inc. (2011), shall be required for support of retaining walls along the tops of slopes, as well as for the piles that are necessary to increase the safety factor along the north-facing slope area.

- Spray of effluent shall not occur on slopes with a gradient greater than 2:1 (horizontal to vertical), nor shall it occur on the eastern area of the Project site in the zone of instability north of Pacific Coast Highway.

- Subdrains shall be provided in all stabilization fills prior to fill placement.

- Surface water shall not be allowed to pond or seep into the ground, or flow over slopes in a concentrated manner, as it may locally have an adverse affect on surficial slope stability.

Plan Requirements and Timing. The recommendations in the approved geotechnical report are considered preliminary. Final design recommendations shall be determined at the completion of grading, based on structural and chemical testing of the final grade samples. The final recommendations shall be approved by the City Geologist prior to any additional construction activities.

Monitoring. The Applicant shall retain a geotechnical engineer and an engineering geologist to make recommendations prior to and during grading and to inspect as well as verify field conditions prior to the construction of the retaining walls. A City building inspector shall also observe critical construction activities as well as inspect the site prior to the issuance of the Certificate of Occupancy.
3.5 GEOLGY AND SOILS

Impact Description

GEO-3 The proposed Project would expose people or structures to adverse effects as a result of Project development on expansive soils or soils subject to liquefaction (Class II).

While the Project site is not located in an area subject to liquefaction, the geotechnical analysis revealed the presence of moderately expansive soils (Department of Conservation 2001; GeoSoils Consultants Inc. 2011; GeoSoils Consultants Inc. 2012). The volume change that soils undergo in this cyclical pattern can stress and damage foundations, foundation slabs-on-grade, and exterior flatwork if precautionary measures are not incorporated in design and construction. Methods commonly used to mitigate expansive soil conditions include placement of non-expansive material beneath the slabs and flatwork, premoistening of subgrade soils, or a combination of the two. Foundations can also be specially engineered to resist the tensional loads caused by expansive soils.

With the implementation of MM GEO-3a and geotechnical engineering measures outlined in the GeoSoils Consultants Inc. geotechnical report (2011), the potential for differential settlement is low at the Project site, approximately 1/2 inch or less for buildings and 1/4 inch or less between adjacent columns (Van Beveren and Butelo, Inc. 2007). These recommendations include a program of scarification, moisture conditioning, and compaction of the upper soils in the building and surface improvement areas.

With the implementation of these measures, the impacts related to development on expansive soils are considered to be potentially significant, but subject to feasible mitigation.

Mitigation Measure

MM GEO-3a Soil engineering design recommendations addressing expansive soils and differential settlement in the site-specific geotechnical engineering report shall be incorporated into the Project design in accordance with applicable sections of the CBC and the Malibu Municipal Code.

• All relevant grading recommendations provided by GeoSoils Consultants Inc. (2011) shall be incorporated into the Project design.
In order to minimize the potential effects of expansive soils, secondary settlement, and hydroconsolidation or hydrocompression, post-tensioned slab foundations shall be utilized in the Project design (see Appendix C).

Soil bearing pressures for foundation slabs shall be no greater than those cited in the foundation criteria (see Appendix C).

Plan Requirements and Timing. The design recommendations in the approved geotechnical report are considered preliminary. Final soil recommendations shall be determined at the completion of grading, based on the structural and chemical testing of the final grade samples. The final recommendations shall be approved by the City Geologist prior to any additional construction activities.

Monitoring. The Applicant shall retain a geotechnical engineer and an engineering geologist to make recommendations prior to and during grading and to inspect as well as verify minimum grading requirements (e.g., minimum 2:1 slopes) have been met prior to the construction of any of the proposed structures.

Impact Description

GEO-4 The proposed Project would result in increased erosion and/or decreased soil stability as a result of the proposed onsite wastewater treatment system (Class II).

Disposal of wastewater generated by the proposed Project would be provided by an OWTS with effluent disposed through irrigation of site landscaping, such as event lawns, and though spray irrigation of approximately nine acres of tall fescue turf lawn hillsides overlooking Winter Canyon and Malibu Canyon Road. Where feasible, effluent would be used for irrigation of landscaping on the Project site (GeoSoils Consultants Inc. 2012). The proposed spray system would be located mostly in areas underlain by terrace deposits, with a small portion of the system located in areas of volcanic rock at the northeast corner of the site. Geotechnical consultants have determined that these soils are stable and suitable for effluent disposal, except in an area just north of PCH (GeoSoils Consultants, Inc. 2011; refer to Cross Sections A-A’ and B-B’ in Figure 3.5-2). This area
3.5 GEOLOGY AND SOILS

Rancho Malibu Hotel Project
Public Draft EIR

has exhibited a factor of safety below the required minimum and therefore cannot support habitable development (GeoSoils Consultants Inc. 2012).

Disposal of large volumes of wastewater on steep slopes or in areas of historically unstable soils could create the potential for increased slope instability, particularly during heavy rain events. During such periods, evapotranspiration by natural or landscape vegetation would be very low, and the discharged effluent may combine with rainfall to exceed the capacity of vegetation on steep slopes to absorb this water. However, geotechnical review indicates that effluent percolation on the hillsides would not adversely affect slope stability as it is unlikely that water would migrate more than a few feet into the slopes as the proposed zero discharge system would be designed to absorb all treated wastewater in the root zone for evapotranspiration (GeoSoils Consultants Inc. 2012). Nonetheless, several mitigation measures were included in the geotechnical reports to ensure that wastewater disposal does not adversely affect slope stability. With the implementation of these measures in addition to standard conditions of approval, impacts to slope stability associated with disposal of Project generated wastewater would be potentially significant, but subject to feasible mitigation.

Standard Conditions of Approval

MM GEO-4a A Storm Water Management Plan (SWMP) shall be required. The SWMP shall be supported by a hydrology and hydraulic study that identifies all areas contributory to the property and an analysis of the predevelopment and post-development drainage of the site. The SWMP shall identify the Project design and source control BMPs that have been implemented in the design of the Project (see LIP Chapter 17).

MM GEO-4b Storm drainage improvements shall be required to mitigate increased runoff generated by property development. The Applicant shall have the choice of one method specified within LIP Section 17.3.2.B.2.

Mitigation Measures

MM GEO-4c The slopes along PCH, Malibu Canyon Road, and Civic Center Way, as identified by GeoSoils Consultants Inc. (2011), which currently exceed a slope of 2:1 (horizontal to vertical), shall be re-graded at a 2:1 (horizontal to vertical) slope beginning at the right of way.
Plan Requirements and Timing. The recommendations in the approved geotechnical report are considered preliminary. Final seismic design recommendations shall be determined at the completion of grading, based on structural and chemical testing of the final grade samples. The final recommendations shall be approved by the City Geologist prior to any additional construction activities.

Monitoring. The Applicant shall retain an engineering geologist to evaluate the necessity of additional drain placement. Further, all subdrainage systems shall be inspected by a certified Applicant-retained engineering geologist.

MM GEO-4d Treated wastewater shall not be sprayed in the area defined by GeoSoils Consultants Inc. (2012), which was found to have soils with cohesion levels not meeting the required factors of safety.

Plan Requirements and Timing. The recommendations in the approved geotechnical report are considered preliminary. Final seismic design recommendations shall be determined at the completion of grading, based on structural and chemical testing of the final grade samples. The final recommendations shall be approved by the City Geologist prior to any additional construction activities.

Monitoring. The Applicant shall retain an engineering geologist to evaluate the necessity of additional drain placement. Further, all subdrainage systems shall be inspected by a certified Applicant-retained engineering geologist.

Impact Description

GEO-5 The proposed Project would result in short- and long-term increased soil erosion and/or the loss of topsoil associated with site alteration, grading and construction (Class II).

The proposed Project would include approximately 229,000 cubic yards (cy) of cut and 40,000 cy of fill, with approximately 190,000 cy of material proposed for export. Grading
would occur over more than 15 acres of the site, and would include creation of substantial areas of cut and fill slopes on the north-, east- and south-facing hillsides of the site. The 16-acre gently sloping mesa top would be graded and leveled, with excavations greater than five feet deep across much of the mesa. Excavation for the subterranean portions of the proposed Project would generally range from 10 to 25 feet deep for the hotel and spa and up to 48 feet deep for the parking structure. The tallest fill slopes, ranging from 15 to 30 feet in height, would be located in the southwest corner of the Project site overlooking Civic Center Way and PCH. The tallest of these fill slopes would be topped by a system of single and double caisson-supported retaining walls ranging from six to 12 feet in height. This degree of grading and site alteration would leave bare soils exposed to erosional processes throughout much of the 18-month construction period. Additionally, it would leave exposed soils on steeper natural and manufactured slopes for more than three to five years following completion of construction.

The potential for erosion is anticipated to be highest on the slopes overlooking Winter Canyon and PCH. Because more than one acre of land would be disturbed during the construction phase, the proposed Project would require a NPDES stormwater permit. Compliance with permit conditions would require implementation of erosion control BMPs. In addition, the Applicant has submitted a preliminary Erosion Control Plan, which includes the use of erosion control measures, such as sediment basins, hydroseeding, straw bales and waddles along hillsides to control erosion during and immediately after grading operations. Longer-term measures would include planting of new landscaping on manufactured or disturbed slopes and installation of a system of drains, culverts, channels, and catch basins to intercept and direct runoff into the overall drainage system and detention basins. Additional information on stormwater permit requirements and erosion control measures is included in Section 3.7, Hydrology and Water Quality.

During and immediately following construction, an area of approximately 15-18 acres would be exposed to erosion from wind and rainfall. Required and Applicant-proposed erosion control techniques would reduce potential for erosion and associated offsite transport of sediment. However, unanticipated major storm events can create runoff that can damage or exceed the capacity of such erosion control measures. Following completion of construction, manufactured and disturbed slopes would be exposed to erosion. Impacts to geology and soils would be considered potentially significant, but subject to feasible mitigation.
Standard Condition of Approval

MM GEO-5a Grading and Drainage Plans and Erosion and Sediment Control Plans shall include the following:

- The Applicant shall limit grading of slopes with a gradient greater than 25% to the dry season of the year (i.e., March 31 to November 1); grading permits shall not be issued for these areas between November 1 and March 31. All exposed graded surfaces shall be reseeded with native ground cover vegetation following grading to minimize erosion.

- Grading on slopes with a gradient of less than 25% during the wet season shall require a wet weather erosion and sediment control plan. The following elements shall be included:
 - Locations of where the concentrated runoff will occur;
 - Plans for the stabilization of disturbed areas of the property, landscaping, and hardscape, along with the proposed schedule for the installation of protective measures;
 - Location and sizing criteria for silt basins, sandbag barriers, and silt fencing; and
 - Stabilized construction entrance and a monitor program for the sweeping of material tracked offsite.

- Methods such as geotextile fabrics, erosion control blankets, retention basins, drainage diversion structures, siltation basins and spot grading shall be used to reduce erosion and siltation into adjacent drainages during grading and construction activities.

- Any soil exported from the site shall be taken to the County Landfill or to a site with an active grading permit and the ability to accept the material in compliance with the LIP Section 8.3.

- Grading on slopes steeper than 2:1 (horizontal to vertical) shall be designed to minimize surface water runoff.

- Prior to major storm events a pre-storm site inspection will be conducted to assess the integrity of all erosion control measures. Repairs shall be made to all erosion control structures concurrently with or immediately following the pre-storm site inspection. Additional repairs shall be made to any affected structures following the storm event.
Mitigation Measure

MM GEO-5b The Applicant shall work with the Department of Public Works to clean up any and all erosion encroaching on major roadways including Malibu Canyon Road, Civic Center Way, and with Caltrans for clean up activities on PCH, both during construction and throughout the life of the Project.

Plan Requirements and Timing. An Erosion and Sediment Control Plan, a Storm Water Management Plan (SWMP), and a Storm Water Pollution Prevention Plan (SWPPP) shall be submitted for review and approval by the City prior to the initiation of construction. The plan(s) shall be designed to address erosion and sediment control during all phases of development of the site until all disturbed areas are permanently stabilized. Additionally, a Water Quality Mitigation Plan (WQMP) shall be submitted for review and approval by the City following the approval of construction plans but prior to the commencement of any construction-related activities, including site preparation. The WQMP shall describe how stormwater and polluted runoff will be managed and mitigated.

Monitoring. The City Public Works Department shall ensure compliance with the various Plans itemized above. The Applicant shall retain a geotechnical engineer or an engineering geologist to monitor technical aspects of the grading activities. The City shall also inspect the site during grading to monitor erosion, runoff, and dust generation, and to verify reseeding after conclusion of grading activities.

3.5.3.5 Cumulative Impacts

Impact Description

GEO-6 The proposed Project would result in potentially cumulatively considerable erosion and sedimentation impacts (Class II).

Development within the adjacent properties, including Pepperdine University and the Civic Center Area, particularly at the Crummer property (24120 PCH) and the Towing property (23915 Malibu Road) would lead to cumulative effects of potential erosion and sedimentation within Winter Canyon. While grading in this area would be substantial,
3.5 GEOLOGY AND SOILS

standard erosion control measures associated with the proposed Project would avoid or minimize the potential for significant erosion-related impacts. Additionally, while the possibility that erosion mitigation measures may fail cannot be completely eliminated, the proposed Project is not located within a significant watershed that would be significantly and adversely affected by sedimentation. For these reasons, the Project’s contribution to the cumulative impact of erosion and sedimentation would be *cumulatively considerable and significant, but subject to feasible mitigation* through adherence to mitigation measures described above.

3.5.3.6 Residual Impacts

After mitigation, some risk of personal injury or structural damage, albeit minor, will remain from seismic ground shaking (MM GEO-1). However, these are consistent with the risks seen throughout California and other seismically active areas and are unavoidable.

With the incorporation of specified mitigations, the risk of damage from slopes that do not meet the safety standards for slope stability would be reduced to less than significant (MM GEO-2).

Following the specified mitigations, the risk of damage from expansive soils or soils subject to liquefaction would be reduced to less than significant (MM GEO-3).

With the implementation of mitigation measures specified in the geotechnical reports prepared for the Project site, the risk of damage as a result of the proposed OWTS would be reduced to less than significant (MM GEO-4).

With the incorporation of standard erosion control requirements, the risk of erosion and adverse impacts resulting in the loss of topsoil due to grading activities would be reduced to less than significant (MM GEO-5).
3.6 FIRE PROTECTION AND HAZARDOUS MATERIALS

The following section describes existing fire conditions on the Project site and in the surrounding vicinity, with a particular emphasis on wildland fire hazards, Project-related onsite fire protection measures, regional wildfire response, and firefighting capabilities. Further, this section evaluates the impacts of the proposed Project on wildland fire protection resources, which include the entities tasked with combating fires, the infrastructure that assists those entities, and site conditions that contribute to or diminish the danger of fire. For specific information regarding municipal fire protection resources refer to Section 3.9, Public Services.

Finally, this section assesses hazards and hazardous materials and their potential risk of exposure associated with the Project. Hazardous materials are defined as any solid, liquid, or gas that can harm people, other living organisms, property, or the environment. A hazardous material may be radioactive, flammable, explosive, toxic, corrosive, a biohazard, an oxidizer, an asphyxiant, a pathogen, an allergen, or may have other characteristics that render it hazardous in specific circumstances. Issues associated with hazardous materials develop when such materials are improperly stored, transported, used, and/or released into the environment. Once a hazardous material is ready for disposal, it becomes a hazardous waste. For the purposes of this EIR, “hazardous waste” is defined as a waste that meets any of the criteria for the identification of a hazardous waste pursuant to California Health & Safety Code § 25141, including wastes that may 1) cause, or significantly contribute to an increase in mortality or an increase in serious irreversible, or incapacitating reversible, illness; or, 2) pose a substantial present or potential hazards to human health or the environment (California Health & Safety Code § 25117 § 25124). In addition, hazardous waste occasionally may be generated by actions that change the composition of previously non-hazardous materials. The same characteristics that define a hazardous material are also applied to hazardous waste.
3.6.1 Existing Conditions

3.6.1.1 Regional Wildfire Conditions and Hazards

Climate

The Project site is located in the City of Malibu (City) at the base of the Santa Monica Mountains, which parallels the Pacific Coast in Ventura and Los Angeles counties. This area has a Mediterranean climate characterized by warm, dry summers and cool winters with approximately 80% of annual precipitation occurring between October and March (Radtke et al. 1981). As a consequence of these conditions, locations that have a Mediterranean climate tend to experience an increased rate of wildland fire occurrence.

Wildland fires are defined as any non-structure fire, other than prescribed burns, that occur in an undeveloped or natural area. Wind and fuel moisture are the two most important elements affecting fire behavior. Wind primarily controls the direction and the spread of fire, and affects fire behavior by reducing fuel moisture, increasing the oxygen supply for combustion, preheating the fuels, and bending the flames closer to the unburned fuels ahead of the fire (Radtke et al. 1981).

In the Santa Monica Mountains, large-scale fire patterns may seem erratic; however, they are relatively predictable and often driven by Santa Ana winds, which are extremely dry offshore winds that can exacerbate regional wildfires, especially under drought conditions. Further, these wildfire events occur at a relatively predictable return interval, given fuel conditions (see Figure 3.6-1). Most large-scale wildland fires occur during Santa Ana fire wind conditions, which persist from mid-September through December (Radtke et al. 1981).
In addition to weather patterns and climate, topography influences wildfire to such an extent that slope conditions can often become a critical landscape fire factor. Conditions such as the length and steepness of slopes, direction of exposure, and/or overall ruggedness of terrain each influence the potential intensity of wildfires and/or the rates at which they may spread. Most importantly, slope steepness influences the speed of fire spread. Up-slope fires move significantly faster than down-slope fires because of an up-slope “wind effect” which accelerates the spread of fire (County of Los Angeles 2011). Consequently, fires in rugged terrain and on steep slopes can be more difficult for firefighters to reach and contain.
Within the Santa Monica Mountains, airflow is guided by topography into the north-south facing canyons. Onshore winds are channeled up canyon and upslope while Santa Ana winds are channeled down canyon. Strong Santa Ana surface winds that push the fire in a southwesterly direction up the inland mountain slopes often change their direction to south and east as winds are funneled into coastal canyons (Radtke et al. 1981).

Vegetation and Fuel Biomass

The native coastal sage scrub and chaparral communities that dominate the slopes of the Santa Monica Mountains have various chemical, physical, and physiological characteristics that tend to make them flammable. These vegetation communities have a propensity to burn on an intermittent basis. Consequently, recurrent fire has developed into an ecological factor necessary for the survival of some coastal sage scrub and chaparral species. Some chaparral species require a “fire cue” such as intense heat, smoke, or charring of bark before seed germination can occur, and some have reproductive systems that allow for fast germination after fire. However, the chaparral ecosystem as a whole does not appear to require fire to remain healthy. According to recent studies, California chaparral is extraordinarily resilient to very long periods without fire (Keeley et al. 2005) and generally continues to maintain productive growth throughout pre-fire conditions (Hubbard 1986; Larigauderie et al. 1990).

However, the ecology of chaparral should not be generalized to coastal sage scrub community, as there are a number of characteristics in coastal sage scrub vegetation that differ from chaparral and may affect its fire ecology (Riverside County 2002). Coastal sage scrub’s resilience to periodic wildfire is not completely understood, but seems to be a product of the reproductive strategies of the constituent species and the nature of the fire.
regime. Coastal sage scrub has lower shrub cover, higher volatile oil content, greater cover by herbaceous (i.e., understory) species, shorter duration of nitrogen-fixing species, and more marked variation in post-fire sprouting patterns than chaparral (Westman et al. 1981). Unlike chaparral habitat, coastal sage scrub has much less standing biomass and litter accumulation, and constituent shrub species are capable of continual reproduction by seed. In general, fire frequency tends to be highest within areas that are covered by coastal sage scrub communities, as they tend to accumulate more herbaceous plants annually than do areas containing woody chaparral shrubs (County of Los Angeles 2011).

High fire frequency (i.e., short intervals between fires) may permanently alter the vegetation of a site, including the loss of weak resprouting species, such as California sagebrush (Malanson and O’Leary 1982). Additionally, fires at five- to 10-year intervals may result in vegetation type conversion from chaparral to coastal sage scrub (Keeley 1987; O’Leary et al. 1992). Type conversion from coastal sage scrub or chaparral to grassland also may occur through repeated burning in successive or alternate years (Zedler et. al. 1983).

Historical Wildland Fires and Return Interval

Historical records of wildland fires in the Malibu area have shown that major wildland fires occur approximately every three to four years, on average (see Table 3.6-1); however, the Project site has an average fire return interval between 22 and 28 years (National Park Service [NPS] 2002) (see Figure 3.6-1). As a result of weather conditions, plant types, and past fire management policies, the Santa Monica Mountains and surrounding area have a very high risk of fire. Consequently, structures and residences located in this area are at risk from wildfire. During the 2007 Corral Fire, approximately 86 structures were destroyed including 53 homes. An additional 45 structures including 33 homes were damaged in that fire (Damavandi and Friedman 2008).

Wildland Fire Fighting Strategies

Typical strategies for managing wildland fire hazards are composed of three parts including 1) on-going fuel management activities, 2) fuel reduction near structures, and 3) suppression of active fires. Fuel management is the most controversial element, with fire crews removing dried vegetation, creating fuel breaks where all vegetation is
Table 3.6-1. Historic Wildfire Occurrence in the Santa Monica Mountains Region

<table>
<thead>
<tr>
<th>Year</th>
<th>Name of Fire</th>
<th>Approximate Number of Acres Burned</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970</td>
<td>Wright Fire</td>
<td>28,202</td>
</tr>
<tr>
<td>1973</td>
<td>Trippet / Topanga Fire</td>
<td>2,800</td>
</tr>
<tr>
<td>1978</td>
<td>Kanan Fire</td>
<td>25,588</td>
</tr>
<tr>
<td>1982</td>
<td>Dayton Canyon Fire</td>
<td>43,096</td>
</tr>
<tr>
<td>1985</td>
<td>Piuma Fire</td>
<td>4,500</td>
</tr>
<tr>
<td>1985</td>
<td>Decker Fire</td>
<td>6,500</td>
</tr>
<tr>
<td>1993</td>
<td>Malibu Fire / Old Topanga Fire</td>
<td>16,202</td>
</tr>
<tr>
<td>1996</td>
<td>Calabasas Fire</td>
<td>12,189</td>
</tr>
<tr>
<td>2003</td>
<td>Pacific / Trancas Canyon Fire</td>
<td>750</td>
</tr>
<tr>
<td>2007</td>
<td>Malibu Canyon Fire</td>
<td>3,500</td>
</tr>
<tr>
<td>2007</td>
<td>Corral Fire</td>
<td>4,900</td>
</tr>
</tbody>
</table>

removal, and conducting prescribed burns. While these strategies may prove to be effective in preventing the spread of large fires and reducing risk to life and structures, they may also fragment and damage ecosystems and cause visual changes in the process through the removal of vegetation for creation of fire breaks or other habitat modifications.

The County of Los Angeles Strategic Fire Plan incorporates similar elements under a comprehensive wildland fire protection strategy, which includes prevention, vegetation management, passive protection, and fire suppression (Los Angeles County Fire Department [LACFD] 2012a). Vegetation management, as it relates to wildland fire, refers to the total or partial removal of high fire hazard grasses, shrubs, or trees. The objective is to create defensible

Wildfires generally occur every three to four years in the Malibu area. The LACFD implements a strategic fire plan that includes prevention, vegetation management, and passive protection measures. However, in the event of a wildfire, the LACFD employs fire suppression measures which include ground as well as aviation assets.
space, necessary for effective fire protection. The LACFD requires a 300-foot buffer around all habitable developments within high fire hazard areas. Fuel modification reduces the radiant and convective heat generated by wildfire, and provides valuable defensible space for firefighters to take an effective stand against an approaching fire front and firebrands (i.e., ember showers). When a wildfire occurs, the primary protection for life, property, and the environment comes from passive protection measures such as defensible space, fire resistive landscaping, and fire-resistive construction. The sum effect of passive protection measures substantially increases the effectiveness of fire suppression activities. Fire suppression generally includes a combined resource attack, which is a coordinated suppression effort including ground assets, aviation assets, passive fire protection measures, and command elements (LACFD 2012a).

Inadequate or unreliable water supply, inadequate ingress and egress, inadequate structural safeguards, and inadequate vegetation management are the factors that lead to major fire losses in areas adjacent to wildlands. One of the primary causes of structural loss in wildland fires has been found to result from ornamental shrubbery being planted next to structures (Cohen 1999). The cumulative effect of unprotected development in these areas leads to large property losses and potential loss of life. In addition, the inability of residents to shelter-in-place in their homes can also create evacuation and emergency responder access problems in these areas (Mangan 2000).

3.6.1.2 Regional Hazardous Materials

While a number of properties in the vicinity of the Project site, specifically in the Civic Center Area, appear in listings maintained by federal, state, and local agencies as being small-quantity generators, or having underground storage tanks, there are no known sources of contamination within the immediate vicinity that would directly or indirectly affect the Project site. The nearest known sources of contamination occur at a distance of over 1/2 mile from the Project site (City of Malibu 2009).

3.6.1.3 Fire Hazards at the Project Site

Project Site Wildland Fire Hazard

Wildland fires are inevitable and are a part of the natural regeneration cycle of the native landscape. However, structure losses are not necessarily directly due to wildland fires,
but instead result from inappropriate siting of structures, structures being located too close together, and flammable ornamental landscaping and accessory structures including fences, decks, and arbors (City of Malibu 1995).

Residential areas are affected by wildland fire more than any other area in the City. Houses that are nestled among the heavily vegetated canyons surrounded by a great deal of underbrush are especially vulnerable to fires. The Malibu General Plan Safety and Health Element (S) (1995) identifies the City as belonging to an “Extreme Fire Hazard Zone” for wildfire (refer to General Plan, Section 5.2.5). As shown in Figure 3.6-2, the entire City, including the Project site, is located within a Very High Fire Hazard Severity Zone (VHFHSZ) (LACFD 2011b; California Department of Forestry and Fire Protection [CDF] 2011). Mapping of these areas is based on: 1) raw data and models of potential fuel build-up over a 30- to 50-year time horizon and associated expected fire behavior, and 2) expected burn probabilities that quantify the likelihood and nature of vegetation fire exposure (including firebrands) to buildings.

The Project site was most recently burned in 2007 during the Malibu Canyon Fire (see Figure 3.6-2). Prior to the Malibu Canyon Fire, the site was burned in 1996 during the Calabasas Fire as well as at least four times during the period between 1925 and 1981 (County of Los Angeles 2011). These fires, particularly the Malibu Canyon Fire, have affected the vegetation that occurs on the site, as the majority of the coastal sage scrub is now in successional stages (Rincon Consultants, Inc. 2011). Currently, the flammable fuels on the Project site consist primarily of large areas of intact and successional coastal sage scrub and small areas of grasslands. Additionally, the southeastern-most portion of the Project site contains areas with stands of eucalyptus trees on steep slopes.

The Project site is afforded limited protection by surrounding roads, which serve as a firebreak. The subject property’s western and northwestern boundary is Malibu Canyon Road, which is approximately 75 feet wide, with a manicured lawn on the road’s western border. The eastern and northeastern boundary is Civic Center Way, which is approximately 65 feet wide but is densely vegetated along its northeastern border. The southern boundary is Pacific Coast Highway (PCH), which is approximately 100 feet wide, with low growing vegetation along its southern border. However, past wildfires, including the Calabasas Fire and the Canyon Fire have succeeded in crossing both Civic Center Way as well as PCH (see Figure 3.6-2). While so-called “crown” fires (i.e., wildland fires which spread through the tree canopy) are unlikely in the Project area due
Wildfire Hazards

FIGURE 3.6-2
to the dominance of low-growing shrubs, in many areas along the perimeter of the Project site, and specifically within adjacent riparian areas, eucalyptus trees are located near enough to one another that fire could spread through the tree canopies if vegetation connects the shrubland and tree canopy.

Additional wildland fire hazards that occur on the Project site include the moderately steep slopes (i.e., 4:1 or 25%) (horizontal to vertical) along the site’s northern and eastern perimeters. Slope steepness and the ruggedness of terrain affect fire-fighting accessibility and response times, as described in Table 3.6-2. As slope gradients increase, the ability to utilize fire trucks and bulldozers to directly attack fires decreases. Likewise, hand crews are less likely to establish fire-containment lines in areas of excessively steep slopes due to the lack of accessibility and safety concerns. The development of spot fires ahead of fire-lines and the hazards of rolling and blowing firebrands become progressively more serious as slope increases. However, the site’s proximity to and accessibility from the surrounding road network partially mitigates this hazard.

Table 3.6-2. Potential for Fire Fighting Success and Tactics

<table>
<thead>
<tr>
<th>Slope Class</th>
<th>Potential for Fire Fighting Success and Tactics</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 20%</td>
<td>Optimal chances for success of combating fires utilizing direct attack methods with all-wheel drive fire trucks, bulldozers, hand crews, and aerial resources, including fixed-wing tankers.</td>
</tr>
<tr>
<td>21 – 40%</td>
<td>Moderate feasibility for controlling fires by direct attack with all-wheel drive fire trucks, bulldozers, hand crews, helicopters. Use of fixed-wing aerial tankers limited by ruggedness of terrain.</td>
</tr>
<tr>
<td>41 – 60%</td>
<td>Limited feasibility for controlling fires as slopes are typically beyond operating capability of all-wheel drive fire trucks. Direct fire-fighting tactics utilizing bulldozers and hand crews are possible, but become increasingly difficult of hand crews and helicopters. Use of fixed-wing aerial tankers becomes highly restricted.</td>
</tr>
<tr>
<td>> 60%</td>
<td>Low feasibility for controlling fires. Slope gradients largely beyond operating capability of bulldozers. Attack methods become more indirect. Hand crews and helicopters become primary tools.</td>
</tr>
</tbody>
</table>

Source: County of Los Angeles 2011.
Fire Protection Services within the Immediate Vicinity of the Project Site

Los Angeles County Fire Department

The LACFD provides fire protection services to the Project site (see Section 3.9, Public Services). The City is located within Division VII and is served by LACFD’s Battalion 1. Stations 65, 67, 69, 70, 71, 72, 88, 99, and 125 all provide fire protection services to the City (LACFD 2012b). The station located nearest to the Project site is Station 88, located at 23720 Malibu Road, approximately one mile east of the Project site south of PCH. Station 88 maintains a three-person engine company and a two-person paramedic squad (LACFD 2012b; County of Los Angeles 2011).

Criteria typically used to determine the adequacy of fire protection services include: the response time (i.e., maximum response time of five minutes); the ratio of firefighters to population; and the population served. The five-minute response time is considered the most critical criterion in providing prompt urban fire protection and emergency medical services. Response times under five minutes are considered adequate and response times over five minutes are considered substandard. The average emergency response time for Station 88 in 2011-2012 was 4:49 minutes (LACFD 2012e).

Additionally, according to National Fire Protection Association guidelines, an area should maintain a firefighter-to-population ratio of approximately one firefighter to every 2,000 citizens; based on this criterion, there is currently an adequate firefighter-to-population ratio of approximately one firefighter for every 800 residents within the County (LACFD 2011a). Moreover, within the City, there is currently an adequate firefighter-to-population ratio of approximately one firefighter for every 300 residents (LACFD 2012e; see Section 3.9, Public Services).
The LACFD also includes Fire Prevention, Forestry, and Air and Wildland Divisions.
The Fire Prevention Division focuses on educating the community about the benefits of
proper safety practices and identifying and eliminating all types of hazardous conditions
that pose a threat to life, the environment, and property. The Forestry Division is
responsible for the review of environmental documents related to development and
protection of oak tree resources, development of vegetation management plans and
proposals, and fuel modification plans. Additionally, the Forestry Division is responsible
for coordination of wildland fire planning and enforcement of LACFD’s brush clearance
program.

The Air and Wildland Division is responsible for managing 10 Fire Suppression Camps,
the Fire Department’s Heavy Equipment Unit, and the Prescribed Fire Program (LACFD
2012c). The Air and Wildland Division staffs 31 fire crews on a daily basis throughout
the year, as well as two paid fly crews with assistance from the Department’s Air
Operations Sections and four to five dozer teams during fire season. Additionally, the
resources in the Suppression Camps fulfill a significant role in the California wildland
fire-fighting arsenal and are utilized throughout the state for wildland fire fighting. The
camps within the City include Camp 13 and Camp 8, the latter of which has a primary
mission to execute airborne attacks on wildland fires (LACFD 2012c).

California Department of Forestry and Fire Protection (CDF)

The County of Los Angeles is one of six “contract counties,” which have executed a
contract with the State of California to provide wildland fire protection on State
Responsibility Areas (SRAs). Section 4102 of the Public Resources Code defines SRAs
as those areas which the state has the financial responsibility of preventing and
suppressing fires. The LACFD has the responsibility as a contract county to implement
the 2010 State Strategic Fire Plan for California in Los Angeles County. As such, the
LACFD functionally operates as a unit of the CDF, and is responsible for all Strategic
Fire Plan activities within the County.

If a fire requires additional personnel beyond the initial attack staffing requirements, then
the CDF serves as one of many secondary responders. In Los Angeles County, the CDF
provides 23 stations as well as fire prevention staffing.
The lands within and in the vicinity of the Santa Monica Mountains National Recreation Area (SMMNRA) have been marked by frequent, large, and in many cases, destructive wildfires at the wildland-urban interface. Wildfire management in the City, including the Project site, is governed by the SMMNRA Fire Management Plan (FMP) (see Section 3.9, Public Services). The FMP is a fundamental strategic document that guides the full range of fire management related activities. It provides a framework for the management of wildland fire, and prescribes fire and hazard fuel reduction as tools to safely accomplish the resource protection and management objectives of the SMMNRA as described in the General Management Plan and the Resource Management Plan (NPS 2007). The FMP addresses fire suppression, initial and extended attack of a wildfire, and preparedness for the SMMNRA, which includes the City.
The Project site is located within Fire Management Unit (FMU) #3 – Kanan East (see Figure 3.6-3). This area is characterized by small interface and intermix communities. Further, the potential loss of property from wildland fire is greatest in this FMU, as many of the communities are built to older construction standards and have widely varying degrees of defensible space. The LACFD has the non-federal wildland fire jurisdiction in this area; however, wildland fires in the Santa Monica Mountains are suppressed by a number of local suppression agencies, including the City of Los Angeles Fire Department; LACFD; Ventura County Fire Department, with support from the NPS; California Department of Parks and Recreation; and the Santa Monica Mountains Recreation and Conservation Authority (NPS 2007).

Wildfires occurring within the SMMNRA, including the Project site, receive appropriate initial attack action by the nearest available suppression forces, which in the Malibu area is generally a LACFD engine company, including services provided by Station 88 (NPS 2007). Additionally, the NPS has two wildland fire engines that are also available to respond to these incidents (NPS 2012b).

Fire Response

Fire response is conducted according to the Incident Command System (ICS) to provide a single- or multi-agency response, depending on the severity of the emergency (see Section 3.9, Public Services). ICS response to the Project site begins with Station 88, which would be the “first-in” station. Fire Station 70, located at 3970 Carbon Canyon Road, Malibu, approximately three miles from the Project site, would be the “second-in” station. If the severity of the emergency merits the attention of more equipment and

1 In both interface and intermix communities, housing development exceeds a minimum density of one structure per 40 acres. Intermix communities are places where housing and vegetation intermingle and interface communities are areas with housing in the vicinity of contiguous vegetation.
personnel than can be supplied by local fire protection, the ICS would be expanded to incorporate nearby state or federal back-up crews into the ongoing response. The 2010 State Strategic Fire Plan for California would guide a statewide response, and includes additional information associated with statewide fire fighting resource capabilities.

Water Supply

Water supply to the Project site would be provided by two sources including Los Angeles County Waterworks District No. 29 (District 29) and an allocation from the three million gallon water retention basin located at Pepperdine University (Pepperdine) (see Section 3.9, Public Services). Currently, three water mains are located in immediate proximity to the Project site, including an 18-inch diameter main along PCH connected to two existing fire hydrants, a 12-inch diameter main along Civic Center Way to the south of Winter Canyon Road connected to three existing fire hydrants, and a 16-inch diameter main along Seaver Drive to the north of the Project site. As a requirement of District 29’s will-serve letter dated July 10, 2012, the Applicant would be required to fund the installation of additional fronting mains to connect into the existing mains surrounding the Project site, which would facilitate a connection to the public water supply as well as to the basin at Pepperdine (County of Los Angeles Department of Public Works [LADPW] 2012).

Currently, District 29 has the storage capacity to provide its customers with water for approximately three days under standard use conditions (LADPW 2005). However, due to a growing population, the threat of natural disasters, and outdated water distribution systems, several projects have been constructed or proposed in order to improve water service reliability, specifically for fire flows. The LADPW is in the process of finalizing a Master Plan for the region, which will include system-wide upgrades to the water facilities; however, there are no system upgrades or storage upgrades planned for the zone in which Project would be located (LADPW 2012). The proposed 800,000 gallon Sweetwater storage tank, planned for Serra Retreat, is proposed to support development in the Civic Center area. Although the storage tank is currently unfunded and unscheduled, once installed (following the collection of sufficient impact fees from developers) the tank will provide additional water for fire flows in the Civic Center area (LADPW 2012).

While the public water supply has been constructed to support the suppression of structure fires, District 29 also has four emergency interconnections including two with
the City of Los Angeles Department of Water and Power and two with Las Virgenes Municipal Water District (LADPW 2010). In an emergency, the District would utilize these interconnections and engage the prepared Emergency Response Procedures (ERP), which includes actions for any foreseeable emergency, including a regional wildfire (LADPW 2005). Water to the Project site would be provided by District 29 to meet the established fire flow requirement of 3,500 gallons per minute (gpm) at a pressure of 20 pounds per square inch (psi) for a duration of three hours (County of Los Angeles 2011). However, it cannot be expected that flow from fire hydrants would be effective in stopping the advance of a major wildland fire because the public water system is designed to suppress structure fires (LAPWD 2012)

As discussed, in addition to the public water supply, the Applicant established an agreement with Pepperdine in 1981 to secure an allocation of 109,000 gallons of water from Pepperdine’s three million gallon retention basin (see Section 3.9, Public Services). The Applicant has committed to funding installation of a 16-inch diameter main along Malibu Canyon Road that would connect to the existing main along Seaver Drive and facilitate the conveyance of this water allocation to the Project site. Further, during a wildland fire, the Applicant’s agreement with Pepperdine would permit access to Pepperdine’s three million gallon basin to meet required fire flows at both Pepperdine and the Project site (LADPW 2012). Consequently, during a wildfire, up to 1,260,000 gallons (i.e., 42% of Pepperdine’s three million gallon basin) would be devoted to wildfire suppression activities at both Pepperdine and the Project site (LADPW 2012).

Wildfire Evacuation

Wildfires in the City often result in either recommended or mandatory (i.e., enforced by law enforcement officials) evacuation of residents. Evacuees within the foothills of Malibu are forced to use the narrow, winding roads within the City, including Malibu Canyon Road, for evacuation by vehicle. This route, immediately adjacent to the west of the Project site, is often severely congested during wildland fires. Traffic along this route can also be compounded by panicked drivers and the evacuation of stock animals in large trailers, which are not well suited to the constraints presented by the narrow and irregular layout of Malibu Canyon Road. Additional possible impediments to emergency ingress and egress include smoke, flames, ash and embers, landslides, and downed power lines and trees. Once clear of the foothill region, evacuees generally travel either eastward or...
westward along PCH, depending on law enforcement recommendations, which are based on fire behavior, wind pattern, traffic conditions, and ingress of emergency vehicles.

Consequently, PCH, which is the major thoroughfare through the City, is often congested and closed at particular intersections during wildfire events, especially during regional wildfires, which also affect communities up and down the coast. PCH is also the primary route for emergency vehicles during wildfire events. This often results in additional road closures for the purpose of maintaining suitable traffic conditions for optimal emergency vehicle movement. These closures can result in additional delays, which increase the potential for the loss of life for evacuees.

During a wildfire, many residents often assemble at short-term evacuation areas, such as Zuma Beach, where they may be provided with updated information about the fire, as described in the *Malibu Survival Guide* and the *City of Malibu Emergency Operations Plan* (City of Malibu 2012). Long-term evacuation shelters may also be established, with the primary shelter usually located at Malibu High School, located in the western portion of the City.

During the 2007 Malibu Canyon Fire, which threatened more than 600 residences and 200 commercial buildings, over 500 homes were evacuated. During the fire, Malibu Canyon Road at Civic Center Way was closed to all traffic, and PCH was closed throughout its length within the City. Evacuation centers for Malibu Canyon residents were established at Agoura High School and Palisades High School. In general, residents conducted themselves in a safe, orderly manner, following the instructions of fire department and law enforcement officials.

3.6.1.4 Hazardous Materials at the Project Site

Hazardous materials concerns within the boundaries of the Project site include the site’s previous use as a nursery and a former septic waste storage operation onsite (All Environmental, Inc. 1999). A Phase I Environmental Site Assessment (ESA) raised concerns regarding the past use of banned pesticides on the property and the presence of stained soil near the septic storage containers in the central portion of the property (All Environmental, Inc. 1999). Two septic tanks are located in the central portion of the property, and are surrounded by stained soil (All Environmental, Inc. 1999).
During a subsequent Phase II ESA conducted in April 1999, approximately 24 soil borings were taken around the Project site and four soil samples were taken in the immediate vicinity of the abandoned septic tanks. No measurable concentrations of pesticides were detected in any of the soil samples, suggesting that the site’s former use as a nursery did not affect soils on the property (All Environmental, Inc. 1999). Additionally, no hazardous compounds were detected near the septic tanks, which suggests that the septic waste storage operations onsite have not affected the property (All Environmental, Inc. 1999). In summary, the Phase II ESA found no significant pesticide or solvent contamination and did not recommend any further exploratory borings.

3.6.2 Regulatory Setting

3.6.2.1 Federal Regulations

Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980. Under CERCLA, owners and operators of real estate where there is hazardous substance contamination may be held liable for the costs of cleaning up contamination found on their property. No evidence linking the owner/operator with the placement of the hazardous substances on the property is required.

Congress, in response to pressure from business and academic groups, established the “innocent landowner defense” in the 1986 amendments to CERCLA, known as the Superfund Amendments and Reauthorization Act (SARA). To establish innocent landowner status, the landowner “must have undertaken, at the time of acquisition, all appropriate inquiry into the previous ownership and uses of the property consistent with good commercial and customary practice in an effort to minimize liability.” In an effort to clarify what constitutes “all appropriate inquiry,” the American Society for Testing and Materials (ASTM) has developed a standard that provides specific definition of the steps...
one should take when conducting a “due diligence” environmental site assessment for commercial real estate. In addition, CERCLA, in 40 Code of Federal Regulations (CFR) 300.430 describes acceptable exposure levels for non-carcinogens and carcinogens.

Toxic Substances Control Act (TSCA). Established in 1976 and amended on December 31, 2002, the TSCA (15 U.S. Code [USC] § 2601-2692) grants the U.S. Environmental Protection Agency (U.S. EPA) power to require proper reporting, record-keeping, and testing requirements related to chemical substances and/or mixtures. Specifically, the TSCA addresses the production, importation, use, and disposal of specific chemicals, including polychlorinated biphenyls (PCBs), asbestos, radon, and lead-based paint (LBP). The TSCA establishes the U.S. EPA’s authority to require the notification of the use of chemicals, require testing, maintain a TSCA inventory, and require those importing chemicals under Sections 12(b) and 13 to comply with certification and/or other reporting requirements. This federal legislation also phased out the use of asbestos-containing materials (ACMs) in new building materials and sets requirements for the use, handling, and disposal of ACMs. Disposal standards for LBP wastes are also detailed in the TSCA.

Resource Conservation and Recovery Act (RCRA). The RCRA was enacted in 1974 (42 USC § 6901 et seq.) as the first step in regulating the potential health and environmental risks associated with solid hazardous and nonhazardous waste disposal. Subtitle I of this legislation authorizes the U.S. EPA to issue regulations for new underground storage tank installations, as well as strict standards for upgrading underground storage tanks, corrosion protection, spill and overflow protection, onsite practices and record-keeping, underground storage tank closure standards, and financial responsibility.

Federal Occupational Safety and Health Act (OSHA). The federal OSHA (29 USC § 651 et seq.) established requirements for workers involved in the handling, use, and disposal of hazardous materials, including emergency response, hazard communication, and personal protective equipment. This federal legislation requires special training of handlers of hazardous materials, notification to employees who work in the vicinity of hazardous materials, acquisition from manufacturers of material safety data sheets (which describe the proper use of hazardous materials), and training of employees to remediate any accidental releases of hazardous materials. This legislation also regulates lead and asbestos exposure as it relates to worker safety.
3.6.2.2 State Regulations

California Fire Code (CFC). The CFC, Title 24 California Code of Regulations, Part 9, requires fire department access roads to conform to certain standards to ensure that personnel and equipment can reach structures. Developments shall comply with Section 902 of the CFC, which requires all-weather access, which may require paving.

Public Resources Code Section 4291, Clearance Around Structures. This code requires that land covered with flammable material be maintained with 100 feet of defensible space from each side of a structure. Fuels are required to be maintained so that a wildfire burning under average weather conditions would be unlikely to ignite an adjacent structure. An insurance company may require a greater distance if determined necessary by a fire expert (Pub. Res. Code § 4291(a)(3)).

California Government Code Section 51175 et seq. This requires the Director of Forestry and Fire Protection to identify areas in the State of California that are considered VHFHSZs. These fire zones are delineated on Fire Hazard Severity Zone Maps created for areas throughout the state, including the City.

California Building Code. The California Building Code (CBC) specifies structural requirements for buildings exposed to wildland vegetation. These requirements are intended to protect buildings from wildland fires.

California Code of Regulations Title 22 Division 4.5. The California Code of Regulations (CCR) sets forth the requirements for hazardous waste generators, transporters, and owners or operators of treatment, storage, or disposal facilities. These regulations include requirements for packaging, storage, labeling, reporting, and general management of hazardous waste prior to shipment. They also specify the requirements for transporting hazardous waste, including manifesting, vehicle registration, and emergency accidental discharges during transportation.

California Code of Regulations Title 23, Division 3, Chapter 16. The CCR sets forth the requirements for underground storage tanks (UST) systems to be installed in accordance with standards that address the prevention of future leaks. The State Water Resources Control Board (SWRCB) has been designated the lead California regulatory agency in the development of UST regulations and policy.
3.6.2.3 Local Regulations

City of Malibu Local Coastal Program (LCP). The California Coastal Act requires that its goals and policies be implemented by local government through the LCP. The Malibu LCP consists of two subparts, the Land Use Plan (LUP) and the Local Implementation Plan (LIP). Malibu LCP policies are contained within the LUP, while the purpose of the LIP is to implement and carry out the policies of the LUP.

LCP Land Use Plan

The policies pertaining to hazardous materials and fire protection identified in the LUP and relevant to the proposed Project are listed below:

- **LUP Policy 3.27**: Buffers shall be provided from coastal sage scrub and chaparral Environmentally Sensitive Habitat Area (ESHA) that are of sufficient width to ensure that no required fuel modification (Zones A, B, or C, if required) will extend into the ESHA and that no structures will be within 100 feet of the outer edge of the plants that comprise the habitat.

- **LUP Policy 4.1**: The City of Malibu and the Santa Monica Mountains Coastal Zone contain areas subject to hazards that present substantial risks to life and property. These areas require additional development controls to minimize risks and include, but shall not be limited to, the following:
 - Fire Hazard: Areas subject to major wildfires classified in Fire Zone 4 or in the VHFHSZ.

- **LUP Policy 4.3**: Information should be provided to the public concerning hazards and appropriate means of minimizing the harmful effects of natural disasters upon persons and property relative to siting, design, and construction.

- **LUP Policy 4.13**: Land divisions, including lot line adjustments, shall be prohibited unless all proposed parcels and access roads are found to comply with all applicable fire safety regulations and all required approvals are obtained.

- **LUP Policy 4.14**: New development shall be prohibited on property or in areas where such development would present an extraordinary risk to life and property due to an existing or demonstrated potential public health and safety hazard.
• **LUP Policy 4.45**: New development shall minimize risks to life and property from fire hazard through:

 o Assessing site-specific characteristics such as topography, slope, vegetation type, wind patterns, etc.;

 o Siting and designing development to avoid hazardous locations;

 o Incorporating fuel modification and brush clearance techniques in accordance with applicable fire safety requirements and carried out in a manner that reduce impacts on environmentally sensitive habitat to the maximum feasible extent;

 o Use of appropriate building materials and design features to ensure the minimum amount of required fuel modification; and

 o Use of fire-retardant, native plant species in landscaping.

• **LUP Policy 4.46**: New development within ESHA and habitat buffers shall be sized, sited, and designed to minimize the impacts of fuel modification and brush clearance activities on habitat and neighboring property.

• **LUP Policy 4.47**: Development adjacent to parkland shall be sited and designed to allow all required fire-preventive brush clearance to be located outside park boundaries, unless no alternative, feasible building site exists on the project site. A natural vegetation buffer of sufficient size should be maintained between the necessary fuel modification area and the public parkland, where feasible.

• **LUP Policy 4.48**: When brush clearance is required for fire safety, brushing techniques that minimize impacts to native vegetation and ESHA and minimize erosion, runoff, and sedimentation shall be utilized.

• **LUP Policy 4.49**: Applications for new development, that require fuel modification, shall include a fuel modification plan for the project prepared by a landscape architect or resource specialist that incorporates measures to minimize removal of native vegetation and minimizes impacts on ESHA while providing fire safety consistent with the requirements of applicable fire safety regulations. Such plans shall be reviewed and approved by the Forestry Division.

• **LUP Policy 4.50**: New development shall provide for emergency vehicle access and fire-flow water supply in accordance with applicable fire safety regulations.
3.6 FIRE PROTECTION & HAZARDOUS MATERIALS

• **LUP Policy 4.51**: All new development shall demonstrate the availability of an adequate water supply for fire protection, as required by applicable fire safety regulations.

• **LUP Policy 4.52**: Where applicable, property owners shall comply with applicable fire safety regulations for management of combustible vegetative materials (controlled burns) in fire hazardous areas.

• **LUP Policy 4.53**: The City shall coordinate with county, state and national park agencies to develop a closure policy for public recreation areas during periods of extreme fire hazard.

• **LUP Policy 4.54**: Should LACFD policies regarding fuel management and fire protection conflict with the policies and provisions of the Malibu LCP, particularly those relating with the protection of ESHA, personnel from LACFD and the City shall meet and agree on measures to balance the need for fire protection for structures with the need to protect environmental resources.

LCP Local Implementation Plan

The LIP contains implementation measures regarding development in fire hazard areas. These measures are pertinent to the proposed Project in the context of hazards from wildfires. LIP Chapter 3, *Zoning Designations and Permitted Uses*, provides permitted uses, development standards, lot development criteria, and development standards for various uses. The goal of these standards is to minimize fire risks and ensure adequate fire-fighting provisions and emergency vehicle access for development. LIP Chapter 9, *Hazards*, provides development standards, permit and application requirements, and other measures to ensure that permitted new development shall minimize risks to life and property posed by fire hazards. The LIP does not contain measures and regulations regarding hazardous materials.

City of Malibu Municipal Code (1993). The City’s Municipal Code (M.M.C.) includes the laws of the City. Title 17 of the M.M.C. specifically discusses the zoning regulations pertaining to new development. The following are pertinent M.M.C. sections related to fire protection and hazardous materials:

• **Section 8.32.020 – Definitions.** “Hazardous waste” means and includes waste defined as hazardous by Public Resources Code Section 40141 as it now exists or
may subsequently be amended, namely, a waste or combination of wastes, which because of its quantity, concentration, toxicity, or physical, chemical or infectious characteristic may cause or contribute to mortality or illness or pose a substantial present or potential hazard to human health or environment.

- **Section 17.40.040(A)(8)(c) – Residential development standards.** Ridgetop development is particularly susceptible to wildfire hazard. In addition to the criteria to reduce visual impact, the planning director shall evaluate all ridgeline development on slopes of at least 3:1 to incorporate adequate setbacks to address potential fire hazard conditions.

City of Malibu General Plan. The City’s General Plan is primarily a policy document that sets goals and policies concerning the community and gives direction to growth and development. In addition, it outlines the programs that were developed to accomplish the goals and policies it sets forth.

General Plan Safety Element (S). California Code Section 65302(g)(1) requires that each local government prepare and adopt a Safety Element as a component of its general plan. This involves identifying and mapping natural hazards and the administration of zoning and subdivision regulations that account for the safety hazards. The policies and implementation measures contained in this element provide direction and a course of possible future action for the various City departments. Below is a list of goals, objectives, and policies related to fire protection and hazards materials in the City:

- **S Goal 1:** A community that is free from all avoidable risks to safety, health, and welfare from natural and man-made hazards
 - **S Policy 1.1.1:** The City shall protect people and property from environmental hazards.
 - **S Policy 1.1.2:** The City shall minimize the risk of loss from fire.
 - **S Policy 1.1.3:** The City shall reduce the amount of non-essential toxic and hazardous substances.
 - **S Policy 1.1.4:** The City shall promote use of alternatives to hazardous substances.
3.6.3 Environmental Impacts

3.6.3.1 Thresholds for Determining Significance

In accordance with the relevant thresholds in Appendix G of the CEQA Guidelines, the proposed Project would result in a significant effect under CEQA if it were to:

a) Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials;

b) Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment;

c) Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan;

d) Expose people or structures to a significant risk of loss, injury or death involving wildland fires, including where wildlands are adjacent to urbanized areas or where residences are intermixed with wildlands; or

e) Result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives for any of the public services, including fire protection.

3.6.3.2 Impact Assessment Methodology

Potential impacts of the proposed Project were evaluated by reviewing Project characteristics to assess their potential to affect public health and the environment. Both potential risks and hazards associated with existing Project site conditions to possible future onsite occupants and risks and hazards associated with proposed future site operations were evaluated.
3.6.3.3 1986 and 1998 Project Environmental Review Findings

Developers have been attempting to permit and construct a hotel at the Project site for many years, and efforts to date have included obtaining CCC approval for a 300-room hotel in 1986, completion of a certified EIR in 1997 and approval of a previous 146-room hotel design by the Malibu City Council in 1998. Applicable findings of environmental review performed for these projects are described below.

California Coastal Commission 1986 Approval of a 300-Room Hotel

In January 1986, the California Coastal Commission (CCC) approved the following project (Permit No. 5-85-418) for the subject property: 300 room hotel (222,200 square feet), 32,800 square foot community center, offices, restaurant, information kiosk and art center, and 1,039 parking spaces. The CCC’s approval has been kept valid over the years and the most recent permit extension (the 26th extension) was issued by the CCC setting the new expiration date as January 7, 2014. The EIR completed for this project did not assess potential impacts related to fire protection or hazardous materials.

Findings of the 1998 Project EIR

The 1998 EIR determined that the proposed project would result in additional hazards to the human environment. Consequently, the EIR and the City Council (Resolution No. 98-001) required the project to incorporate an emergency evacuation route from the eastern portion of the site to Civic Center Way or Pacific Coast Highway. Additionally, the project was required to prepare an Emergency Preparedness Plan, ensure an emergency source of potable fresh water is stored, the use of fire resistant landscaping. Preparation of a site landscape maintenance plan was required to provide for the regular pruning and thinning of vegetation to minimize fuel supply and subject to review of the City and the Fire Department.
3.6.3.4 Project Impacts and Mitigation Measures

Impact Description

FPHM-1 Onsite abandoned septic tanks and former nursery land uses at the Project site may create adverse, but not significant impacts during construction activities due to hazards associated with potential presence of contaminated soil and groundwater (Class II).

The Project site’s former use as a nursery has the potential to have contaminated the soil and/or groundwater; however, no pesticides were detected in any of the soil samples analyzed during the Phase II ESA conducted by All Environmental, Inc. (1999). This indicates that the site’s former use as a nursery had no measurable impact on the Project site and, consequently, that soil and/or groundwater contamination would not impact or be disturbed by the implementation of the proposed Project.

The two known abandoned septic tanks located in the central portion of the Project site may have resulted in soil contamination on site. However, no detectable concentrations of any solvents were detected in the vicinity of the septic tanks, including the small area of stained soil located just north of the septic tanks. As outlined in the Geotechnical Engineering Report prepared for this Project, these septic tanks would be removed during site preparation activities (GeoSoils Consultants, Inc. 2011). Any additional, unknown underground structures (e.g., wells or pipelines) that have not been identified prior to grading would be removed or treated in a manner prescribed by the onsite Geotechnical Engineer (see Section 3.5, Geology and Soils). Consequently, soil and/or groundwater contamination as a result of abandoned underground septic tanks would result in impacts that would be potentially significant, but subject to feasible mitigation.

Mitigation Measure

MM FPHM-1a During removal of the septic tanks the surrounding soils shall be examined for potential soil contamination prior to excavation and removal of soils from the site.

Plan Requirements and Timing. Soil sampling shall consist of chemical component analyses similar to those conducted in the Phase II ESA. The sampling effort shall be required prior to the excavation and removal of
3.6 FIRE PROTECTION & HAZARDOUS MATERIALS

soils from the vicinity and shall be focused in the area surrounding the septic tanks. If contaminants are discovered during the removal of the septic tanks, the Applicant shall be responsible for entering into a contract with appropriate persons to remove the contaminated soil from the Project site in accordance with City-approved remediation efforts.

Monitoring. The Applicant shall submit a report to the City, detailing all soil samples activities and recording any measurable contaminant concentrations within the vicinity of the septic tanks.

Impact Description

FPHM-2 The operation of construction equipment would result in potentially significant adverse impacts associated with hazardous materials spills and other safety hazards during construction activities on the Project site (Class II).

The proposed Project would require significant grading, including approximately 229,000 cubic yards (cy) of cut and 40,000 cy of fill (see Section 3.5, Geology and Soils). Site preparation activities, including grading and shoring, would occur over approximately three to four months and would require the use of multiple scrappers, excavators, bulldozers, backhoes, loaders, 20-cubic-yard capacity trucks with double trailers, as well as other heavy equipment. Additional heavy equipment would be used during Project-related construction, which is estimated to require approximately 18 to 20 months. Construction activities would require a tower crane, road hydraulic cranes, forklifts and material handling equipment, and concrete trucks as well as numerous small tools including compressors, mixers, and generators. All of these pieces of equipment would increase the potential for spills or accidental releases of hazardous materials to occur on the Project site, such as the release of petroleum, oils, lubricants, or hydraulic fluids.

Adverse impacts resulting from a spill or accidental release of hazardous materials may be potentially significant depending on the location, extent, and duration of the spill. Spills occurring along the western perimeter of the Project site would be particularly significant as pollutants may run down the slope into the Winter Canyon Montaine Drainage (see Section 3.4, Biological Resources). Additionally, adverse impacts resulting from a potential spill may be short- or long-term depending on the remediation method.
However, the implementation of MM FPHM-2a and MM FPHM-2b outlined below would reduce this potential impact to a level that is less than significant. Consequently, the operation of construction equipment within the Project site would result in an impact that would be potentially significant, but subject to feasible mitigation.

Mitigation Measures

MM FPHM-2a The Applicant shall prepare and submit a Construction Impact Management Plan to the City prior to the issuance of grading permits for the proposed Project. The Plan shall include:

- A list of all heavy equipment necessary for construction operations associated with the proposed Project;
- Identification of a designated onsite location(s) for fueling and vehicle storage at least 100 feet from steep slopes and drainage areas;
- A list of standard construction best management practices to be implemented, such as the use of drip pans, etc.; and
- A monthly heavy equipment inspection and maintenance schedule that shall be implemented throughout the duration of construction.

MM FPHM-2b Prior to issuance of grading permits, the Applicant shall submit an Emergency Spill Response Plan to address the potential sources of hazardous spills as well as the subsequent remedial activities. The Plan shall include:

- Standard best management practices for avoiding heavy equipment spills, including those listed in the work plan associated with MM FPHM-1a;
- Standards for a spill response personnel training program that would be required for all heavy equipment operators prior to commencement of work on the Project site;
- Requirements for the Applicant to provide appropriate provisions to remediate any small, accidental spills; and
- A list of emergency response agencies to be contacted in the event of a significant hazardous materials spill.
Plan Requirements and Timing. The Construction Impact Management Plan and the Emergency Spill Response Plan shall be submitted to and approved by the City prior to the issuance of grading permits for the proposed Project.

Monitoring. The Applicant shall submit regular reports at an interval determined by the City, detailing all equipment inspection activities and recording any hazardous materials related incidents or near misses that occur on the Project site.

Impact Description

FPHM-3 The proposed Project would create potentially significant adverse impacts associated with the construction of the proposed hotel in a Very High Fire Hazard Severity Zone, resulting in an increased potential for wildfire ignition (Class II).

Most wildland fires reported in the Santa Monica Mountains are caused by human activity (County of Los Angeles 2011). Consequently, operation of the proposed Project could incrementally contribute to the potential for ignition of wildfires both on the Project site and in the surrounding vicinity. Hotel guests, spa visitors, special event patrons, and hotel employees would increase the human population capable of accidentally igniting a wildfire.

The proposed Project is anticipated to accommodate in excess of 100,000 hotel guests and other patrons annually. It would include a pool deck, a ballroom, and a separate meeting room, which would accommodate large gatherings, such as business retreats and weddings. It is expected that maximum hotel building occupancy would not exceed the fixed capacity (per LACFD Fire Code, Los Angeles County Code, Title 32) of approximately 1,750 hotel guests and employees at any given time. However, the Project site would also include two event lawns that would facilitate outdoor events and weddings and potentially increase the total hotel grounds occupancy to over 2,000 guests and employees.

Hotel guest and event patrons would be expected to utilize outdoor areas on the Project site, including those adjacent to undeveloped natural areas where potential exist for
accidental wildfire ignition through disposal of cigarettes or other flammable materials. Further, hotel guests may visit nearby open spaces such as Malibu Bluffs State Park or the SMMNRA, incrementally increasing potential ignition hazards in these areas as well.

In addition to the increased population resulting from occupancy of the hotel, operation and maintenance of the hotel itself could create potential ignition sources in the VHFHSZ. Operation of landscape equipment such as mowers, weed whackers, brush trimmers, and chain saws, as well as delivery vehicles and other heavy equipment would all introduce new ignition sources into this area. While the chance of accidental ignition by such heavy equipment may seem improbable, several wildfires in Southern California have been ignited by such equipment.2

The design features of the proposed hotel, particularly the fuel modification plan (discussed in Impact FPHM-4) would partially mitigate the increased potential for onsite wildfire ignition. Additionally, the LACFD would be able to respond to fire originating on the Project site within five minutes, which is considered an adequate response time per national standards. Therefore, with the implementation of MM FPHM-3a and MM FPHM-3b, the potential for wildfire ignition on the Project site would be reduced to levels that are less than significant. However, these measures would not eliminate the potential for onsite wildfire ignition in a VHFHSZ. Consequently, the proposed Project would result in impacts that would be potentially significant, but subject to feasible mitigation.

Mitigation Measures

`MM FPHM-3a The Applicant shall designate smoking areas for both guests and employees, located away from onsite fire hazards areas. Additionally the Applicant shall prohibit smoking near areas of high fire hazard zones (e.g., along the perimeter of the hotel property).`

Plan Requirements and Timing. Smoking and non-smoking areas shall be designated by the Applicant on the project plans and approved by LACFD prior to the issuance of building permits for the proposed Project.

2 For example, the 2009 Jesusita Fire in Santa Barbara, which burned almost 9,000 acres and destroyed 80 homes, was ignited by landscape equipment during a trail maintenance operation.
3.6 FIRE PROTECTION & HAZARDOUS MATERIALS

Monitoring. The Applicant shall submit any documented instances of non-compliance by employees, contractors, or guests and include them in the annual report submitted to the City and LACFD (see MM FPHM-5a).

MM FPHM-3b *Heavy equipment shall not be operated in open space areas on days of high fire danger as determined by the LACFD daily fire danger analysis forecasts.*

Plan Requirements and Timing. Daily fire danger analysis forecasts shall be posted within storage areas and offices for staff that utilize heavy equipment (i.e., grounds maintenance offices). Fire danger analysis forecast information shall be regularly updated by the grounds staff managers in accordance with LACFD analysis and staff shall be trained and notified when heavy equipment use is prohibited.

Monitoring. The Applicant shall submit any documented instances of non-compliance by employees or contractors and include them in the annual report submitted to the City and LACFD (see MM FPHM-5a).

Impact Description

FPHM-4 *The proposed Project would create potentially significant adverse impacts to fire safety associated with the construction of the Project in a VHFHSZ, resulting in an increased potential for structural damage, injuries, or loss of life due to wildfires (Class II).*

The proposed Project would be developed in a VHFHSZ on a site that has burned at least twice in the last 20 years. The site has been and will continue to be exposed to wildland fires, particularly during Santa Ana conditions when high winds combined with dry fuels can create wildfires that are extremely difficult to suppress or contain. Under such circumstances, wildfires can be expected to traverse the surrounding road network onto the Project site. Wildfires burning into the remaining undeveloped natural hillside and open space surrounding the proposed Project would present the potential for serious damage to the Project and would potentially threaten the health and safety of hotel patrons and employees.
Proposed Fire Protection Plan

LEGEND
- Project Site Boundary
- Existing Topographic Contour
- Proposed Fuel Project
- Topographic Contour
- Proposed Roadway/Parking
- Proposed Hotel/Secondary Hotel Building
- Existing Fire Hydrant
- Proposed Fire Hydrant
- Proposed Fire Lane
- Areas not Modified by Fuel Modification Plan: species composition may change due to dispersal of waste water

Fuel Modification Zones
- Zone A (Setback Zone): Inherently highly fire resistant plants, spaced appropriately. Plants shall not be allowed within 50’ or more of combustible structures.
- Zone B (Irrigated Zone): Landscaping and vegetation shall typically consist primarily of green spears and ground covers, and shrubs and trees. Plants shall be fire resistant and spaced adequately.
- Zone C (Native Brush Thinning Zone): Native vegetation shall be modified by mowing and removal of species susceptible to rapid fire spread and any additional planted species shall be fire resistant and spaced adequately.

Modification Plan; species composition may change due to dispersal of waste water.

Areas Not Modified by Fuel Modification Plan: species composition may change due to dispersal of waste water.

Zone B (Irrigated Zone): Landscaping and vegetation shall typically consist primarily of green spears and ground covers, and shrubs and trees. Plants shall be fire resistant and spaced adequately.

Zone C (Native Brush Thinning Zone): Native vegetation shall be modified by mowing and removal of species susceptible to rapid fire spread and any additional planted species shall be fire resistant and spaced adequately.

The figure illustrates the proposed fire protection measures and facilities, including:

- Proposed Fire Lane
- Proposed Hotel/Secondary Hotel Building
- Proposed Fire Hydrant
- Proposed Roadway/Parking
- Existing Fire Hydrant
This page left intentionally blank for 11X17” figure
Structural development for the proposed Project would be located within approximately 16 acres of the site’s 27.8 acres, with the remaining hillside areas above Winter Canyon retained as undeveloped natural open space. Approximately 12 of the proposed secondary hotel buildings would be located within 50 feet of the edge of steep hillside areas along the perimeter of the Project site. Although sparks, embers, hot ash, and other airborne debris can be expected to rain down on the entire site during a major wildland fire event, the 12 secondary hotel buildings on the perimeter of the Project site would be subject to the greatest degree of fire hazard during a local wildfire.

As discussed below, the Applicant is proposing a combination of site design and building construction features, fuel modification, fire suppression, and disaster preparedness procedures in an attempt to address these hazards. These measures have been approved by the LACFD and determined to be consistent with applicable FSC requirements. Further, these measures are consistent with the ordinances pertaining to building construction, site access, proximity to water mains, the adequacy of fire flows (i.e., the capacity of water lines to supply water during emergencies), the use of sprinklers in new construction, and the location of an adequate number of fire hydrants.

Site Design and Building Construction: As the Project site is located within a VHFHSZ, the proposed Project would be compliant with applicable building requirements for developments within this zone. For example, all buildings would be constructed with Class “A” roofs (International Building Code 1505.2), which are fire-retardant effective against the most severe category of exposure. Additionally, the roof and attic vents would be constructed such that they would resist the intrusion of flame and embers into the attic areas of all structures. Eaves would be noncombustible on the exposed underside or protected by ignition-resistant materials. Fire-resistant materials would also be used in general hotel construction including metal stud framing, light-gage metal floor, and light-gage metal roof beams.

The proposed Project would have a fire access road around the developed area that would include spurs to facilitate maximum access to interior structures, as well as turn-around points to accommodate the needs of fire engines (see Figure 3.6-4). Access to the proposed hotel would comply with Section 902 of the CFC. The proposed turn-around locations are adequate and the overall design has been approved by the LACFD.
Fuel Modification and Landscaping: The Applicant has incorporated a Fuel Modification Plan that has been approved by the LACFD, which includes three landscape zones that extend a total of 300 feet from the outer limit of development. These zones are intended to maintain a defensible space surrounding the development in order to facilitate effective wildfire prevention and defensibility (see Figure 3.6-4). A fuel modification zone is a strip of land where combustible native or ornamental vegetation has been modified and/or partially or totally replaced with drought-tolerant, low-fuel-volume plants, thereby creating a defensible fire-fighting space. The coastal sage scrub community, which constitutes a high fire hazard, located in Zones A and B would be completely removed under the fuel modification plan, reducing wildfire hazard in those areas. In Zone C, the Fuel Modification Plan indicates that this vegetation community may be either fully replaced or thinned to reduce fire risk. Additionally, the Plan assumes that fire-resistant, native vegetation per LUP Policy 4.45 would be maintained in each of these zones in order to avoid the buildup of deadwood and leaf litter, which, if left to accumulate, would reduce the mitigating effect of the Plan.

Along the northern end of the Project site, beyond the extent of Zone C, no fuel modification is proposed. Consequently, over the short-term this area would continue to remain as coastal sage scrub habitat, which is an extremely prone to ignition. However, it is likely that over the long-term, due to wastewater disposal in the area, this vegetative community will shift toward a community that persists in wetter conditions.

Fire Suppression: The Project would include the installation of 16 fire hydrants located around the perimeter of the site as well as within the interior along the fire access roads. The standard length of a forest hose (i.e., a fire hose used during a wildland fire), which would be connected to the hydrants, is 100 feet. Consequently, it is expected that these hydrants would support wildfire suppression activities in a 200-foot diameter arc surrounding the fire hydrant and fronting the wildfire. These hydrants would be required to provide 3,500 gallons of water per minute at 20 psi for duration of three hours above the maximum daily domestic demand (three hydrants flowing simultaneously may be used to achieve this required flow). During a wildland fire, the public water supply can be diminished quickly; however, it is unlikely that public water supply available for regional wildfire suppression would be exhausted during such an event (LACFD 2012d).

Additionally, during a wildfire event, the Applicant’s agreement with Pepperdine would permit access to Pepperdine’s three million gallon basin to meet the required fire flows at
both Pepperdine and at the Project site (LADPW 2012). As documented in the District 29
will-serve letter dated July 10, 2012, the Applicant would be required to fund the 30
installation of approximately 1,800 feet of 16-inch diameter water main fronting Malibu 31
Canyon Road in order to connect to the existing main at Seaver Drive, which connects to 32
Pepperdine’s basin (see Figure 3.6-4). The Applicant would also be required to fund the 33
installation of approximately 1,200 feet of water main along PCH in order to connect into 34
the existing main at this location. These Project-specific upgrades would facilitate water 35
conveyance between Pepperdine’s basin and the required fire hydrants such that fire flow 36
requirements would be met at both Pepperdine and at the Project site (LADPW 2012). 37
Additionally, as these combined fire flow requirements would only require a total volume 38
of approximately 1.26 million gallons of water, 58% of Pepperdine’s basin would remain 39
for use in additional wildfire suppression activities elsewhere in the vicinity.

Conceptual Disaster Preparedness Plan: The Applicant has provided a conceptual 40
disaster preparedness plan that outlines the fire protection measures that would be 41
included in the hotel design, including key fire resistant building features. The parking 42
structure and hotel spa, which would be constructed with fire resistant materials, would 43
be entirely, or almost entirely, underground and would be fully ventilated and outfitted 44
with fire sprinklers. The conceptual plan notes that protected subterranean areas of the 45
proposed Project would be of sufficient size (i.e., 76,000 square feet) to be able to 46
comfortably and safely shelter in excess of 1,200 people for a period of at least two days 47
in the event of an extreme disaster (Project Delivery Analysts, LLC 2012). The hotel 48
would be able to provide essential services and emergency equipment that would be 49
connected to back-up emergency generators, which could provide continuous power for 50
48 hours.

However, during a worst-case scenario in which approximately 2,000 hotel guests and 51
employees could be on the hotel grounds (i.e., when both event lawns are in use and the 52
hotel buildings are at maximum occupancy). During emergency conditions when fire 53
threat is imminent, it may prove exceedingly difficult for hotel employees to marshal 54
panicked hotel guests to shelter-in-place locations. Some hotel guests and event patrons 55
may resist or flee, creating chaotic, unmanageable conditions (see Impacts FPHM-5 and 56
FPHM-6 below).

Consequently, the implementation of the proposed Project constitutes a potentially 57
significant adverse impact associated with construction of the Project in a VHFHSZ. The
Project would meet LACFD standards for site design and fire flow, and during a wildfire, District 29 would open emergency connections to provide additional water to meet fire flow needs (LACFD 2012d). Additionally, the hotel would be constructed such that it would avoid to the maximum extent possible, structural damage resulting from wildfire and/or firebrands. Further, during such an event the hotel would be able to safely and comfortably shelter-in-place up to 1,200 guests and employees. Consequently, the threat of damage and increased loss of life would result in an impact that would be potentially significant, but subject to feasible mitigation.

Mitigation Measures

MM FPHM-4a The Applicant shall prepare and submit a comprehensive Wildfire Emergency Management Plan for review by the LACFD and the City. The Plan shall consist of measures to reduce the potential for structural damage to the proposed development including:

- A detailed description and map of fire protection apparatus and staging locations, the locations of the electric and gas shut off controls, emergency meeting locations, and emergency supply locations;

- Relevant building design specifications that would qualify the building for identification as a safe refuge during a wildfire; and,

- Training requirements for front-desk hotel staff and any other staff routinely interacting with the public shall include First Aid and First Responder certification as well as annual requirements for wildfire emergency management training scenario exercises with the LACFD and Los Angeles County Sheriff’s Department (LASD) prior to the onset of fire season.

MM FPHM-4b The Applicant shall include the water system upgrades required by the LADPW will-serve letter in the construction plans prior to the issuance of building permits.

MM FPHM-4c The hotel grounds shall be inspected annually by the LACFD in order to ensure compliance with the fuel modification plan. This shall include an inspection of the deadwood and leaf litter, which shall be removed annually prior to the beginning of fire season.
MM FPHM-4d Each hotel room and each room within the individual secondary hotel buildings shall be required to have an emergency evacuation plan posted in a visible location. Additionally each room shall have a Wildfire Emergency Procedures binder, which shall include relevant information from the Wildfire Emergency Management Plan, such as the locations of safe refuges, locations of First Aid and emergency supplies, and emergency contacts within the hotel. Further, the home channel on the television within each hotel room shall have a two-minute program regarding wildfire hazards. The program shall summarize emergency evacuation and shelter-in-place procedures, and shall refer to the information in the Wildfire Emergency Procedures binder. Additionally, during high fire danger days as determined by the LACFD daily fire danger analysis forecasts, a news ticker will continuously run along the bottom of the home channel indicating high fire hazard.

MM FPHM-4e The final plant selections for the Fuel Modification Plan shall be limited to fire-resistant native species per LUP Policy 4.45. Non-native species shall not be included in the final landscaping plan.

Plan Requirements and Timing. The Wildfire Emergency Management Plan shall be submitted to the City and the LACFD prior to the issuance of building permits for the proposed Project. Additionally, the water system upgrades required by the will-serve letter shall be drawn on construction plans prior to building plan check for building permits by the City. Also prior to this review, the LACFD will conduct a building plan check to ensure that the proposed development is consistent with LACFD Fire Code. Prior to occupancy, the LACFD will conduct a site inspection to ensure that the Project complies with required mitigation measures.

Monitoring. The Applicant shall submit annual reports to the City and LACFD that describe the results of their wildfire training scenarios, as well as the current First Aid certification status of their employees. All front-desk hotel staff, including all staff members that regularly interact with the public, shall be First Aid certified, and a minimum of 30 staff shall maintain up-to-date First Responder certifications. The LACFD shall
also conduct annual inspections prior to the onset of fire season in order to ensure compliance with the fuel modification plan.

Impact Description

FPHM-5 Hotel staff and occupants that evacuate during wildfire events may be exposed to wildfire hazards, traffic congestion and associated dangers during emergency evacuation periods, resulting in potentially significant adverse impacts (Class II).

As described in Impact FPHM-4, the proposed Project would substantially increase the total number of people in the area that may be subject to evacuation, with up to 2,000 guests and employees on the proposed hotel grounds during periods of maximum occupancy. During major wildfire events, hotel guests, event patrons, and potentially employees may attempt to evacuate or flee regardless of hotel staff efforts to encourage or direct sheltering-in-place; such evacuation efforts could lead to several hundred vehicles attempting to leave the Project site in a short period under emergency conditions. These vehicles would contribute to congestion on evacuation routes along Malibu Canyon Road and PCH, resulting in a potentially significant impact given probable evacuation-related congestion, potential road closures, and exposure of evacuees to smoke, flames, ash and embers, landslides, downed power lines and trees or traffic-related hazards during evacuation.

In order to address evacuation concerns, the Applicant has submitted a brief conceptual disaster preparedness plan, which suggests that the subterranean areas of the hotel could be used to

3 The proposed Project supports 543 parking spaces which would represent the likely maximum number of vehicles that may exit the site during an emergency. However, given proposed shelter-in-place programs, the total number of occupants that may elect to attempt emergency evacuation cannot be precisely determined.
safely shelter up to 1,200 people (Project Delivery Analysts, LLC 2012). In the event of a wildfire, this conceptual plan proposes that the subterranean floors of the hotel would be used to shelter the majority of hotel guests, event patrons, and employees during average operating days. The parking structure, planned to be almost entirely underground, would be fully ventilated and outfitted with fire sprinklers, and would be able to provide additional shelter during a wildfire. The Applicant has indicated that local residents may also be able to use facilities to take shelter during a wildfire.

The estimated capacity of the proposed subterranean shelter-in-place is 1,200 people. While this estimated capacity would not comfortably accommodate the 2,000 person maximum occupancy of the Project, it is reasonable to assume that during the limited duration of a wildfire the secure areas of the hotel, including subterranean, ventilated, and sprinkler-equipped areas, would sufficiently provide space for up to 2,000 persons. This unique situation assumes temporarily foregone personal comfort and amenities during a potential wildfire emergency requiring shelter-in-place for durations up to 24 hours. Following the wildfire event, those sheltering in-place would vacate these secure areas of the proposed hotel under supervised evacuation procedures and routes.

Where adequate defensible safe space is provided, shelter-in-place is viewed as a preferred approach as it minimizes roadway congestion, interference with emergency vehicle access and the hazards presented by fleeing residents that can be exposed to fire, smoke, ash, and congestion-related traffic hazards. Shelter-in-place has been effectively executed by the highly trained staff and students at adjacent Pepperdine during both the Malibu Canyon and Corral Canyon Fires. Pepperdine works closely and cooperatively with the LACFD and, as a result, the LACFD maintains a strong presence on the campus during a wildfire (Pepperdine University 2012). However, there are a limited number of routes that facilitate travel to and from the campus and many undergraduate students do not have a means of transportation. Therefore, it is relatively feasible for campus officials to marshal and protect students during a wildfire event.

In contrast, it is unclear if hotel staff could be trained as effectively as adjacent University staff, which includes a law enforcement branch and many long-term employees. In addition, both students and faculty receive wildfire response training at Pepperdine, a standard that may be difficult to emulate at a hotel where guests and patrons are transient, and likely not subject to thorough briefings or training. Further, although the Applicant has proposed permitting the general public to shelter at the hotel, it is unclear how the
public would be notified of availability of the site as a safe refuge, how such access would be managed by hotel staff, and whether sufficient capacity would exist to accommodate some members of the public. Additionally, while shelter-in-place is designed for 1,200 people, under a worst-case scenario in which the hotel is at maximum occupancy, the proposed hotel may not have the capacity to provide comfortable shelter and amenities for up to 2,000 guests, event patrons, and employees (i.e., the maximum hotel grounds occupancy), though a shelter-in-place strategy would alleviate the Project’s potentially detrimental contribution to congested evacuation routes. Finally, given the very preliminary nature of disaster preparedness planning, it is unclear if hotel employees could effectively manage maximum occupancy crowds at the site sufficiently to prevent some or many of these guests or patrons from attempting to flee the site during a wildfire emergency. Therefore, potential impacts associated with exposure of hotel guests, event patrons and employees to wildfire hazards during evacuation are considered potentially significant, but subject to feasible mitigation.

Mitigation Measure

Per MM FPHM-4a, the Applicant shall prepare and submit a comprehensive Wildfire Emergency Management Plan for review by the LACFD and the City. In addition to the requirements described in MM FPHM-4a, this Plan shall outline specific measures related to shelter-in-place procedures and hotel staff crowd control during a wildland fire emergency. These measures shall include:

- A detailed description of the triggers for shelter-in-place and the system for how shelter-in-place decisions and execution would be communicated to and implemented by hotel guests and staff;

- A training manual for the requirements and responsibilities of hotel staff in the event of a wildfire or related emergency, including detailed procedures for hotel staff regarding implementation of shelter-in-place procedures;

- A description of the chain of command at the hotel during a wildfire, including a communication/coordination plan for hotel staff and the City’s Emergency Operations Center as well as other emergency service providers (i.e., LACFD and LASD);
3.6 FIRE PROTECTION & HAZARDOUS MATERIALS

- Designated employee building marshals to assist in the communication of evacuation procedures and to perform a headcount of guests and employees assigned to the building;

- Designated emergency assembly areas where building occupants should gather immediately following an evacuation signal (i.e., fire alarm) to await further instructions;

- Details regarding procedures for hotel staff distribution of emergency supplies (e.g., insulin, inhalers, approved oxygen canisters, burn salves, etc.). Appropriate staff shall be trained and prepared administer First Aid/CPR;

- Information regarding the specific locations of LACFD-approved shelter-in-place areas;

- Details regarding how the hotel staff would communicate critical emergency information to hotel guests;

- Strategies for hotel staff to maintain order within a shelter-in-place environment. This shall include specific measures associated with communication and the distribution of food, water, medical aid and supplies;

- Details regarding how the hotel would coordinate with the LACFD and LASD to accommodate additional residents in need of safe refuge. The plan shall include specific measures regarding how cars would be accepted into the hotel. It shall also include specific measures to ensure that the accommodation of cars into the parking structure does not result in queuing on Malibu Canyon Road; and

- Details regarding how the hotel staff would coordinate with LACFD and LASD should the hotel reach maximum capacity for safe refuge.

Plan Requirements and Timing. The Wildfire Emergency Management Plan shall be submitted to the LACFD prior to the issuance of building permits. Additionally, prior to final City Planning Department inspection, the LACFD will conduct a plan check to ensure that the proposed development conforms to LACFD Fire Code. Prior to occupancy, the LACFD will conduct a walk-through to ensure that the development is adequate for classification as a safe refuge.
3.6 Fire Protection & Hazardous Materials

Monitoring. The Applicant shall submit annual revisions to the City and LACFD, including any updates to the Wildfire Emergency Management Plan as a result of the annual report submitted per MM FPHM-4a.

3.6.3.5 Cumulative Impacts

Impact Description

FPHM-6 Project construction and increased population in a VHFHSZ, in combination with past and pending projects in the Civic Center and the greater Malibu area, would result in a considerable contribution to cumulatively significant wildfire evacuation hazards and impacts (Class II).

The proposed Project would incrementally increase the number of people and structures requiring fire protection services in the City. As proposed, the Project would not result in a permanent increase in the City’s residents and the City would continue to maintain a ratio of citizens to firefighters well within the national standard of 1:2,000. Additionally, the response times of local fire stations would not be expected to change and would remain under the five-minute threshold. The proposed Project would include two large function lawns, which would adequately serve as helicopter landing and staging areas. Further, the relatively flat area at the intersection of Malibu Canyon Road and Civic Center way has been and would continue serve as a staging area for Fire Department vehicles, apparatus, and emergency personnel, which would provide beneficial impacts during an emergency. However, the proposed Project’s contribution to cumulative evacuation hazards could remain substantial.

Although hotel staff is proposed to be trained to manage emergency situations, it remains unclear if the staff could adequately manage hotel guests and event patrons who are not familiar with emergency evacuation procedures. During emergency situations when a wildfire is burning in the vicinity or advancing upon the site, hotel guest and event patrons may choose to ignore direction from hotel staff and flee or evacuate on already congested evacuation routes (e.g., Malibu Canyon Road and PCH). Increased evacuees could increase congestion, overall evacuation time, and exposure of hotel guests and residents to wildfire and traffic hazards. This addition to evacuation congestion and exposure to hazards would be compounded by potential evacuees associated with past
and pending development projects in the Civic Center and the greater Malibu areas. These impacts would be particularly severe at times of maximum occupancy when up to 2,000 hotel guests, event patrons, and employees may be present.

The Applicant’s conceptual shelter-in-place strategy, as refined by MM FPHM-4a and MM FPHM-5a, may partially address this impact. A shelter-in-place approach has proven effective in other areas, including adjacent Pepperdine. Through the execution of proper communication and crowd control strategies, properly trained hotel staff may be able to feasibly usher the majority of hotel guests into safe refuges within the subterranean areas of the hotel. While these subterranean areas of the hotel would be able to comfortably accommodate up to 1,200 occupants, during peak use periods, safe areas of the hotel would necessarily accommodate all occupants temporarily with foregone personal comfort and amenities during a potential wildfire emergency requiring shelter-in-place for durations up to 24 hours. Following the wildfire event, those sheltering in-place would vacate these secure areas of the proposed hotel under supervised evacuation procedures and routes, though it is also unclear to what degree transient untrained hotel guests, event patrons, caterers and other untrained employees could be adequately managed by hotel staff and committed to remain onsite during emergency conditions. If hotel occupants decide to evacuate rather than shelter-in-place, the potential addition of several hundred vehicles exiting the site would constitute a considerable contribution to congestion and associated hazards during emergency evacuation conditions, compounding cumulative impacts. Together, these developments would increase the total evacuation times on PCH and the surrounding road network, and would increase the overall evacuation times and exposure to hazards for City residents during a wildfire event. While adverse, implementation of MM FPHM-4a and MM FPHM-5a would reduce the proposed Project’s contribution to evacuation congestion and hazards. Therefore, impacts would be cumulatively considerable, but subject to feasible mitigation.

3.6.3.6 Residual Impacts

Implementation of listed mitigation measures, including MM FPHM-4a and MM FPHM-5a, which require the development and implementation of a Wildfire Emergency Management Plan, would reduce the level of impacts related to fire protection and hazardous materials to levels that are less than significant.
The Project would also contribute incrementally to cumulative emergency evacuation impacts. If hotel occupants choose to evacuate rather than shelter in-place, hotel guests, event patrons, and potentially employees fleeing the site during a major wildfire event would contribute to congestion and hazards along evacuation routes. Implementation of mitigation measures would increase the potential for successful implementation of hazard reduction and safety measures during a major wildfire event, such as training for hotel staff to manage more than 1,000 untrained transient hotel guests and event patrons to ensure that the majority of guests and patrons utilize shelter-in-place facilities. During periods of maximum occupancy (i.e., up to 2,000 hotel guests, event patrons, and employees), if the majority of hotel guests and event patrons are responsive to shelter-in-place direction, 800 people above the estimated comfortable capacity of the hotel’s safe areas would temporarily forego personal comfort and amenities during a potential wildfire emergency requiring shelter in-place for durations of one to 24 hours. Following the wildfire event, those sheltering in-place would vacate these secure areas of the proposed hotel under supervised evacuation procedures and routes. Additionally, implementation of the City of Malibu Emergency Operations Plan would assist in an orderly emergency evacuation that would be consistent with requirements of the LACFD (LACFD 2012e). Despite these measures, this potential increase in evacuees in combination with existing evacuation congestion and the additional proposed developments in the Civic Center and the greater Malibu area would constitute an incremental adverse contribution to evacuation congestion and hazards; however, implementation of the City of Malibu Emergency Operations Plan and proposed mitigation measures would reduce residual impacts to less than significant.
3.7 HYDROLOGY AND WATER QUALITY

This section discusses hydrology and water quality impacts to surface water and groundwater from implementation of the proposed Project with regard to flooding, water quality, and other drainage conditions on the Project site and in the surrounding watersheds.

The hydrologic analysis for this section is based on information from the *Hydrology Study for Rancho Malibu Resort* and the *Rancho Malibu Resort Water Quality Management Plan* prepared by PSOMAS in September 2011 (Appendix C and D), and the *Hydrogeologic Assessment of the Proposed Rancho Malibu Resort Tentative Tract Map 69653, 4000 Malibu Canyon Road, Malibu, California* prepared by Earth Forensics Inc. in April 2012 (Appendix D). These studies have been subject to peer review and approval by the City of Malibu (City) Public Works Department, City Environmental Health Administrator, and the City Geologist. Approval of the data, methodologies and conclusions of these studies provides the basis for following analysis.

3.7.1 Existing Conditions

3.7.1.1 Regional Setting

Climate

The City has a Mediterranean climate, with hot, dry summers and mild winters. On average, the region experiences 329 days of sunshine per year. The average annual temperature is 67.3 degrees Fahrenheit (°F), with a monthly average maximum temperature of 72.1 °F in August and a monthly average minimum temperature of 49.7 °F in December (Western Regional Climate Center [WRCC] 2012). The average annual rainfall in the City is approximately 16 inches per year, with the most rainfall occurring between November and March.
Surface Water Hydrology

The City is located within the Malibu Hydrologic Unit, which drains the southern slopes of the Santa Monica Mountains in western Los Angeles County and a small area in southeastern Ventura County. The drainage area totals 242 square miles, the majority of which is located within the Santa Monica Mountains and classified as open space. This drainage area within the Santa Monica Mountains is not dominated by any large stream or river, but rather, is drained by multiple smaller streams, such as Topanga Canyon Creek, Malibu Creek, Dume Creek, and Big Sycamore Canyon Creek. These streams flow from the Santa Monica Mountains south toward the Pacific Ocean (Regional Water Quality Control Board [RWQCB] 1994). The Project site is also located in the Santa Monica Bay Watershed Management Area, which includes most of the Malibu Hydrologic Unit and portions of watersheds further south that run along the Santa Monica Bay coastline. This management area encompasses an area of 414 square miles and contains 28 drainages (RWQCB 2011).

Groundwater

Due to the geology and weather patterns of the region, surface water supplies can vary substantially year-to-year. Consequently, all drinking water consumed by the City is supplied by outside sources throughout Los Angeles County Waterworks District No. 29 (District 29). Groundwater can be found at depths ranging from a few feet below ground surface (bgs) on the Malibu coast up to several hundred feet bgs in the inland areas. Primary sources of groundwater recharge in City are surface-water and groundwater runoff from upland areas, direct recharge from onsite wastewater treatment system (OWTS) effluent, infiltration of precipitation, and irrigation runoff (City of Malibu 1996, 2010).

Groundwater is found principally in Holocene alluvium, which consists of clays, silts, sands, and gravels (Department of Water Resources [DWR] 2003). Groundwater can also be found along the Malibu coast in beach and terrace deposits. An assessment performed by Pepperdine University (Pepperdine) found three general types of aquifers in the Project vicinity:

1. The shallow alluvial aquifer includes unconfined groundwater in unconsolidated materials ranging between two to 30 feet bgs. The alluvial aquifer consists of fill and gravely/sandy alluvium.
2. The semi-confined aquifer, known locally as the Civic Center Gravels, is a lens of coarser unconsolidated sands and gravels that underlie a discrete area in the vicinity of Civic Center Way and the Legacy Park site. This aquifer was encountered between 40 and 60 feet bgs. It is underlain by finer textured unconsolidated sediments.

3. The deeper bedrock aquifer is in porous or fractured rock or consolidated geologic materials. Deep groundwater is typically encountered at depths of approximately 30 to 80 feet bgs; however, these levels vary seasonally and annually depending upon precipitation. Groundwater flow is predominantly from the bedrock aquifer into the unconsolidated sediments (County of Los Angeles 2010).

3.7.1.2 Vicinity Setting

Surface Water and Drainage

The largest watershed in the Project vicinity is the Malibu Creek Watershed, which encompasses approximately 110 square miles (70,400 acres) and drains Malibu Canyon via Malibu Creek to the southwest where it meets the Pacific Ocean at the Malibu Lagoon (California Coastal Commission 2004). The Project site is hydrologically separated from the Malibu Creek Watershed, and lies within the Winter Canyon Watershed, which has been divided for planning purposes into three sub-watersheds—Winter Canyon, Middle Canyon, and Winter Mesa (see Figure 3.7-1).

The Winter Canyon Watershed trends southeast and encompasses approximately 150 acres including the majority of the Project site (Earth Forensics Inc. 2012). The drainage area is mostly undeveloped and contains rugged mountainous to hilly terrain. The overall relief of the watershed is 1,325 feet from the Santa Monica Mountains to the Pacific Ocean. The lower reaches of the Winter Canyon, including portions adjacent to the Project site, have experienced considerable man-made alterations over the years by grading and by placement of various storm water control measures (Earth Forensics, Inc. 2012). Winter Canyon Creek is depicted as a perennial or intermittent stream in the City’s General Plan; however, much of the natural stream channel adjacent to the Project site has been routed through an underground concrete culvert beneath Civic Center Way. Water can be present in the limited exposed surface portions (daylight portions) of the Creek, including in the dry summer months (AMEC 2012). However, substantial surface flows typically occur only during and immediately following storm events.
Natural undeveloped segments of Winter Canyon Creek flow southward from the foothills of the Santa Monica Mountains east of Pepperdine, and enter the Civic Center Culvert at Malibu Canyon Road near its intersection with Civic Center Way before daylighting adjacent to the southeast portion of the Project site. This natural section of the Creek is approximately 220 feet long and 25 feet deep and flows between the existing Malibu Colony Plaza wastewater disposal fields and Pacific Coast Highway (PCH). This section of the Creek supports sycamore, cattails, Winter Canyon Creek surfaces, or daylight, upstream of PCH, and storm water runoff to the creek is then carried under PCH through a four-foot cement culvert.
willows, and other riparian vegetation. Water drained through the Creek passes underneath PCH through a four-foot concrete culvert that conveys water to a modified surface drainage channel 250 feet southeast of the Project site, eventually entering the existing Los Angeles County storm drain (Winter Mesa Canyon drainage channel). This storm drain passes beneath Malibu Road, beachfront residences and eventually discharges into the Pacific Ocean at Amarillo Beach.

The southwestern third of the Project site lies within Middle Canyon and Winter Mesa Sub-Watersheds; however, construction of PCH and Malibu Canyon Roads effectively disconnected the Project site from the rest of these watersheds and this portion of the Project site now drains south and east along PCH into Winter Canyon through existing storm drain channels (see Figure 3.7-1).

Surface Water Quality

Surface water quality associated with non-point sources of pollution and potential sedimentation vary by watershed. In the City, non-point sources of water quality contamination include storm water runoff which carries pollutants such as oil and grease from paved areas, particularly roadways and parking lots. Increased sediment loads are associated with grading, excavation, and other forms of vegetation disturbance, such as fires, grazing, agricultural practices, and vegetation removal for fire and flood control (City of Malibu 1995).

Additional potential non-point sources of pollution in the City include upstream discharge of treated wastewater effluent released from wastewater treatments plants and discharge from thousands of private OWTS. Surface discharge from OWTS is required to be treated to levels that allow contact without risk to health. Discharge from OWTS, such as from leach fields, occurs through subsurface discharge. However, such discharge can surface where soil or groundwater conditions prevent full adsorption of this effluent.
The State of California has two primary water quality plans applicable to the Project area: the Ocean Plan and the Water Quality Control Plan for the Los Angeles Region (Basin Plan). For coastal sites, the Ocean Plan includes water quality objectives for the protection of oceanic water quality. Surface water must also meet guidelines set by the Los Angeles RWQCB in the Basin Plan to retain the beneficial use of the receiving waters of runoff from the Project site. Runoff from the Project site is conveyed to the Pacific Ocean at the outlet of Winter Canyon Creek at Amarillo Beach. The Basin Plan defines beneficial uses of Amarillo Beach as navigation, contact and noncontact recreation, commercial and sport fishing, marine and wildlife habitat, and shell fishing (RWQCB 1994). Both Amarillo Beach and Santa Monica Bay are identified as impaired water bodies under the 2010 Clean Water Act Section 303(d) (RWQCB 2013). The listed impairments for Amarillo Beach are limited while that for Santa Monica Bay is more extensive (Table 3.7-1).

Table 3.7-1. Impaired Water Bodies in the Project Vicinity

<table>
<thead>
<tr>
<th>Receiving Waters</th>
<th>Pollutant</th>
<th>Pollutant Category</th>
<th>Potential Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amarillo Beach (Coastal & Bay Shoreline)</td>
<td>DDT (tissue & sediment)</td>
<td>Pesticides</td>
<td>Nonpoint</td>
</tr>
<tr>
<td></td>
<td>PCBs</td>
<td>Other Organics</td>
<td>Nonpoint</td>
</tr>
<tr>
<td>Santa Monica Bay Offshore/Nearshore (Bay & Harbor)</td>
<td>DDT (tissue & sediment)</td>
<td>Pesticides</td>
<td>Point & Nonpoint</td>
</tr>
<tr>
<td></td>
<td>Debris</td>
<td>Trash</td>
<td>Point & Nonpoint</td>
</tr>
<tr>
<td></td>
<td>Fish Consumption Advisory</td>
<td>Misc</td>
<td>Point & Nonpoint</td>
</tr>
<tr>
<td></td>
<td>PCBs (tissue & sediment)</td>
<td>Other Organics</td>
<td>Point & Nonpoint</td>
</tr>
<tr>
<td></td>
<td>Sediment Toxicity</td>
<td>Toxicity</td>
<td>Point & Nonpoint</td>
</tr>
</tbody>
</table>

Notes: DDT = Dichlorodiphenyltrichloroethane; PCBs = Polychlorinated biphenyls
Source: RWQCB 2013.

Groundwater Conditions

The groundwater conditions described in this section represent the outcome of the City peer review process. While the Basin Plan considers the Malibu Valley area/aquifer to include the Winter Canyon Groundwater Basin, the City posits that the Winter Canyon Groundwater Basin and the Malibu Canyon area/aquifer function as two hydrologically separate groundwater basins. Additionally, the Applicant-prepared Hydrogeologic Assessment indicates that the State Department of Water Resources (DWR) identifies Winter Canyon as a separate hydrological unit from the Malibu Canyon area/aquifer (Earth Forensics, Inc. 2012; Appendix D). The Winter Canyon Groundwater Basin underlies the majority of the Project site, as well as Winter Canyon and hillsides to the
east of the site. The Winter Canyon Groundwater Basin is hydrologically separated from
the Malibu Canyon area/aquifer by the low ridge that forms the eastern slopes of Winter
Canyon, which functions as a drainage divide for surface flows, and underlying hard rock
that divides subsurface waters (RWQCB 2011).

There are two primary sources of natural groundwater recharge to the Winter Canyon
Groundwater Basin. Natural stream flows within the creek and hillside and terraces
surface infiltration both percolate down into the alluvium. Groundwater also moves down
gradient from bedrock areas to recharge alluvium in the lower reaches of the canyon
(Earth Forensics, Inc. 2012). Surface water flows from upland areas are believed to not
substantially contribute to recharge in the immediate vicinity of the Project site because
the water is generally directed through storm drains or other channelized features that do
not allow the water to infiltrate permeable soils (PSOMAS 2011a). The groundwater
quality objectives assigned to the Malibu Canyon area/aquifer are outlined in Table 3.7-2.

Table 3.7-2. Groundwater Quality Objectives

<table>
<thead>
<tr>
<th>Groundwater Basin</th>
<th>Pollutant (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Name</td>
</tr>
<tr>
<td>Malibu Valley</td>
<td>4-22</td>
</tr>
</tbody>
</table>

Notes: TDS = Total dissolved solids

Groundwater quality in the Malibu Canyon area/aquifer currently exceeds drinking water
standards for pathogens (i.e., fecal coliform) and nitrogen content (RWQCB 2009b). The
source of these contaminants was linked in the RWQCB’s findings partially to onsite
wastewater disposal occurring within the Civic Center area.

In Winter Canyon, multi-family development – namely four condominium complexes –
generates sewage effluent flows that rely on the Malibu Water Pollution Control Plant
(WPCP), a secondary wastewater treatment facility located across Civic Center Way
from the Project site. The WPCP is designed to treat 51,000 gallons per day (gpd) of
domestic wastewater, and disposes of wastewater to 20 seepage pits located on the WPCP
site (LADWP 2012).

Winter Canyon also receives flows of wastewater from Malibu Colony Plaza, which
pumps its wastewater to a four acre site in Winter Canyon to one 45,000-gallon septic
tank and one 50,000-gallon equalization tank to treat the wastewater prior to discharge
into 49 seepage pits. Presently, this wastewater receives only primary treatment before
being discharged to the seepage pits. The existing septic system processes approximately
3.7 HYDROLOGY AND WATER QUALITY

35,000 gallons of primary treated effluent per day. The seepage pit disposal system is designed for a maximum daily flow of 45,000 gallons. The existing system was not designed to disinfect wastewater or remove nutrients that are discharged to the seepage pits. At this time, discharges from the existing system infiltrate groundwater through the seepage pit disposal system. The RWQCB has indicated that groundwater in Winter Canyon is polluted (RWQCB 2009c); however, information on the nature and degree of contamination is lacking.

Stone Environmental (2004) estimated a recharge volume for the Winter Canyon Groundwater Basin of approximately 31,971 gpd. Previous studies have estimated that the percolation capacity of Winter Canyon at approximately 100,000 gpd (Clary et al. 2012). However, the amount of treated wastewater that can be injected into the subsurface is generally limited by the need to keep groundwater levels at an acceptable distance beneath land surface. Based on Local Coastal Program (LCP) Local Implementation Plan (LIP) Section 18.7(H)(3), a minimum 10-foot separation between groundwater and the bottom of the seepage area is required for conventional OWTS. The inferred depth to groundwater within the Winter Canyon Groundwater Basin is approximately 30 feet below ground surface (Earth Forensics, Inc. 2012).

Groundwater movement beneath the Project site is to the south and east, so groundwater from Pepperdine travels toward the site. Groundwater generally travels via subsurface flow beneath the site and ultimately discharges into the Pacific Ocean at Amarillo Beach.

Prohibition Area

Previous studies conducted in the Civic Center area have demonstrated that pathogens and nitrogen in wastewater released from OWTS have impaired underlying groundwater within the Malibu Canyon area/aquifer. On November 5, 2009, the RWQCB approved Resolution No. R4-2009-007 to ban the use of septic systems in the Civic Center area, including the area overlying the Winter Canyon Groundwater Basin. On September 21, 2010, the State Water Resources Control Board (SWRCB) approved that same resolution, thereby amending the State Basin Plan.

The City is working to address these wastewater quality concerns by proposing to construct a new public Civic Center Wastewater Treatment Facility (CCWTF) to handle existing and potential future wastewater treatment needs in the Civic Center area by 2015. The City’s wastewater consultant is currently preparing an initial system design.
and detailed project description. For more information about the prohibition of OWTS in
the Civic Center area and the CCWTF, please see Section 3.8, *Utilities*.

3.7.1.3 Site Setting

Surface Water and Drainage

At the Project site, the top of the mesa slopes gently to the east and south, becoming
gradually steeper at the northern, southern and eastern perimeter with slopes ranging
from 5% to 90%. No drainages contribute surface flow to the Project site. Precipitation
that falls on the site primarily travels by sheet flow to drainages surrounding the Project
area, although one eroded gully conveys runoff down the Project site’s southeastern
slopes (PSOMAS 2011a). For planning purposes, the Applicant’s engineers have divided
the site into four drainage areas, each with differing runoff characteristics and rates (see
Table 3.7-3).

Table 3.7-3. Peak Runoff Rates from the Project Site under Existing Conditions

<table>
<thead>
<tr>
<th>Area of Project Site</th>
<th>Acres</th>
<th>2-Year Event</th>
<th>10-Year Event</th>
<th>50-Year Event</th>
<th>100-Year Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Western Edge & Portion of Roadway</td>
<td>5.62</td>
<td>4.58</td>
<td>11.58</td>
<td>19.00</td>
<td>21.75</td>
</tr>
<tr>
<td>Middle and Southern Portion</td>
<td>15.24</td>
<td>9.25</td>
<td>25.65</td>
<td>40.96</td>
<td>48.69</td>
</tr>
<tr>
<td>Eastern Slope</td>
<td>3.15</td>
<td>3.02</td>
<td>7.60</td>
<td>11.85</td>
<td>13.27</td>
</tr>
<tr>
<td>Northern Slope</td>
<td>7.34</td>
<td>6.19</td>
<td>15.57</td>
<td>24.65</td>
<td>29.07</td>
</tr>
</tbody>
</table>

Source: PSOMAS 2011.

The majority of runoff from the Project site flows east to the Winter Canyon Drain
located along Civic Center Way east of the site (PSOMAS 2011a). The northern portion
of the Project site drains east to Civic Center Way, where gutters convey the water into
the Winter Canyon Drain. Sheet flow from the eastern slopes also drains east into storm
drains that feed into the Winter Storm Drain (refer to Figure 3.7-1). The middle and
southern portion of the Project site drain south to PCH and then east along the highway to
an onsite storm drain conveys this runoff a gully then to the Winter Canyon Drain. All of
the water that enters the Winter Canyon Drain is carried south under PCH and on to its
discharge point into the Pacific Ocean.

A small portion of the Project site on the western edge drains southwest to a storm drain
that carries the water west under Malibu Canyon Road and into a storm drain in the
southeastern corner of Pepperdine. This storm drain conveys the water under PCH to the
3.7 HYDROLOGY AND WATER QUALITY

storm drain at Malibu Bluffs Park, which then carries the water south and discharges it into the Pacific Ocean (PSOMAS 2011a).

Groundwater Conditions

Depth to groundwater on the Project site has been measured in several wells and is estimated to range between 62 and 72 feet bgs (Earth Forensics, Inc. 2012). The Winter Canyon Groundwater Basin underlies the Project site. Groundwater quality analysis was not performed at the Project site during the Applicant-prepared Hydrogeological Assessment and no groundwater quality analysis was found in the literature search (Earth Forensics, Inc. 2012). Groundwater outside of major basins can be potential or existing sources of water for downgradient basins, and therefore must meet quality objectives in downgradient basins (RWQCB 1994).

Flood, Tsunami, Seiche, and Mudslide Hazards

The City is susceptible to major storms, with potential of localized flooding; however, the majority of the Project site is an elevated mesa and is not located in a 100-year flood zone according to the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM) No. 06037C1537F.

Due to the City’s location along the Pacific Coast and within the Santa Monica Bay, it is susceptible to tsunamis and seiches, both series of ocean waves caused by seismic events or large earth movements. However, the Project site is an elevated mesa well removed from the shoreline and is not located in tsunami hazard area (California Department of Conservation 2013).

The City is within an area along the Pacific Coast that is susceptible to mud and debris flows, defined as mass movements or dirt and debris that occur after intense rainfall, earthquakes, and severe wildfires. The Project site lies on a hillside that has been subject...
to conditions that may induce landslides, and a deep historical landslide is present on the eastern portion of the site. See Section 3.5, *Geology and Soils*, for more information regarding landslides and related hazards.

3.7.2 Regulatory Setting

3.7.2.1 Federal Regulations

Federal Clean Water Act (1972). The Federal Water Pollution Control Act (later referred to as the Federal Clean Water Act), 33 United States Code (USC) § 1251 et seq. (1972) (CWA), is the primary federal statute governing water quality. The CWA establishes the basic structure for regulating discharges of pollutants into the waters of the United States and gives the Environmental Protection Agency (U.S. EPA) the authority to implement pollution control programs. The statute’s goal is to regulate all discharges into the nation’s waters and to restore, maintain, and preserve the integrity of those waters. The CWA sets water quality standards for all contaminants in surface waters and makes it unlawful for any person to discharge any pollutant from a point source into navigable waters unless a permit is obtained under its provisions. The CWA mandates permits for wastewater and storm water discharges, requires states to establish site-specific water quality standards for navigable bodies of water, and regulates other activities that affect water quality, such as dredging and the filling of wetlands. The following CWA sections assist in ensuring water quality in surrounding water bodies:

- **Section 208.** Areawide Waste Treatment Management, requires states to develop programs to identify and control non-point sources of pollution, including runoff.
- **Section 303.** Water Quality Standards and Implementation Plans, requires states to establish and enforce water quality standards to protect and enhance beneficial uses of water for such purposes as recreation and fisheries.
- **Section 402.** National Pollutant Discharge Elimination System (NPDES), and particularly subdivision (p), regulates point-source discharges to surface waters under the NPDES permit program, administered by the U.S. EPA. In California, the SWRCB is authorized to oversee the NPDES program through the RWQCBs.
- **Section 405.** of the Water Quality Act of 1987 added to Section 402(p) to the CWA. Pursuant to Section 402(p)(4) of the CWA, the U.S. EPA is required to promulgate regulations for NPDES permit applications for storm water discharges.
3.7.2.2 State Regulations

California Coastal Act (1976). The California Coastal Act, Public Resources Code Section 30000 *et seq.*, established the permanent California Coastal Commission (CCC), whose mandate is to protect and enhance the resources of the coastal zone mapped by the state legislature. The goals of the Coastal Act are:

- Protect, maintain and, where feasible, enhance and restore the overall quality of the coastal zone environment and its natural and artificial resources;
- Assure orderly, balanced utilization and conservation of coastal zone resources taking into account the social and economic needs of the people of the state;
- Maximize public access to and along the coast and maximize public recreational opportunities in the coastal zone consistent with sound resources conservation principles and constitutionally protected rights of private property owners;
- Assure priority for coastal-dependent and coastal-related development over other development on the coast; and
- Encourage state and local initiatives and cooperation in preparing procedures to implement coordinated planning and development for mutually beneficial uses, including educational uses, in the coastal zone.

Implementation of Coastal Act policies designed to achieve the aforementioned goals is accomplished primarily through the preparation of a Local Coastal Program (LCP), reviewed and approved by the CCC. The City’s LCP, which was adopted by the CCC in September, 2002, are described further in the Local Regulations section.

Porter-Cologne Water Quality Control Act (1969). The Porter-Cologne Water Quality Control Act of 1969, Water Code Section 13000 *et seq.*, is the primary water quality control law for California. The act established the SWRCB and divided the state into nine regional basins, each under the jurisdiction of a RWQCB. The SWRCB is the primary state agency responsible for the protection of California’s water quality and groundwater supplies. The RWQCBs carry out the regulation, protection, and administration of water quality in each region. Each regional board is required to adopt a water quality control plan or basin plan that recognizes and reflects the regional differences in existing water quality, the beneficial uses of the region’s ground and surface water, and local water quality conditions and problems.

The State of California Water Resources Control Board (SWRCB). The SWRCB has adopted a statewide construction general permit that applies to storm water and non-storm water discharges from construction activities. This general permit, which is
implemented and enforced in the Malibu area by the Los Angeles RWQCB, requires all owners of land where construction activity occurs to:

- Eliminate or reduce non-storm water discharges to storm water systems and other waters of the U.S.;
- Develop and implement a Storm Water Pollution Prevention Plan (SWPPP) emphasizing storm water Best Management Practices (BMPs); and
- Perform inspections of storm water pollution prevention measures to assess their effectiveness.

In addition, SWRCB regulations mandate a “non-degradation policy” for state waters, especially those of high quality.

The revised Water Quality Control Plan for Ocean Waters of California (Ocean Plan) was adopted by the SWRCB in 2005 and approved by the U.S. EPA in 2006. The Ocean Plan contains water quality objectives and effluent limits that apply to all discharges to the coastal waters of California. Waste management systems that discharge to the ocean must be designed and operated in a manner to maintain a healthy marine ecosystem and not adversely impact the health of recreational users.

State Health Department. The State Health Department set the Title 22 standards for recycled water. This title defines beneficial uses for recycled water, including recycled water for irrigation, recycled water for impoundments, and recycled water for other uses, as shown in Table 3.7-4; other uses include toilet flushing, commercial laundry, and industrial cleaning.

3.7.2.3 Regional and Local Regulations

Regional Water Quality Control Board (RWQCB), Los Angeles Region. The City is in the jurisdiction of the Los Angeles RWQCB, Region 4. The Water Quality Control Plan: Los Angeles Region – Basin Plan for the Coastal Watersheds of Los Angeles and Ventura Counties (Basin Plan) was adopted by the RWQCB in 1994 and amended in 2007. This Basin Plan gives direction on the beneficial uses of the state waters within Region 4, describes the water quality that must be maintained to support such uses, and provides programs, projects, and other actions necessary to achieve the standards established in the Basin Plan.
Table 3.7-4. Title 22 Recycled Water Quality Standards

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Landscape Impoundments</th>
<th>Site Surface Irrigation</th>
<th>Other Uses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30-day Mean</td>
<td>7-day Max</td>
<td>Max</td>
</tr>
<tr>
<td>Total Suspended Solids (mg/L)</td>
<td><30</td>
<td><30</td>
<td><30</td>
</tr>
<tr>
<td>Biochemical Oxygen Demand (mg/L)</td>
<td><30</td>
<td><30</td>
<td><30</td>
</tr>
<tr>
<td>Ammonia (mg/L)</td>
<td><2.2</td>
<td><2.2</td>
<td><2.2</td>
</tr>
<tr>
<td>Total Coliform (mpn/100mL)</td>
<td>2.2</td>
<td>240</td>
<td>2.2</td>
</tr>
<tr>
<td>Turbidity (NTU)</td>
<td>--</td>
<td>--</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Notes: 30-day mean represents the geometric 30-day design/working mean while the 7-day mean represents the 7-day peak design mean.

MPN: "most probable number index" which is a concentration of coliform bacteria in the sample (expressed as the number of bacteria per 100 mL of sample) which would most probably yield in the examination of the sample.

Source: Ensitu 2012.

The RWQCB also passed Order No. 01-031 in February 2001, regulating waste discharge requirements for small commercial and multifamily residential subsurface sewage disposal systems.

Municipal NPDES Permit. The City is a co-permittee under the Waste Discharge Requirements for Municipal Separate Storm Sewer System (MS4) Discharges within the Coastal Watersheds of Los Angeles County, Except Those Discharges Originating from the Water and Urban Runoff Discharges in the County of Los Angeles, and the incorporated cities, except the City of Long Beach (Order No. 01-182R4-2012-0175, NPDES Permit No. CAS004001). This permit was issued to the County of Los Angeles and 84 incorporated cities in 2001 and amended in 2006, 2007, 2009, 2010, and 2011, and adopted by the Los Angeles RWQCB on November 8, 2012.

City of Malibu Local Coastal Program (LCP). The California Coastal Act requires that its goals and policies be implemented by local governments through the LCP. The Malibu LCP consists of two subparts, the Land Use Plan (LUP) and the Local Implementation Plan (LIP).

LCP Land Use Plan (LUP)

The LUP includes policies related to hydrology and water quality pollution control from new developments, erosion and sedimentation, and grading and landform. Specific
techniques are required by the LUP, including limiting increases in the extent of
impervious surfaces, and limiting land disturbance activities, such as clearing or grading.
The LUP also requires BMPs to reduce the effects of storm water runoff, construction
erosion or runoff, and storm water contamination, among others.

LCP Local Implementation Plan (LIP)

The LIP implements the policies of the California Coastal Act and the LUP to protect,
maintain, and enhance the overall quality of the environment. The LIP chapters
pertaining to hydrology and water quality and applicable to the Project are as follows:

- LIP Chapter 8, *Grading*, includes provisions to keep the amount of grading to an
 absolute minimum, with limits on the maximum amount of grading, the maximum
 height of cuts and fills, maximum grade, and seasonal restrictions on grading.
- LIP Chapter 9, *Hazards*, includes measures to ensure that new development
 minimizes risks to life and property from hazards, including floods and tsunamis.
- LIP Chapter 10, *Shoreline and Bluff Development*, discusses the construction of
 swimming pools in accordance with the Guidelines for the Preparation of
 Geologic and Geotechnical Engineering Reports. This chapter requires that
 swimming pools and spas be constructed landward of the structural setback
 requirements and be of double-wall construction with leak detection systems and
 subdrains between the walls.
- LIP Chapter 17, *Water Quality Protection*, provides application submittal
 requirements, development standards, and other measures to ensure that new
 development is sited and designed to conserve natural drainage features and
 vegetation, to prevent the introduction of pollutants into coastal waters, and to
 protect the overall quality of coastal waters and resources. LIP Chapter 17 states
 that all development should consider site-design, source-control, and treatment-
 control BMPs to prevent polluted runoff and water quality impacts resulting from
 development. In addition, projects should be designed to control post-
 development peak runoff rates and volumes to maintain or reduce predevelopment
 downstream erosion rates.

the laws of the City. Title 17 of the M.M.C. specifically discusses the zoning regulations
pertaining to new development. The following M.M.C. sections pertaining to hydrology
and water quality:

- *Section 13.04.100 – Storm water management plan for new development.*
Prior to issuance of a building permit for any new development (on undeveloped
land) or final map approval for any subdivision of property the applicant shall be
required to have approval of a storm water management plan from the department
of public works and the department of environmental and building safety.
• Section 13.04.110 – Standard Urban Storm Water Mitigation Plan (SUSMP) requirements for new development and redevelopment projects. Projects for new development and redevelopment, if subject to discretionary project approval in the zoning ordinance of the city, shall require a storm water mitigation plan that complies with the most recent SUSMP and the current municipal NPDES permit.

City of Malibu General Plan. The City’s General Plan includes the Land Use (LU) Element and the Conservation (CON) Element which detail policies related to hydrology and surface and groundwater quality that apply to the proposed Project. These policies include:

• LU Policy 1.1.2: The City shall ensure that land uses avoid or minimize adverse impacts on water quality and other natural resources, such as undisturbed watersheds and riparian areas.

• LU Policy 1.1.3: The City shall control surface runoff and associated pollutant loads into coastal waters, wetlands, and riparian areas.

• CON Policy 1.3.10: The City shall prohibit the disposal of untreated wastewater onto a beach, rocky coastal area, intertidal zone, or into the ocean.

• CON Policy 1.3.11: The City shall control surface runoff into coastal waters, wetlands, and riparian areas.

3.7.3 Environment Impacts

3.7.3.1 Thresholds for Determining Significance

Thresholds of significance for impacts to hydrology and surface and groundwater quality were taken from Appendix G of the guidelines for the California Environmental Quality Act (CEQA). Impacts from the proposed Project would be considered significant if they were to:

• Violate any water quality standards or waste discharge requirements;

• Substantially deplete groundwater supplies or interfere substantially with groundwater recharge such that there would be a net deficit in aquifer volume or a lowering of the local groundwater table level;

• Substantially alter the existing drainage pattern of the site or area in a manner which would result in substantial erosion or siltation on or offsite;

• Substantially alter the existing drainage pattern of the site or area or substantially increase the rate or amount of surface runoff in a manner which would result in flooding on or offsite;

• Create or contribute runoff water which would exceed the capacity of existing or planned storm water drainage systems or provide substantial additional sources of polluted runoff;
• Otherwise substantially degrade water quality;
• Place housing within a 100-year flood hazard area as mapped on a federal Flood Hazard Boundary or Flood Insurance Rate Map or other flood hazard delineation map;
• Place within a 100-year flood hazard area structures which would impede or redirect flood flows;
• Expose people or structures to a significant risk of loss, injury or death involving flooding; or
• Cause inundation by seiche, tsunami, or mudflow.

3.7.3.2 Impact Assessment Methodology

This analysis considers impacts from both the construction and the operation of the proposed Project, including potential impacts to surface and groundwater quality, flooding, or groundwater basin capacity. This analysis is based upon Applicant-prepared studies that have been peer reviewed by City Departments as well as available data, staff reports, and other materials from the RWQCB.

3.7.3.3 1986 and 1998 Project Environmental Review Findings

Developers have been attempting to permit and construct a hotel at the Project site for many years, and efforts to date have included obtaining CCC approval for a 300-room hotel in 1986, completion of a certified EIR in 1997 and approval of a previous 146-room hotel design by the Malibu City Council in 1998. Applicable findings of environmental review performed for these projects are described below.

California Coastal Commission 1986 Approval of a 300-Room Hotel

In January 1986, the California Coastal Commission (CCC) approved the following project (Permit No. 5-85-418) for the subject property: 300 room hotel (222,200 square feet), 32,800 square foot community center, offices, restaurant, information kiosk and art center, and 1,039 parking spaces. The CCC’s approval has been kept valid over the years and the most recent permit extension (the 26th extension) was issued by the CCC setting the new expiration date as January 7, 2014. The EIR completed for the project determined that project development would result in an increase in direct runoff; however increased drainage would not impact the capacity of existing storm drains upon implementation of mitigation including revegetation of graded slopes, limiting construction to 20% of the site, and preparation of grading and drainage plans. The EIR also found the project would result in no significant impacts to groundwater.
Findings of the 1998 Project EIR

The Project that was proposed in the 1998 EIR included the use of a water reclamation system that would distribute recycled wastewater as irrigation water to support landscaping while disposing of wastewater onsite. The EIR found that unmitigated wastewater impacts would be significant because expected wastewater generation rates may be above the absorptive capacity of the site. The 1998 EIR required mitigation of this significant impact to less than significant with measures including implementation of low-flow plumbing design and water-efficient appliance selection. All other potential impacts, including impacts to surface water runoff and groundwater levels, were found to be less than significant.

3.7.3.4 Project Impacts and Mitigation Measures

The following analyses reflect the conclusions of multiple studies funded by the Project Applicant which have been reviewed and approved by the City through an extensive peer review process.

Onsite Wastewater Treatment System (OWTS)

As proposed by the Applicant, the Project includes the use of a commercial advanced OWTS designed as a zero discharge system, which would fully recycle all wastewater onsite through irrigation or reclamation. The OWTS would provide disinfected tertiary-filtered recycled water treated to meet RWQCB and State Health Department water quality guidelines for recycled water and filtered wastewater. The OWTS would reduce effluent levels of nitrogen ammonia, bacteria, viruses, and other pollutants to levels significantly lower than required by Title 22, the Ocean Plan, the Basin Plan, or Order No. 01-031 (Ensitu 2012).

The OWTS would discharge peak flows of approximately 39,000 gpd with an average flow of 26,000 gpd. The reclaimed water would be disposed of through a reclaimed water system generating water for onsite irrigation as well as toilet flushing, and industrial uses, such as commercial laundry, and industrial cleaning. The system also includes a 900,000 gallon capacity subterranean storage tank to hold excess flows until such a time as they are needed for use (e.g., irrigation) or during portions of the rainy season when landscape water demand is low or the soils may be too saturated to adsorb effluent (GeoSoils 2013). This tank would hold from 23 to 35 days of flows from the OWTS.
Reclaimed water would irrigate approximately 13.1 acres of landscaping and hillside areas on the Project site (Ensitu 2012). The system has been designed so it would not inject wastewater into the soil for disposal, but would instead rely on reuse and evapotranspiration of treated effluent by onsite landscaping, including approximately nine acres of tall fescue turf lawn (Ensitu 2012). Computer simulations and modeling prepared by the Applicant’s team of engineers and hydrogeologists, and approved through City geotechnical review, indicate that proposed reuse of water, landscape irrigation demand, and evapotranspiration by landscaping would ensure that landscape irrigation water would not percolate past the root zone of vegetation. Therefore, wastewater disposed of onsite would not come into contact with groundwater in Winter Canyon and would not reduce the capacity of the Winter Canyon Groundwater Basin to adsorb existing or planned wastewater disposal.

The system would dispose of effluent on lands primarily overlying the Winter Canyon Groundwater Basin, but would not discharge to areas overlying the Malibu Valley area/aquifer, and would not be located within 100 feet of any water body (Ensitu 2012). Impacts associated with the potential for reclaimed irrigation water to exceed evapotranspiration capacity are analyzed under Impact HYD-3.

To ensure that the system would be maintained and operated to achieve adequate water quality levels, the operators of the OWTS would employ an extensive monitoring program and follow a carefully developed operations and maintenance plan. The OWTS would be overseen by a qualified operator and would be run in conjunction with a variety of water conservation efforts and best management practices and plans to manage effluent from ongoing Project operations flowing to receiving waters through groundwater infiltration (Ensitu 2012).

Grading and Drainage Plan / Erosion Control Plan

The Applicant has prepared a Grading and Drainage Plan and an Erosion Control Plan that consist of BMPs and other measures to be implemented during rough grading, such as implementation of erosion protection devices (i.e., sediment basins, straw waddles), designation of an appropriate disposal locale for construction materials and pollutants, and guarantee of continuous cleaning of City streets and the Caltrans highway.

Drainage Facilities

The construction of a new storm drain system would be necessary and would consist of two primary components: 1) a storm drain would be constructed within the PCH right-of-
way and join the existing Winter Drain storm drain for discharge to Amarillo Beach; and 2) storm water would be routed by storm drain pipe to a detention facility located under the parking garage. The detention facility would allow for the removal of trash and sediment. The detention facility would be equipped with sump pumps and a backup energy supply to pump the storm water into a bio-retention basin located at the southwest corner of the Project site. This basin would remove the expected pollutants and discharge treated storm water for infiltration.

Insignificant Impacts

As discussed under environmental setting above, the Project site is located on an elevated mesa top outside the known 100-year flood hazard or tsunami or seiche inundation area. Therefore, impacts from these potential hazards would be insignificant.

The Project site is located in an area that is susceptible to mudslides. Hazards associated with this risk, including risks due to application of irrigation water to the site, and associated mitigation measures are addressed in Section 3.5, *Geology and Soils*, under Impacts GEO-2 and GEO-4.

The Project would not include withdrawal or use of groundwater supplies. The Project would include the addition of impermeable surfaces to the Project site, which has the potential to reduce groundwater recharge. While the Project would also introduce irrigation water that could percolate into the groundwater supply, the OWTS has been designed as a zero discharge system, which would be required to distribute water such that no water percolates past the root bearing zone to enter the groundwater (Earth Forensics, Inc. 2012). Although no irrigation water would be allowed to enter the groundwater, normal precipitation events would be absorbed and percolated within vegetation and irrigated areas onsite. The proposed Project would potentially result in a limited reduction in groundwater levels due to the diversion of water from impermeable surfaces onsite to storm drain channels in Winter Canyon and underneath the intersection of Malibu Canyon Road and PCH (refer to impact description HYD-2). Therefore, the Project would not substantially deplete groundwater supplies or interfere substantially with groundwater recharge.
Impact Description

HYD-1 The proposed Project would result in short-term, potentially significant impacts to surface water quality from increased erosion, sedimentation and polluted runoff during construction activities (Class II).

During construction, particularly during phases that include excavation, grading, and other earthwork, the potential exists for substantial increases in soil erosion and sediment transport into surrounding drainage channels, including in Winter Canyon. Construction of the proposed Project would entail approximately 229,000 cubic yards (cy) of cut and 40,000 cy of fill, with almost the entire site being stripped of vegetative cover. Grading would result in major changes to site topography, including leveling of the entire mesa top and creation of extensive areas of manufactured cut or fill slopes. Winter storms and rainfall events that occur during the two year construction phase, particularly during grading, would create surface runoff waters moving over exposed areas and carrying sediment and other pollutants into Winter Creek and the storm water drainage system leading to the Pacific Ocean. Due to the substantial amount of grading proposed and the potential for extended periods of exposed soils, soil erosion could result in the creation of onsite rills and gully systems, clogs in existing drainage channels, and transport of soil into down-gradient areas on the site and in Winter Canyon. This surface runoff may also contain eroded construction materials and hazardous materials that could potentially degrade surface water quality, and adversely impact sensitive, threatened, and endangered species. Soil movement would occur in exposed graded or excavated areas, as well as in unprotected drainage culverts or basins. Construction activities could impact water quality by exposing disturbed ground to potential erosion or by introducing pollutants into the runoff through chemical spills or presence of machinery or debris. With implementation of standard regulatory conditions, MM GEO-5a and -5b, and the mitigation measures proposed below, this impact is considered potentially significant, but subject to feasible mitigation.

Standard Conditions of Approval

MM HYD-1a Notice of Intent. Prior to beginning construction, the Applicant shall file a Notice of Intent (NOI) to the RWQCB for discharge from the proposed development site.
MM HYD-1b Storm Water Pollution Prevention Plan. The Applicant shall require the building contractor to prepare and submit a Storm Water Pollution Prevention Plan (SWPPP) to the City Public Works Department prior to the issuance of grading permits. The contractor is responsible for understanding the State General Permit and implementing the SWPPP during construction. A SWPPP for site construction shall be developed prior to the initiation of grading and implemented for all construction activities on the Project site in excess of one acre, or where the area of disturbance is less than one acre but is part of the Project’s plan of development that in total disturbs one or more acres. The SWPPP shall include specific BMPs to control the discharge of material from the site. BMP methods may include, but would not be limited to, the use of temporary detention basins, straw bales, sand bagging, mulching, erosion control blankets, silt fencing, and soil stabilizers. Additional BMPs should be implemented for any fuel storage or fuel handling that could occur onsite during construction. The SWPPP must be prepared in accordance with the guidelines adopted by the State Water Resources Control Board (SWRCB). The SWPPP shall be submitted to the City along with grading/development plans for review and approval.

MM HYD-1c Notice of Termination of Construction. The Applicant shall file a notice of termination of construction of the development with the RWQCB, identifying how pollution sources were controlled during the construction of the Project and implementing a closure SWPPP for the site.

MM HYD-1d All required actions shall be implemented pursuant to a Standard Urban Storm Water Mitigation Plan per M.M.C. Section 13.04.110 and a Storm Water Management Plan per M.M.C. Section 13.04.100 submitted to the City and the RWQCB under the NPDES Phase II program.

Plan Requirements and Timing. SWPPP and notices shall be submitted for review and approval by the City prior to the initiation of construction. The Plan(s) shall be designed to address erosion and sediment control during all phases of development of the site until all disturbed areas are permanently stabilized.

Monitoring. The City shall ensure compliance with the Stormwater Pollution Prevention Plan. A Geotechnical Engineer or an Engineering
Geologist shall be made available to monitor technical aspects of the grading activities. The City shall also inspect the site during grading to monitor runoff and to verify reseeding and revegetation after conclusion of grading activities.

Impact Description

HYD-2 Operation of the Project may result in potentially significant impacts to water quality associated with increased storm water runoff, drainage capacity, erosion, sedimentation, effects that degrade water quality (Class II).

The Project would increase impervious surfaces, resulting in increased runoff with higher flows. The increase in runoff has the potential to exceed the drainage capacity of the existing storm drain system, while higher flows may result in erosion of soil from the Project site and increased sedimentation in the water supply. Operation of the proposed Project may also introduce pollutants and hazardous materials to the site, such as oil, gasoline, and fertilizers. Storm water or irrigation runoff may then mobilize these pollutants, carrying them into the storm water drainage system and on to the receiving water body, the Pacific Ocean.

Site Drainage

A drainage analysis was performed for the Project by PSOMAS in 2011, including a hydrologic analysis using methods described in the Los Angeles County Department of Public Works (LADPW) Hydrology Manual. Peak runoff rates were calculated for the site with and without the proposed Project, and debris production rates were calculated.

The proposed Project would alter drainage on approximately 17.7 acres of the Project site disturbed by development activities (PSOMAS 2011a). The proposed Project would consist of hotel buildings, parking lots, roadways, and walkways that would increase impervious surfaces on 41% of the Project site, and, therefore, increase total volume and peak flow rates of storm water runoff. Most of the proposed development would occur in the middle and western portion of the site. In cubic feet per second (cfs), peak runoff rates resulting from the proposed Project are shown in Table 3.7-5. Rates that are higher than existing conditions (refer to Table 3.7-5) are shown in bold text.
Table 3.7-5. Peak Runoff Rates from the Project Site with the Proposed Project

<table>
<thead>
<tr>
<th>Area of Project Site</th>
<th>Acres</th>
<th>2-Year Event</th>
<th>10-Year Event</th>
<th>50-Year Event</th>
<th>100-Year Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Western Edge & Portion of Roadway</td>
<td>6.31</td>
<td>5.05</td>
<td>11.57</td>
<td>18.00</td>
<td>21.35</td>
</tr>
<tr>
<td>Middle and Southern Portion</td>
<td>16.65</td>
<td>13.80</td>
<td>31.89</td>
<td>49.15</td>
<td>57.58</td>
</tr>
<tr>
<td>Eastern Slope</td>
<td>2.02</td>
<td>2.45</td>
<td>5.30</td>
<td>7.60</td>
<td>8.51</td>
</tr>
<tr>
<td>Northern Slopes</td>
<td>6.42</td>
<td>3.94</td>
<td>10.68</td>
<td>18.11</td>
<td>21.73</td>
</tr>
</tbody>
</table>

Note: Boundaries for the various project areas are slightly different under the existing conditions versus under the proposed Project conditions. The two areas with proposed development were expanded in order to account for all drainage increases related to the Project that must be offset through mitigation.

Source: PSOMAS 2011a.

Consistent with the LIP Chapter 17, the Project has incorporated site-design, source-control, and treatment-control BMPs to reduce polluted runoff and water quality impacts. The Project also has design elements to control post-development peak runoff rates and volumes to maintain or reduce predevelopment downstream erosion rates.

In addition to the detention required to attenuate the peak flow in the pre-development vs. post-development condition, detention would be provided based on the amount of developable area per the M.M.C. Specifically, M.M.C. Section 13.04.100 requires that 1-inch of rainfall over the proposed impervious surfaces plus 1/2-inch of rainfall over the proposed permeable surfaces be detained. Therefore, the development area for this site requires an additional detention volume of 58,859 cubic feet (cf). Measures implemented to meet these standards are discussed below and associated calculations are provided in the Hydrology Study for Rancho Malibu Resort (PSOMAS 2011a) and provided in Appendix D.

Bioretention System

A storm water storage and filtration system would be constructed in the southwest corner of the Project site to capture and treat runoff from the main developed portion of the site. The system would utilize a 72,000 gallon subterranean detention vault underneath the proposed subsurface parking lot. This detention vault would serve to remove trash, debris and sediment from the storm water. Sump pumps would be used to carry partially treated water from this facility to the bioretention basin and percolate though a soil and plant-based filtration system, which would further filter pollutants and treat storm water (refer to Figure 2-3). After treatment, the water would be discharged via the proposed storm
3.7 HYDROLOGY AND WATER QUALITY

Drain from the southeasterly portion of development to the existing storm drain line on PCH and eventually to the Pacific Ocean at Amarillo Beach.

The bioretention system has been designed at a size and scale appropriate to accommodate a 3/4-inch 24-hour rainfall event, as per the City’s SUSMP (M.M.C. Section 13.04.110), as well as 1-inch of rainwater over the proposed impervious surfaces plus 1/2-inch of rainwater over the proposed permeable surfaces (M.M.C. Section 13.04.100). According to the calculations provided in the Hydrology Study for Rancho Malibu Resort, this amounts to a detention capacity of 70,229 cf (PSOMAS 2011a).

Best Management Practices

The proposed Project includes the use of BMPs to manage water in such a way to minimize impacts. BMPs incorporated in the Water Quality Management Plan for the Project include:

- Minimize Storm Water Pollutants of Concern – the bioretention facility will be used to achieve this goal;
- Conserve Natural Areas – 59% of the site will remain pervious (41% will be impervious due to development);
- Protect Slopes and Channels – grading limits, the bioretention area, retaining walls, and other drainage infrastructure and mechanisms will be employed;
- Provide Storm Drain System Stenciling and Signage – stenciling and signage will be required for areas with catch basins;
- Properly Design Trash Storage Areas – enclosures will be covered and walled;
- Treatment of Peak Flows – Detention or infiltration structures capable of treating runoff produced by a 3/4-inch 24-hour rainfall event; and
- Use of a bioretention system – the detention facility will be used to remove trash, sediments, and pollutants prior to discharging treated storm water to existing gutters.

Drainage Capacity

Runoff from developed portions of the Project site would not exceed the drainage capacity of developed portions of the site, including the central and western portions, because of the use of the bioretention system. The system would have a capacity of 72,000 cf, exceeding the capacity required to address potential flooding impacts. This capacity would accommodate the increase in storm water that would be experienced in the central and western portions of the Project site for the 2-year, 10-year, 50-year, and
100-year storm event, capturing flows and allowing them to be released over time after peak flows have subsided. The use of the bioretention facility would ensure that there are no significant impacts to flooding or drainage capacity due to drainage from the central and western portions of the site, where the proposed development will be located.

The remaining portions of the site, including the northern and far eastern slopes, would not drain to the bioretention facility. For drainage in the eastern portions of the Project site, the construction of a new storm drain system would be necessary. The storm drain would consist of a 30-inch pipe that would convey water from the southeastern portion of the proposed development down to PCH and along the road right-of-way to join into the existing Winter Drain storm drain. The piping would require substantial trenching and/or boring to descend and connect approximately 40 feet from the PCH grade down to the existing Winter Drain, which would potentially result in substantial disturbance to offsite vegetation and soils, depending upon final plans.

A portion of the northern and eastern slopes would be incorporated into the central and southern drainage area due to the reconfiguration of the site. Surface water from those areas would drain with the central portion to the bioretention facility. Therefore, the remaining portions of the northern and eastern slopes would be slightly smaller than under existing conditions. These areas of the Project site would not be developed and would continue to experience the existing drainage pattern. Due to their reduced size and natural state (i.e. no impervious surfaces would be introduced to these areas), these areas would have slightly reduced storm water runoff than under existing conditions. Therefore, there would be no Project-related impacts to flooding and drainage capacity, including erosion and sedimentation, for these portions of the Project site.

Water Quality

The proposed Project would generate the following pollutants: sediments/turbidity, nutrients, trash and debris, oxygen demanding substances,\(^1\) bacteria/viruses, oil and grease, and pesticides. Metals are also an expected pollutant due to the development of parking lots and access roads as part of the Project. Undeveloped segments of Winter Creek and the Pacific Ocean at Amarillo Beach would receive most of the surface water runoff from the Project site. Given the coastal setting of this receiving water body, any substantial increases in pollutants would be of concern. Increased oil and grease, trash,

\(^1\) When discharged to surface water, biodegradable material is decomposed by aquatic bacteria and other microorganisms. During this process, dissolved oxygen is consumed, reducing the amount available for aquatic animals.
bacteria/ viruses and pesticides are a concern, with pesticides already a listed pollutant of
care at Amarillo Beach in CWA Section 303(d) list of impaired water bodies
(PSOMAS 2011a).

The Project includes a bioretention area to capture runoff from parking areas, roadways,
building roofs and hardscapes. The efficiency of bioretention areas for treating pesticides
is unknown and for treatment effectiveness for other pollutants has a medium to high
efficiency (PSOMAS 2011a). Thus, this system is considered a suitable treatment method
for the Project. However, given the sensitivity of receiving waters at Amarillo Beach and
at down-drift Malibu Lagoon, Project impacts to water quality are considered potentially
significant, but subject to feasible mitigation.

Mitigation Measures

MM HYD-2a In order to protect downstream water quality at Amarillo Beach and
Malibu Lagoon, the Applicant shall prepare and submit an Integrated
Landscape Management Plan (ILMP) to the City for review and approval.
The ILMP shall identify all appropriate pest management options
including, but not limited to, the judicious use of pesticides. The goal of
the ILMP shall be to manage site grounds with a minimum use of chemical
fertilizers, pesticides and herbicides. The ILMP shall consist of a range of
controls for both weeds and insect pests, options for fertilizer application
(e.g., natural mulching), and set forth standards for pest management and
fertilizer application evaluations, decisions and controls, including the
follow general approaches:

- Identification of the approach for weed and pest control and fertilizer
application, including the range of pest control and fertilizer actions
permissible under the ILMP, including organic techniques or
fertilizers, mechanical control methods, low toxicity pesticides and
herbicides and onsite mulching and reuse of landscape trimming as
mulch and fertilizer;

- Establishment of an action threshold, the point at which pest or weed
colations or environmental conditions indicate that pest control
action must be taken, as well as a schedule for the typical anticipated
frequency and type of fertilizer application, and the non-chemical
natural fertilizer options anticipated to be employed;

- Monitoring and identification of standards for pest populations and
fertilizer application so that appropriate control and application
decisions would be made in conjunction with action thresholds. The
goal of the monitoring and identification program shall be to reduce
the potential for pesticides to be used when they are not actually
needed, when use of the wrong kind of pesticide can be avoided, and
when employment of chemical fertilizers can be minimized;

- Prevention Methods to manage the developed landscaped areas
 prevent pests from becoming a threat and to minimize the need to
 apply chemical fertilizers; and

- Once monitoring, identification, and action thresholds indicate that
 pest control is required, and preventive methods are no longer
 effective or available, identification of the range of proper control
 method both for effectiveness and risk. Effective, less risky pest
 controls are chosen first, including highly targeted chemicals, such as
 pheromones to disrupt pest mating, or mechanical control, such as
 trapping or weeding. Similarly, use of mulching and natural fertilizers
 that are better retained onsite and not mobilized as runoff into the
 watershed would be the first choice for fertilization.

Plan Requirements and Timing. The Applicant shall include
specification of pesticides and fertilizers that may be used for site
landscaping as part of the ILMP. The ILMP shall be reviewed and
approved by the City Biologist prior to issuance of grading/building
permits for each phase/component of the Project.

Monitoring. The City shall ensure compliance with the ILMP, including
use of low-toxicity pesticides and herbicides and natural fertilizers.
Conformance with the ILMP shall be confirmed through regular site
inspections.

MM HYD-2b The Applicant shall prepare a plan for disposing of any excess reclaimed
water prior to reaching storage capacity as part of the OWTS Operations
and Maintenance Plan (refer to MM UT-1a). The plan can include any
combination of measures to meet the performance criteria of zero
wastewater balance and zero runoff and address any potential wastewater
excess. These measures may include measures to dispose of excess
wastewater such as specification or/and commitment to other users for the
project’s reclaimed water, use of dual plumbing, provisions to hook-up to
the Civic Center Wastewater Treatment Facility when available,
procuring a permit to dispose of excess reclaimed water in Las Virgenes
or other regional facilities, using off-site laundry service for the hotel, or
methods to reduce wastewater generation such as plumbing retrofits. The
Plan shall include appropriate penalties for failure to meet the performance objectives, to the satisfaction of the City Attorney.

Plan Requirements and Timing. The OWTS Operations and Maintenance Plan shall be submitted to the City Environmental Health Administrator for review and approval prior to the issuance of building permits for the proposed Project.

Monitoring. The Applicant shall submit biannual reports to the City Environmental Health Administrator regarding the operations and maintenance of the OWTS. These reports shall be reviewed by the City and LADPW and recommendations shall be made regarding updates to the OWTS Operations and Maintenance Plan.

Impact Description

HYD-3 Wastewater disposal and irrigation at the Project site would have a less potentially significant impact on Winter Canyon Groundwater Basin in terms of water table and groundwater quality (Class III).

The proposed Project would generate an average of 9.49 million gallons per year of treated water effluent and dispose of an estimated 5.2 million gallons per year (16 acre-feet/year) through landscape irrigation. Recycled water used for irrigation has the potential to percolate down into the groundwater supply, raising water tables. If the water table becomes too high it may impede the watershed’s disposal capacity, result in daylighting and discharge of groundwater, and contribute to water quality impacts, as well as conflict with LIP Section 18.7(H)(3), which requires a minimum of 10-foot separation between groundwater and the bottom of the seepage area for conventional OWTS. However, as proposed by the Applicant, the zero discharge system would dispose of all flows via landscape use and evapotranspiration and therefore would not result in percolation to the groundwater. In order to install the OWTS, the Applicant was required to apply for an exception to the Basin Plan (review by the RWQCB is currently underway) and have the exception approved by the RWQCB. If approved by the RWQCB, the Project would involve substantial water dispersal for onsite irrigation. This irrigation water would be dispersed at a rate and in an amount that would be entirely used for plant uptake and evapotranspiration to prevent percolation to groundwater sources deep into the ground, as discussed below.
Water Budget Analysis

Earth Forensics, Inc. performed a water budget analysis in 2012 to determine the contribution of water to the groundwater supply due to percolation of recycled irrigation water. Earth Forensics, Inc. considered an average dispersal rate of effluent for irrigation at 0.21 inches per day per square foot or 76.65 inches per year per square foot. This rate would account for dispersal of all recycled water from the OWTS based on the average flow rate 26,000 gpd. Earth Forensics, Inc. also considered the contribution of rainwater to the site, which is expected to add an additional 2.5 inches per year of water that would be held onsite rather than lost to runoff. Thus, the total amount of water disposed of on the site would amount to 79.15 inches per year (Earth Forensics, Inc. 2012). This conclusion was confirmed by Brown and Caldwell (2013); the system would not exceed the landscape plants’ water demands and therefore, disposed of wastewater via evapotranspiration would not raise the groundwater table in the Winter Canyon Groundwater Basin. These finding reflect the conclusions of multiple Applicant-initiated studies which have been reviewed and approved by the City through an extensive peer review process (refer to Appendix D).

Previous studies have estimated that the percolation capacity of Winter Canyon at approximately 100,000 gpd (Clary et al. 2012). There is currently substantial disposal of wastewater in Winter Canyon from the Malibu WPCP and the Malibu Colony Plaza wastewater disposal site. These treatment facilities have a combined capacity to treat and discharge approximately 96,000 gpd; however, ongoing disposal is substantially less than this capacity. As designed and if efficiently operated, the proposed zero discharge system would not result in percolation of treated wastewater into the Winter Canyon and therefore would not have a measurable effect on groundwater levels (Earth Forensics, Inc. 2013; Brown and Caldwell 2013). Consistent with mitigation measures provided in Section 3.8, Utilities, the OWTS would be regularly monitored to ensure no deep percolation occurs and that water is adequately treated prior to disposal. Consequently, the impact to the groundwater table as a result of the proposed Project would be less than significant.
3.7.3.5 Cumulative Impacts

Impact Description

HYD-4 The Project would result in a less than significant contribution to the cumulative exceedance of the remaining Winter Canyon Groundwater Basin capacity (Class III).

The Project site and Winter Canyon are included in the Civic Center Septic Prohibition Area Boundary; therefore, use of an OWTS at the Project site is not currently authorized under the Basin Plan and the Applicant has applied for an exception and that request is currently under review by the RWQCB.

With regard to the Winter Canyon Groundwater Basin capacity for wastewater discharge, previous studies have estimated the percolation capacity of Winter Canyon at approximately 100,000 gpd (Clary et al. 2012). As currently designed, the proposed CCWTF would have a total flow through of approximately 450,000 gpd during Phase III, which would utilize all remaining capacity of Winter Canyon Groundwater Basin for wastewater disposal independently from the proposed Project’s anticipated contributions to groundwater.1 If the groundwater basin’s capacity is exceeded, daylighting and seepage of groundwater at the surface areas and other low-lying areas with potentially polluted effluent is possible.

In the event that use of an OWTS is approved for the proposed Project, the OWTS would produce a peak system design flow of 39,000 gpd with an average flow of 26,000 gpd of reclaimed water for irrigation and other industrial uses.2 However, the OWTS, as proposed, is a zero discharge system, which would dispose of wastewater through evapotranspiration and therefore prevent water from entering the Winter Canyon Groundwater Basin (Brown and Caldwell 2013). The system would be carefully monitored and treated wastewater would be stored during periods of decreased evapotranspiration (e.g., winter, wet weather) to apply during periods of increased

1 Total flow through during Phase I is projected at approximately 190,000 gpd.
2 The proposed Project’s estimated total water usage for landscaping would require an approximate average of 73,783 gpd. According to the Landscape Water Requirements Report, this demand for irrigation would be split-served: 47% (34,678 gpd) from the OWTS discharged effluent and 53% (39,105 gpd) from potable water supplies (Independent Irrigation Consultants, Inc. 2013). This landscaping irrigation demand includes 14,300 gpd for formal landscaping, leaving a 20,378 gpd demand for informal/natural landscaping (Ensitu 2012). It is notable that the landscaping irrigation demand served by the OWTS exceeds the OWTS average flow of 26,000 gpd by 8,678 gpd. However, this difference would be made up from wastewater stored during periods characterized by low evapotranspiration rates. Further, operating at peak output, the OWTS could provide for the landscaping irrigation demand, but would limit the recycled water available for toilet flushing and industrial uses to 4,322 gpd.
evapotranspiration (e.g., summer, dry weather). In addition, the Applicant’s implementation of MM BIO-2a would include a Landscape and Native Habitat Enhancement Plan that would include substantial planting of fire-resistant native riparian and woodland species, which would increase the rate of evapotranspiration and prevent discharged wastewater from entering the groundwater basin. Consequently, the proposed Project would not result in wastewater percolation into the Winter Canyon Groundwater Basin. Therefore, the proposed project would not result in a cumulatively considerable contribution to the reduction of the Winter Canyon Groundwater Basin’s disposal capacity, as discussed in Impact HYD-3, and the cumulative impact would be less than significant.

3.7.3.6 Residual Impacts

The Project would have residual impacts to surface water quality; however, the proposed mitigation measures, MM HYD-2a and MM UT-1a, would reduce the toxicity of pesticides and fertilizers used for landscaping and ensure no deep percolation of wastewater during disposal, thereby reducing the potential impact to impaired water bodies that receive runoff or wastewater from the Project site to less than significant.
3.8 Utilities

The following section describes existing and planned utilities in the vicinity of the Project site, and evaluates the operation and capacity of these utilities with the development of the proposed Project. Utilities necessary for the operation of the proposed hotel would include wastewater, potable water, and energy (i.e., electricity) services. Wastewater disposal in the Civic Center area is currently provided through use of private onsite wastewater treatment systems (OWTS) only. Potable water is provided by Los Angeles County Waterworks District No. 29 (District 29). For energy services, Southern California Gas Company (SoCalGas) provides natural gas, and Southern California Edison (SCE) provides electricity to the City. Additionally, cable, phone, and internet providers in the City of Malibu (City) include XFINITY, Time Warner, Charter Communications, Cox Communications, Verizon, Earthlink, and Brighthouse.

The utilities analysis for this section is based on information from the local agencies and service providers, California Regional Water Quality Control Board (RWQCB) reports, and Applicant prepared engineering and technical studies. For specific information regarding groundwater and stormwater drainage please refer to Section 3.7, Hydrology and Water Quality and for solid waste disposal please refer to Section 3.9, Public Services.

3.8.1 Existing Conditions

3.8.1.1 Wastewater Treatment

The Project site is located in the western portion of the Civic Center area, which has a population of approximately 2,000 residents (RWQCB 2009a). The City does not have centralized wastewater treatment infrastructure, requiring residents, businesses, and public facilities in the City to use individual or package OWTS to dispose of wastewater onsite (i.e., percolation through leach lines or dry wells). In several areas of the City, high flows of wastewater coupled with unfavorable hydrogeologic conditions have raised concerns about reliance on this wastewater disposal strategy (RWQCB 2009a). Within the Civic Center area, land use activities by more than 400 dischargers have resulted in the subsurface release of wastewater at an estimated rate as high as 270,000 gallons per day (gpd) (RWQCB 2009b).

1 The City is currently in the process of planning a new Civic Center Wastewater Treatment System (CCWTS), which is anticipated to be in operation by 2015 or 2016.
A small portion of the wastewater generated in the City is collected and treated by small private and publicly owned package OWTS serving individual developments (County of Los Angeles Department of Public Works [LADPW] 2005). The LADPW operates and maintains the collection and treatment systems of three publicly owned OWTS in the City including the Malibu Mesa Water Reclamation Plant, the Malibu Water Pollution Control Plant, and the Trancas Water Pollution Control Plant. The total treatment capacity of these plants is approximately 312,500 gpd (LADPW 2005). Of these plants, only the Malibu Mesa Plant generates recycled water for non-potable irrigation uses. The Malibu Mesa Plant treats wastewater for an estimated population of 3,360 persons at Pepperdine University (Pepperdine) and the Malibu Country Estates neighborhood. The plant treats wastewater to Title 22 standards for landscape irrigation. The treated wastewater is either stored in a retention basin in Alumni Park for use in fire fighting or used by Pepperdine for landscape irrigation of approximately 113 acres (LADPW 2005).

Prohibition Area

Previous studies conducted in the Civic Center area have indicated that pathogens and nitrogen in wastewater released from OWTS may have impaired underlying groundwater within the Malibu Canyon area/aquifer (RWQCB 2009b). However, the City has cited evidence that bird and other animal waste, as well as upstream rock formations are the primary contributors to poor water quality. Additional non-point sources of water quality contamination are associated with upstream discharge of treated effluent from lands inland of the City and storm water conveyance of fertilizers, manure, petroleum products, and livestock, which are transported via Malibu Creek (City of Malibu 1995).

On November 5, 2009, the RWQCB approved Resolution No. R4-2009-007, banning the use of OWTS in the Civic Center area. On September 21, 2010, the State Water Resources Control Board (SWRCB) approved that same resolution, thereby amending the
State Basin Plan. The adopted plan for a specific prohibition area included the following mandates:

- All commercial properties must cease wastewater discharge by 2015;
- All residential properties must cease wastewater discharge by 2019; and
- No new wastewater discharge is allowed from any property in the prohibition boundary, except for those listed within the Resolution under Table 4-zz.

The area affected by the prohibition (“prohibition area”) is delineated according to hydrogeological parameters and drainage patterns, rather than municipal borders or parcel lines. The prohibition area boundary follows a topographic high surrounding both the Winter Canyon watershed and the lower Malibu Creek watershed and extends to the Pacific Ocean (RWQCB 2009b). All property within the prohibition area is subject to the prohibition orders, including the coastal strip along the Pacific Coast Highway (PCH) stretching from Amarillo Beach to Surfrider Beach. This entire area, referred in the Resolution as the Malibu Civic Center area, totals approximately 2.2 square miles (see Figure 3.8-1). Winter Canyon is included in the prohibition area because this watershed is
heavily developed and receives discharges of wastewater up to 50,000 gpd (i.e., approximately about 20% of the wastewater in the prohibition area) (RWQCB 2009b). Additionally, wastewater management strategies for many commercial activities, as well as proposed strategies for managing future wastewater discharge, rely on the disposal capacity in Winter Canyon, which is considered strained (refer to Section 3.7, *Hydrology and Water Quality*).

Types of Discharges and Dischargers Subject to Prohibition

All property owners, including existing residences, businesses, and public facilities that discharge wastes through onsite waste disposal systems (OWDS) in the Malibu Civic Center area are subject to the prohibition, as well as future dischargers who may plan to discharge in this area.\(^2\) This regulatory action prohibits all new discharges from OWDS in the Malibu Civic Center area, and establishes a schedule to cease discharges from existing systems (RWQCB 2009b). The prohibition applies to all OWDS and regulated discharges (whether they are regulated by the City, County of Los Angeles, or State of California), as well as any unregulated discharges that may exist (RWQCB 2009b).

Types of subsurface disposal systems, or OWDS, that are prohibited range from passive systems with conventional septic tanks to OWDS with equipment that more aggressively removes pollutant loads from sewage before subsurface disposal (RWQCB 2009b). The prohibition covers any OWDS that serves an individual property or group of properties (e.g., residential, commercial, institutional, and public properties).

Planned Wastewater System Improvements

The City is working to address these wastewater quality concerns. The City is proposing to construct a new centralized wastewater treatment facility to handle existing and potential future wastewater treatment needs in the Civic Center area by 2015. The City’s wastewater consultant is currently preparing an initial system design and detailed project description.

The most recent publicly available preliminary design for the Civic Center Wastewater Treatment Facility (CCWTF) identifies a location for a potential treatment facility in Winter Canyon along Civic Center Way. The system would include proposed collection

\(^2\) OWDS is the term used in SWRCB and RWQCD documents instead of OWTS; the terms are generally interchangeable as most OWTS currently in use dispose of effluent through percolation, with Advance systems such as that proposed for the project relying on recycling and reuse for landscaping.
and recycle return systems for a membrane bioreactor (MBR) wastewater treatment plant. The CCWTF is expected to meet an estimated future demand of approximately 260,700 gpd of effluent within its proposed service area that may be required to meet wastewater service demand from Phase I in 2015 and Phase II in 2019 (City of Malibu 2011). However, the system as identified in 2010 was designed with 35% excess capacity for disposal of up to 335,000 gpd, with reuse of 220,000 gpd of reclaimed water and disposal of 110,000 gpd of treated effluent through injection into Malibu Canyon area/aquifer and percolation into the Winter Canyon Groundwater Basin. Preliminary system design included both force mains and gravity flow lines along with reclaimed water lines initially within the Civic Center with planned extension into residential areas, including the Serra Retreat neighborhood across Malibu Creek to the east (refer to Figure 3.8-1).

3.8.1.2 Potable Water

Los Angeles County Waterworks District No. 29

District 29 currently supplies water to the City, unincorporated portions of the County including Topanga Canyon, and portions of Marina Del Rey. The City’s water service area comprises a narrow strip along the coastline, bounded on the north by the Santa Monica Mountains, on the east by Topanga Canyon, on the west by Ventura County, and on the south by the Pacific Ocean. District 29 occupies an area of approximately 47 square miles and has served the Malibu area since 1973 (LADPW 2005). In 2005, District 29 served an estimated population of 24,973 people through approximately 7,760 active meters. The majority of these connections serve residential uses with some services to commercial, landscape, fire protection, and other public agencies. Water use in District 29 between the years of 2000 and 2005 was estimated at 97,600 gallons per year per person (i.e., approximately 0.2995 acre-feet per year per person) using data from 2000-2005. Based on projections by the Southern California Association of Governments (SCAG), water use within District 29 is expected to increase 45% between the years of 2000 and 2030.

Table 3.8-1. Projected Population Growth and Connection Increases

<table>
<thead>
<tr>
<th>Service Demographics</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2015</td>
</tr>
<tr>
<td>Number of Connections</td>
<td>8,078</td>
</tr>
<tr>
<td>Projected Population</td>
<td>33,430</td>
</tr>
</tbody>
</table>

Source: LADPW 2005.
3.9 Utilities

Water System Infrastructure and Facilities

District 29 water facilities interconnect with the West Basin Municipal Water District (MWD) system in the City of Culver City. A 35-mile transmission water main pipeline along PCH conveys water from the interconnection with West Basin MWD to the western boundary of District 29. The water is pumped from the transmission water main into various gravity storage tanks in Malibu and Topanga. The District also has four emergency interconnections: two with the LADWP and two with the Las Virgenes MWD. Major system facilities operated by District 29 include approximately 200 miles of water mains (approximately 5% of which are above ground), 32 pump stations and 52 tanks with a storage capacity of approximately 20 million gallons (i.e., approximately three days of supply at average usage rates). District 29’s original water system facilities were acquired from various small mutual water companies and the transmission water main was built during the 1960s. Therefore, the outdated condition of the water system coupled with the unique topography of region results in the costs for maintenance and operation costs being higher than other water districts (LADPW 2005).

Water Supply and Reliability

District 29 purchases its water supply from the West Basin MWD, which receives its imported water supply from the Metropolitan Water District of Southern California. District 29 also has the capability to purchase imported water from the LADWP and Las Virgenes MWD through emergency interconnections (LADPW 2005). Currently, District 29 has the storage capacity to provide its customers with water for approximately three days under standard use conditions (LADPW 2005). However, due to a growing population, the threat of natural disasters, and outdated water distribution systems, several projects have been constructed or proposed in order to improve water service reliability, specifically for fire water flows.

The LADPW is in the process of finalizing a Master Plan for the region, which will include system-wide upgrades to the water facilities; however, there are no system upgrades or storage upgrades planned for the zone in which Project would be located (LADPW 2012). The proposed 800,000 gallon Sweetwater storage tank (to be placed in the Serra Retreat neighborhood, east of the Project site) is proposed to support development in the Civic Center area. Although the storage tank is currently unfunded and unscheduled, once installed (following the collection of sufficient impact fees from developers) the tank will provide additional water for fire flows in the Civic Center area (LADPW 2012).
According to its 2010 Urban Water Management Plan, the West Basin MWD has taken other steps to reduce the vulnerability of supplies to extended droughts or other potential threats to reliability (West Basin MWD 2010). This includes use of more recycled water for non-potable uses, expanding use of local groundwater through conjunctive use, and searching for potential water transfers and exchanges sources beyond those already available to MWD. Production and use of recycled water is currently limited in District 29 because the community’s wastewater is predominately served by individual OWTS.

Water demand for District 29 is projected to increase at a steady rate, as is the wholesale supply of potable water available to District 29 from West Basin MWD. Due to the increasing use of recycled water by the West Basin MWD’s customers, the West Basin MWD will be able to meet District 29’s future imported water demands under normal years (LAPDW 2005; see Table 3.8-2). However, historical data analyzed by the West Basin MWD and Metropolitan Water District has shown that due to a lack of precipitation during drought conditions, there can be an increase in water demand by four to eight % during successive dry years (LADPW 2005). Under these conditions, total demand from District 29 could approach or exceed the supply of the West Basin MWD.

Table 3.8-2. Projected Wholesale Water Supply and Demand during Normal Years

<table>
<thead>
<tr>
<th>Water Supply and Demand Sources</th>
<th>Year</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>West Basin MWD</td>
<td></td>
<td>12,803</td>
<td>13,765</td>
<td>14,697</td>
<td>15,557</td>
</tr>
<tr>
<td>LADWP</td>
<td></td>
<td></td>
<td>Emergency Interconnections Only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Las Virgenes MWD</td>
<td></td>
<td></td>
<td>Emergency Interconnections Only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recycled Water</td>
<td></td>
<td>140</td>
<td>140</td>
<td>140</td>
<td>140</td>
</tr>
<tr>
<td>Total Demand from District 29</td>
<td></td>
<td>12,194</td>
<td>13,110</td>
<td>13,997</td>
<td>14,816</td>
</tr>
</tbody>
</table>

Source: LADPW 2005.

In the event of a reduction in the available water supply from the West Basin MWD, the County of Los Angeles Board of Supervisors has adopted a water shortage contingency plan known as the Phased Water Conservation Plan (PWCP). The purpose of the PWCP is to reduce overall water demands throughout District 29 and the Marina Del Rey Water System (LADWP 2005). Depending upon the severity of the situation, the Board of Supervisors may use the PWCP to impose phases of voluntary and mandatory reductions of water use up to 50%. Additionally, in the event of a severe water shortage, District 29 would utilize the emergency interconnections with Las Virgenes MWD and the LADWP.
and enforce the No Waste Ordinance (Ordinance No. 91-0046U) that specifies water
saving measures.

Agreement with Pepperdine University

The Applicant of the proposed Project established an agreement with Pepperdine in 1981
to secure an allocation of 109,000 gallons of water per day from Pepperdine’s three
million gallon detention basin (County of Los Angeles Fire Department [LACFD] 2012;
LADPW 2012; see Section 3.9, Public Services). While the infrastructure to convey this
allocation is not currently in place, the Applicant has committed to funding the
installation of a 1,800 foot, 16-inch diameter water main along Malibu Canyon Road that
would connect to the existing water main along Seaver Drive. Additionally, the Applicant
would fund the installation of another 1,200-foot water main fronting PCH and
connecting into the existing water system at this location (see Figure 3.6-4 in Section 3.6,

3.8.1.3 Energy Services

SoCalGas provides natural gas service to the City via gas mains that run under the street
network. At least two gas mains currently serve the Project site, including a main located
beneath Civic Center Way and a second main located beneath PCH (PSOMAS 2012).

SCE provides electrical service to the City. The Malibu area is served by a system of
SCE distribution substations and circuits. Service to the Project site and the surrounding
Civic Center area is available through adjacent or nearby electricity lines in the Nicholas
Distribution Circuit, with a 16 kilovolt (kV) circuit voltage from the Tapia 66/16 kV
Distribution Substation (City of Malibu 2003; SCE 2012a). Facilities within the
immediate vicinity of the Project site include two transformers located along PCH and
Civic Center Way, as well as overhead power lines, which traverse the Project site
between Malibu Canyon Road and PCH.

3.8.2 Regulatory Setting

3.8.2.1 Federal Regulations

Clean Water Act. The federal Water Pollution Control Act, also known as the Clean
Water Act (CWA), is the primary statute governing water quality. The CWA establishes
the basic structure for regulating discharges of pollutants into the waters of the United
States and gives the United States Environmental Protection Agency (U.S. EPA) the
authority to implement pollution control programs, such as setting wastewater standards
for industry. The statute’s goal is to regulate all discharges into the nation’s waters and to restore, maintain, and preserve the integrity of those waters. The CWA sets water quality standards for all contaminants in surface waters and makes it unlawful for any person to discharge any pollutant from a point source into navigable waters unless a permit is obtained under its provisions. The CWA mandates permits for wastewater and stormwater discharges, requires states to establish site-specific water quality standards for navigable bodies of water, and regulates other activities that affect water quality, such as dredging and the filling of wetlands. The CWA also funds the construction of sewage treatment plants and recognizes the need for planning to address nonpoint sources of pollution.

Federal Energy Regulatory Commission. The Federal Energy Regulatory Commission (FERC) was created through the Department of Energy Organization Act, and FERC assumed the responsibilities of its predecessor, the Federal Power Commission. FERC’s legal authority comes from the Federal Power Act of 1935, the Natural Gas Act of 1938, and Natural Gas Policy Act of 1992. It is an independent regulatory agency within the Department of Energy that:

- Regulates the transmission and sale of natural gas for resale in interstate commerce;
- Regulates the transmission of oil by pipeline in interstate commerce;
- Regulates the transmission and wholesale of electricity in interstate commerce;
- Licenses and inspects private, municipal, and state hydroelectric projects;
- Oversees environmental matters related to natural gas, oil, electricity, and hydroelectric projects;
- Administers accounting and financial reporting regulations for conduct of jurisdictional companies; and
- Approves site selections for and abandonment of interstate pipeline facilities.

3.8.2.2 State Regulations

California Public Utility Commission. The California Public Utilities Commission (CPUC) regulates privately owned electric, telecommunications, natural gas, water, and transportation companies, in addition to household goods movers and rail safety. The CPUC’s Energy Division works in setting electric rates, protecting consumers, and promoting energy efficiency, electric system reliability, and utility financial integrity. The CPUC regulates natural gas local distribution facilities and services, natural gas
procurement, intrastate pipelines, and intrastate production and gathering. CPUC also
works to provide opportunities for competition when in the interest of consumers, takes
the lead in environmental review of natural gas-related projects, recognizes the growing
interaction of electric and gas markets, and monitors gas energy efficiency and other
public purpose programs.

Water Code § 13000 et seq.) is the water quality control law for California. The act
established the SWRCB and divided the state into nine regional basins, each under the
jurisdiction of a RWQCB. The SWRCB is the primary state agency responsible for the
protection of California’s water quality and groundwater supplies. The RWQCBs carry
out the regulation, protection, and administration of water quality in each region. Each
RWQCB is required to adopt a water quality control plan or basin plan that recognizes
and reflects the regional differences in existing water quality, the beneficial uses of the
region’s ground and surface water, and local water quality conditions and problems.

California Regional Water Quality Control Board Los Angeles Region Order No. 20-031.
Outlines general water discharge requirements for small commercial and multi-family
residential subsurface sewage disposal systems.

Health and Safety Code Section 17921.3. Requires low-flush toilets and urinals in all
buildings, including commercial, residential, institutional, and industrial buildings.

California Code of Regulations, Title 24, Part 6 (California Energy Code). Promotes
efficient energy use in new buildings constructed in California. The standards regulate
energy consumed for heating, cooling, ventilations, water heating, and lighting. Title 24
is the State Building Code, and is enforced through the local building permit process.

California Code of Regulations, Title 24, Part 11 (California Green Building Standards
Code) (CALGreen). CALGreen, which took effect in January 2011, requires that new
buildings reduce water consumption, increase building system efficiencies, divert
construction waste from landfills, and install low pollutant-emitting finish materials.
CALGreen has approximately 52 nonresidential mandatory measures and an additional
130 provisions that have been placed in the appendix for optional use. Some key
mandatory measures for commercial occupancies include specified parking for clean air
vehicles, a 20% reduction of potable water use within buildings, a 50% construction
waste diversion from landfills, use of building finish materials that emit low levels of
volatile organic compounds, and commissioning for new, nonresidential buildings over
10,000 square feet.

California Code of Regulations, Title 20, Section 1604. Establishes efficiency standards
that give the maximum flow rate for all new showerheads and lavatory and sink faucets,
as specified in the standard approved by the American National Standards Institute, ANSI

3.8.2.3 Local and Regional Regulations

Water Quality Control Plan, Los Angeles Region. The City is in the jurisdiction of the
Los Angeles RWQCB, Region 4. The Water Quality Control Plan: Los Angeles Region –
Basin Plan or the Coastal Watersheds of Los Angeles and Ventura Counties (Basin Plan)
was adopted in 1994 and amended in 2007. This Basin Plan identifies the beneficial uses
of the state waters within Region 4, describes the water quality that must be maintained to
support such uses, and provides programs, projects, and other actions necessary to
achieve the standards established in the Basin Plan. In addition, the revised Water Quality
Control Plan for Ocean Waters of California (Ocean Plan) was adopted by the SWRCB in
2005 and approved by the U.S. EPA in 2006. The Ocean Plan contains water quality
objectives and effluent limits that apply to all discharges to the coastal waters of
California. Waste management systems that discharge to the ocean must be designed and
operated in a manner to maintain a healthy marine ecosystem and not adversely impact
the health of recreational users.

City of Malibu Local Coastal Program (LCP). The California Coast Act requires that its
goals and policies be implemented by local government through the LCP. The Malibu
LCP consists of two subparts, the Land Use Plan (LUP) and the Local Implementation
Plan (LIP). Malibu LCP policies are contained within the LUP, while the purpose of the
LIP is to implement and carry out the policies of the LUP.

LCP Land Use Plan (LUP)

The policies pertaining to utilities identified in the LUP are listed below:

- **LUP Policy 4.11**: New development involving a structure dependent on a
 wastewater disposal system shall utilize secondary treatment, at a minimum, and
evapotranspiration waste disposal systems or other innovative measures, where
feasible.

- **LUP Policy 5.46**: All new development shall demonstrate that an adequate potable
 water supply is available to each parcel. An onsite water well shall provide water

Rancho Malibu Hotel Project
Public Draft EIR
of potable quality and be able to provide a quantity of water sufficient to meet domestic supply requirements for the life of the development.

- **LUP Policy 5.48**: A water conservation and wastewater recycling program should be developed in coordination with Los Angeles County and the applicable water purveyors for respective water service areas.

- **LUP Policy 5.49**: All new development shall comply with the City’s water conservation and wastewater regulations.

- **LUP Policy 5.50**: The installation of reclaimed water lines to provide irrigation for approved landscaping or fuel modification areas (Zone A or B, if required) for approved development may be permitted if consistent with all policies of the LUP.

- **LUP Policy 5.51**: The use of reclaimed water in lieu of freshwater supplies for the maintenance of public lands of other non-consumptive uses shall be encouraged and supported provided such use can be found to be consistent with all applicable policies of the LUP.

- **LUP Policy 7.16**: Additional water storage facilities and/or new pipelines may be allowed in the City to replace deteriorated or undersized facilities and/or ensure an adequate source of domestic and fire protection water supply during outages or pipeline interruptions provided such facilities are designed and limited to accommodate existing or planned development allowed by the Land Use Plan and can be found to be consistent with all applicable policies of the LUP.

City of Malibu Municipal Code (1993). The City’s Municipal Code (M.M.C.) includes the laws of the City. Title 9 of the M.M.C. specifically discusses water-conserving irrigation practices and Title 15 includes CALGreen standards. The following sections pertain to utilities:

- **Section 9.22.070 – Exception**. Exceptions to the requirements of Landscape Water Conservation (M.M.C. Chapter 9.22) may be granted by the direct upon a finding, based on substantial evidence that the exceptions will promote equivalent or greater water conservation than that provided in the chapter.

- **Section 9.22.090 – Landscape Water Conservation Design Standards**. All landscaping and irrigation systems associated with development regulated by this chapter shall be designed, installed, and maintained in accordance with a landscape documentation packing that meets the minimum standards of the guidelines in this section.

- **Section 15.24.010 – Adoption of Green Building Standards Code**. Formal adoption of CALGreen. In the event of any conflict between provisions of CALGreen or any amendment to CALGreen contained in the M.M.C., M.M.C. Section 9.22.070.

City of Malibu General Plan (1995). The City’s General Plan is primarily a policy document that sets goals and policies concerning the community and gives direction to
growth and development. In addition, it outlines the programs that were developed to accomplish the goals and policies it sets forth.

General Plan Circulation and Infrastructure Element (C)

The Circulation and Infrastructure Element provides a framework within which individual property owners can plan the development of their properties and be assured that basic infrastructure and services will be available and adequate. The Circulation and Infrastructure Element sets forth policies and standards for the rational and cost-efficient provision and extension of public services and infrastructure to support planned development and protect natural resources. Below is a list of policies and goals that pertain to the proposed Project.

- **C Goal 2**: Environmentally sensitive, cost effective, and safe service infrastructure.
 - **C Policy 2.1.1**: The City shall reduce the consumption of non-renewable resources.
 - **C Policy 2.1.2**: The City shall protect the quality of surface and groundwater.
 - **C Policy 2.1.3**: The City shall minimize ecological damage and public health hazards from waste disposal.
 - **C Policy 2.1.4**: The City shall encourage utilization of innovative alternative methods of wastewater treatment.
 - **C Policy 2.1.5**: The City shall protect residents from the hazards associated with increases in the groundwater table.

General Plan Conservation Element (CON)

The Conservation Element of the General Plan serves as a guide for the conservation, protection, restoration, management, development, and utilization of the City’s existing natural resources. The Conservation Element has the following goals and policies pertaining to utility services:

- **CON Goal 3**: Energy conserved.
 - **CON Policy 3.1.1**: The City shall educate the community regarding the importance of and techniques for energy conservation.
 - **CON Policy 3.1.2**: The City shall encourage state-of-the-art energy efficiency standards for all new construction design.
 - **CON Policy 3.1.3**: The City shall protect solar access.
 - **CON Policy 3.1.4**: The City shall encourage uses of solar and other non-polluting, renewable energy sources.
• CON Goal 4: Water conserved.
 o CON Policy 4.1.1: The City shall provide water for residents’ needs in the most cost effective manner.
 o CON Policy 4.1.2: The City shall coordinate development to ensure adequate water supplies.
 o CON Policy 4.1.3: The City shall encourage water conservation design measures in residential, commercial, and industrial development.
 o CON Policy 4.1.4: The City shall promote the use of water efficient low flow fixtures.
 o CON Policy 4.1.5: The City shall encourage the use of drought resistant landscaping.
 o CON Policy 4.1.6: The City shall promote the use of reclaimed water that has had pathogens removed for appropriate uses such as landscape irrigation systems.
 o CON Policy 4.1.7: The City shall promote the use of greywater systems.

3.8.3 Environmental Impacts

3.8.3.1 Thresholds for Determining Significance

In accordance with the relevant thresholds in Appendix G of the California Environmental Quality Act (CEQA) Guidelines, the proposed Project would result in a significant effect under CEQA if it were to:

a) Exceed wastewater treatment requirements of the applicable Regional Water Quality Control Board;

b) Require or result in the construction of new water or wastewater treatment facilities or expansion of existing facilities, the construction of which could cause significant environmental effects;

c) Have insufficient water supplies available to serve the project from existing entitlements and resources, or are new or expanded entitlements needs; or

d) Result in a determination by the wastewater treatment provider which serves or may serve the project that it has inadequate capacity to serve the project’s projected demand in addition to the provider’s existing commitments;

Further, the EIR for the City’s General Plan (City of Malibu 1995) considers impacts as being potentially significant if implementation of a project would:
3.8 Utilities

a) Result in activities which use large amounts of electricity or which use electricity in a wasteful manner;

b) Result in an increased demand for electricity which exceeds either the existing supply or capacity of the infrastructure (or financially feasible infrastructure that could be developed) required to service additional demand and/or equipment (electric lines and substations, etc.); or

c) Alter the nature of demand for electricity services causing increased costs of service delivery limitations.

3.8.3.2 Impact Assessment Methodology

Potential impacts of the proposed Project were evaluated by reviewing Project characteristics to assess their potential to affect the capacities of wastewater, potable water, and energy service utilities. Projected utility demands for the proposed Project were compared with the current capacity available for allocation within the City. Additionally, the proposed OWTS was assessed in relation to RWQCB Resolution No. R4-2009-007 and the SWRCB State Basin Plan amendment, which bans wastewater discharges within the Civic Center area. Parcels within the Civic Center area that are exempt from this prohibition and are included on the RWQCB’s Table 4-ZZ.

The Project site is not listed in Table 4-ZZ and therefore is not presently eligible for development of an OWTS; however, the Applicant has been in consultation with the RWQCB regarding appropriate wastewater treatment options for the proposed Project. For the purpose of wastewater impact analysis, the Project is analyzed under two scenarios:

- Scenario A - Obtaining an amendment to the Basin Plan approved by the RWQCB and construction of the OWTS as described in Section 2.4.7; and

- Scenario B - Connection of the Project to the CCWTF.

Potential impacts resulting from the proposed Project were compared with criteria from CEQA Appendix G and the City’s General Plan EIR to assess their significance.

3.8.3.3 1986 and 1998 Project Environmental Review Findings

Developers have been attempting to permit and construct a hotel at the Project site for many years, and efforts to date have included obtaining CCC approval for a 300-room hotel in 1986, completion of a certified EIR in 1997 and approval of a previous 146-room hotel.
hotel design by the Malibu City Council in 1998. Applicable findings of environmental review performed for these projects are described below.

California Coastal Commission 1986 Approval of a 300-Room Hotel

In January 1986, the California Coastal Commission (CCC) approved the following project (Permit No. 5-85-418) for the subject property: 300 room hotel (222,200 square feet), 32,800 square foot community center, offices, restaurant, information kiosk and art center, and 1,039 parking spaces. The CCC’s approval has been kept valid over the years and the most recent permit extension (the 26th extension) was issued by the CCC setting the new expiration date as January 7, 2014. The EIR completed for this project does not assess potential impacts to utilities.

Findings of the 1998 Project EIR

The 1998 EIR determined that the Project would have an insignificant effect on public utilities. The Project would require connection to existing utilities; however, utilities could be adequately provided.

3.8.3.4 Project Impacts and Mitigation Measures

Impact Description

UT-1 The disposal of Project generated wastewater would result in potentially significant impacts related to potential exceedance of RWQCB requirements and/or impacts to wastewater treatment systems that could result in adverse environmental effects (Scenario A - Class II; Scenario B – Class III).

Scenario A – Onsite Wastewater Treatment System

The proposed Project includes the use of an advanced OWTS designed to recycle all wastewater onsite. The system would treat effluent to meets RWQCB and State Health Department water quality guidelines for recycled water and filtered wastewater, and would recycle all water onsite either through direct irrigation or through a reclaimed water system allowing for onsite irrigation, toilet flushing, and other greywater uses at the hotel. The OWTS would provide disinfected tertiary-filtered recycled water in accordance with State Health Department Title 22 standards, and would treat wastewater to levels outlined by the California Ocean Plan, the Basin Plan, and RWQCB, Los Angeles Region’s Order No. 01-031 (see Section 3.7, Hydrology and Water Quality).
The general processes of the proposed OWTS include the following stages: collection, primary settling, screening, flow equalization, anoxic treatment, aerobic treatment, membrane filtration, ultraviolet disinfection, and subsurface disposal. The proposed OWTS utilizes underground fiberglass tanks for wastewater processing, reducing the aboveground facility area. The aboveground equipment area for the system contains the MBR processing equipment as well as ancillary equipment such as aeration blowers, odor control units, and UV disinfection units (Ensitu Engineering, Inc. 2012).

As designed, the total tank capacity of the OWTS would be 215,000 gallons, including a 40,000-gallon equalization tank to help regulate fluctuations in daily flow (Ensitu Engineering, Inc. 2012). In addition, an underground reclaimed water storage tank would be located beneath the parking garage with additional capacity of 900,000 gallons (GeoSoils Consultants, Inc. 2013). Peak flow from the OWTS would be approximately 39,000 gpd with an average flow of 26,000 gpd (Ensitu Engineering, Inc. 2012). This effluent would primarily be disposed of through irrigation of developed landscaped areas particularly through percolation on the tall fescue turf hillsides overlooking Winter Canyon.

To ensure that the OWTS would be maintained and operated to achieve adequate water quality levels, the operators of the OWTS would employ an extensive monitoring program and follow a carefully developed operations and maintenance plan. The system would be overseen by a qualified operator and would be run in conjunction with a variety of water conservation efforts and best management practices (BMPs) and plans so that the effluent from ongoing Project operations would not have a significant effect on receiving waters (Ensitu Engineering, Inc. 2012). However, operation of this complex system over the long term assumes high level of maintenance to maintain optimum functioning of the irrigation / wastewater disposal system. Failure of irrigation lines, clogged spray emitters or other factors could diminish system disposal capability, potentially reducing the system’s ability to successfully dispose of all effluent. Therefore, ensuring a high level of system maintenance and oversight is key to avoiding potentially significant impacts that could result through lack of system maintenance.

Based on these estimates, the City Environmental Health Administrator has concluded that the proposed OWTS has sufficient capacity and is designed to accommodate the proposed Project (City of Malibu 2012). However, potential for lack of regular oversight of the system could result in loss of system efficiency and disposal capacity, creating the potential for significant effects. Further, the use of an OWTS is not currently authorized
at the Project site under the Basin Plan, and the Applicant would need to apply for an amendment to the Basin Plan and have the amendment approved by the RWQCB in order to construct and operate the OWTS (see Section 3.7, Hydrology and Water Quality). If an amendment were approved by the RWQCB, impacts related to waste disposal would be potentially significant, but subject to feasible mitigation.

Scenario B- Connection to Civic Center Wastewater Treatment System

If an amendment to the Basin Plan to construct and operate the OWTS were not approved by the RWQCB, the Project would be required to connect to the City’s proposed CCWTF. Under this scenario, Project construction would be delayed until completion of the proposed CCWTF, when the Project would be eligible for connection to the system through construction of new wastewater collection main in Civic Center Way, with onsite wastewater collection lines discharging into the main. The proposed CCWTF would support sufficient capacity to receive wastewater from the Project site and treat effluent to meet or exceed RWQCB discharge standards, including for redistribution as recycled water. It is anticipated that the CCWTF would be capable of providing sufficient recycled water to meet landscaping needs, similar to quantities described under Scenario A. Construction disturbance associated with this scenario would result in less disturbance than the proposed OWTS on the Project site; however, offsite trenching would be required to connect the Project to the proposed CCWTF. Implementation of Scenario B would result in a less than significant impact to wastewater disposal.

Mitigation Measures

MM UT-1a Prior to the issuance of building permits the Applicant shall submit an OWTS Operations and Maintenance Plan for the review by the City. The plan shall include a description of all OWTS monitoring systems and precautions to safeguard against system overload or exceedance of water quality standards.

MM UT-1b The Applicant shall submit biannual reports to the City that describe the operation of the OWTS, including any system failures or near misses.

Plan Requirements and Timing. The OWTS Operations and Maintenance Plan shall be submitted to the City Environmental Health Administrator prior to the issuance of building permits for the proposed Project.
Monitoring. The Applicant shall submit biannual reports to the City Environmental Health Administrator regarding the operations and maintenance of the OWTS. These reports shall be reviewed by the City and recommendations shall be made regarding updates to the OWTS Operations and Maintenance Plan.

Impact Description

UT-2 The proposed Project would result potentially significant impacts on the City’s potable water supply and water supply infrastructure (Class II).

Development of the Project site as a hotel complex would increase water demand, as operation of the hotel would require potable water for pools, fountains, washing of dishes and linens, food service, and guest/resident uses (i.e., showers, sinks, toilets, etc.). Further, the proposed Project would also introduce new landscaping requirements (see Section 3.6, Fire Protection and Hazardous Materials), which would require additional water for plant maintenance.

To determine the impacts of projected water consumption rates associated with the proposed Project, water use for the proposed hotel was estimated using a conservative generation rate provided by the County of Los Angeles Sanitation Districts (City of Malibu 2008). Using this rate, the total potential daily water consumption for the proposed hotel, excluding irrigation, is estimated to be approximately 46,845 gpd (refer to Table 3.8-3).

However, this estimate of water consumption does not include water for use in landscaping maintenance activities. The total transpiration area, excluding the non-irrigated sensitive slope areas (see Section 3.5, Geology and Soils), covers approximately 20.55 acres, including the four acres of landscaping and the hillside area (Independent Irrigation Consultants, Inc. 2013). As designed, the peak reuse flow from the OWTS to the irrigation system is approximately 26,000 gpd (Ensitu Engineering, Inc. 2012). The proposed Project’s estimated total water usage for landscaping would require approximately 26,930,852 gallons of water per year (or approximately 73,783 gpd) (Independent Irrigation Consultants, Inc. 2013). Consequently, an additional 47,783 gpd of potable water would be required to meet the estimated total water usage for landscaping at the proposed hotel.
Table 3.8-3. Estimated Water Consumption for the Proposed Hotel Development

<table>
<thead>
<tr>
<th>Use</th>
<th>Wastewater Flow Per Day (gal)</th>
<th>Potable Water Consumption Per Day (gal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hotel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bed Spaces</td>
<td>9,870</td>
<td>11,844</td>
</tr>
<tr>
<td>Bed Spaces with Kitchen</td>
<td>4,505</td>
<td>5,406</td>
</tr>
<tr>
<td>Residential Unit (3 Bedrooms)</td>
<td>600</td>
<td>720</td>
</tr>
<tr>
<td>Hotel Employees</td>
<td>800</td>
<td>960</td>
</tr>
<tr>
<td>Bed Spaces</td>
<td>9,870</td>
<td>11,844</td>
</tr>
<tr>
<td>Restaurant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Restaurant and Terrace</td>
<td>6,600</td>
<td>7,920</td>
</tr>
<tr>
<td>Bar, Lounge, Library, and Terrace</td>
<td>4,900</td>
<td>5,880</td>
</tr>
<tr>
<td>Swimming Pool Food Service and Bar</td>
<td>1,500</td>
<td>1,800</td>
</tr>
<tr>
<td>Employees</td>
<td>600</td>
<td>720</td>
</tr>
<tr>
<td>Convention Facilities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meeting Rooms</td>
<td>3,500</td>
<td>4,200</td>
</tr>
<tr>
<td>Employees</td>
<td>600</td>
<td>720</td>
</tr>
<tr>
<td>Spa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facilities</td>
<td>2,170</td>
<td>2,604</td>
</tr>
<tr>
<td>Employees</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>1,000</td>
<td>1,200</td>
</tr>
<tr>
<td>Retail</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retail (with Public Restroom)</td>
<td>2,000</td>
<td>2,400</td>
</tr>
<tr>
<td>Retail Employees</td>
<td>400</td>
<td>480</td>
</tr>
<tr>
<td>Total</td>
<td>39,045</td>
<td>46,854</td>
</tr>
</tbody>
</table>

Notes: Potable water consumption per day was estimated at 120% of the wastewater generated per day (City of Malibu 2008). Water use required for landscaping maintenance is not included in this water budget, but is discussed in detail below (approximately 47,783 gallons of potable water would be required for landscape requirements).

As calculated in the Estimated Landscape Water Requirements Report prepared for the proposed Project, this estimated water requirement is within the Maximum Applied Water Allowance (MAWA), which defines any landscape area irrigated by non-potable water as a “Special Landscape Area” (Independent Irrigation Consultants, Inc. 2013). However, as described in the Advanced Onsite Wastewater Treatment System Report (Ensitu Engineering, Inc. 2012), the peak flow to the irrigation system is approximately
26,000 gpd, not 34,500 gpd as described in the Estimated Landscape Water Requirements Report (Independent Irrigation Consultants, Inc. 2013). Consequently, the water requirements for landscaping may exceed the MAWA, resulting in an inconsistency with the landscaping water use requirements per M.M.C. Section 9.22.090, Landscape Water Conservation Design Requirements. Additionally, while the Applicant has applied for the ongoing use of the proposed OWTS, following the completion of the CCWTF, the proposed OWTS may be decommissioned and the Project would potentially connect to the CCWTF. Consequently, under this scenario in which the proposed Project would not be permitted by the RWQCB to continue operating its own OWTS following completion of the CCWTF, the MAWA for the proposed hotel would be decreased, as the irrigated area would no longer be considered a Special Landscape Area, irrigated by non-potable water from the OWTS. As such, the proposed hotel’s estimated total water usage would exceed the MAWA, resulting in an inconsistency with M.M.C. Section 9.22.090.

Exceptions to the requirements of M.M.C. Chapter 9.22 may be granted by the City’s Planning Director (Director) upon a finding, based on substantial evidence, that the exceptions will promote equivalent or greater water conservation than that provided in the chapter (M.M.C. Section 9.22.070). Requests for exceptions shall be in writing and shall be submitted to the Director at the time the landscape documentation package is submitted to the City for review. Additionally, requests for exceptions shall be accompanied by documentary evidence supporting the finding of equivalent or greater water conservation. (Id.)

District 29 has determined that based on its present system capacity and the current system conditions, as well as the Applicant’s agreement with Pepperdine, it would be able to provide the allocated 109,000 gpd water service to the proposed Project (LADPW 2012). This allocation would be sufficient to meet the demands of the proposed hotel use 46,854 gpd, as well as the potable water required for landscaping 47,783 gpd. If the Project is required to connect to the CCWTF, it is anticipated that recycled water would be provided in sufficient quantity for consistency with proposed landscaping requirements.

The Applicant would be required to fund the installation a 1,800-foot 16-inch diameter water main fronting Malibu Canyon Road and connecting to the existing main at Seaver

3 As described previously, the Applicant has applied for an amendment to the Basin Plan; the RWQCB would be required to approve the amendment prior to construction of the OWTS as described in Section 2.4.7.
Drive, which connects to the Pepperdine’s three million gallon retention basin. Additionally, the Applicant would also be required to fund the installation of a 1,200-foot main fronting PCH, which would connect into the existing water conveyance infrastructure in the vicinity of the Project site (refer to Figure 3.6-4). Consequently, impacts to the City’s potable water supply and water supply infrastructure would be potentially significant, but subject to feasible mitigation.

Mitigation Measures

MM UT-2a Prior to the issuance of building permits, the Applicant shall be responsible for funding the installation of all water systems detailed in the conditional will-serve letter, which include:

- 1,800 feet of 16-inch water main in Malibu Canyon Road;
- 1,200 feet of water main in PCH;
- One pressure reducing station (812 foot pressure zone to 472 foot pressure zone);
- Eight fire hydrant assemblies;
- Adequate size Reduced Pressure Principle detector assemblies;
- Easement(s) granted to Los Angeles County Waterworks District No. 29 as required; and
- Interconnections to the existing water system and all other necessary appurtenances.

MM UT-2b Prior to the issuance of a building permit, the Applicant shall pay any fees adopted by the City and generally and uniformly imposed by the City’s Environmental Sustainability Department and/or Public Works Department for construction of new water supply and distribution facilities.

MM UT-2c The landscaping plan shall consist of native, drought-tolerant, and low water consuming plant varieties in order to reduce irrigation water consumption to the maximum extent feasible.

MM UT-2d Reclaimed irrigation via the OWTS and/or recycled water shall be used wherever possible for irrigation of landscaping.

MM UT-2e Irrigation of landscaping shall occur during the early morning hours or during the evening to reduce water loss from evaporation. Further, irrigation shall not occur during days in which rain is forecasted.
Plan Requirements and Timing. Plans for the required water systems shall be submitted to the City prior to the issuance of building permits for the proposed Project. The Applicant shall comply with all measures recommended by the City regarding the improvement of reclaimed water quality. Additionally, prior to the issuance of building permits, the City shall verify that appropriate funds have been received for the development of water supply and distribution facilities.

Monitoring. The Applicant shall submit biannual reports to the City Environmental Sustainability Department that summarize the operation of the OWTS and irrigation system, including the relative allocations of the reclaimed water for uses such as irrigation and toilet flushing. Additionally, the report shall assess the water quality of the reclaimed water used for irrigation.

Impact Description

UT-3 The proposed Project would consume energy resources resulting in a less than significant impact to service provider capacity levels (Class III).

The undeveloped Project site does not currently require the use of natural gas or electricity utilities. Consequently, the development of the proposed hotel would constitute an increase in the demand requirements for these utilities in the vicinity of the Project site.

Natural gas supplies to the Project site would be provided by SoCalGas. Annual gas requirements for Southern California total approximately 2,555 million cubic feet (MMcf) per day, with approximately 216 MMcf per day required for use by commercial developments. However, supply sources for Southern California total 2,746 MMcf per day. While projected natural gas requirements in California are expected to grow, supply is expected to grow and exceed demand through 2030 (SoCalGas et al. 2010).
Table 3.8-4. Estimated Natural Gas Usage for the Proposed Hotel Development

<table>
<thead>
<tr>
<th>Use</th>
<th>Area (sq ft)</th>
<th>Natural Gas Usage Factor (ft³/ft² • month)</th>
<th>Natural Gas Usage Per Day (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hotel</td>
<td>261,324</td>
<td>4.8</td>
<td>43,738</td>
</tr>
<tr>
<td>Retail/Shopping</td>
<td>33,404</td>
<td>2.9</td>
<td>2,065</td>
</tr>
<tr>
<td>Total</td>
<td>294,728</td>
<td>-</td>
<td>45,803</td>
</tr>
</tbody>
</table>

Source: Southern California Air Quality Management District (SCAQMD 1993).

At least two gas mains are located in the immediate vicinity of the Project site, including a main located beneath Civic Center Way as well as another main located beneath PCH (PSOMAS 2012). The Applicant would be required to submit a formal application to SoCalGas for commercial gas facilities at least 10 to 12 weeks before the gas line and meter would be installed. At this time, a SoCalGas planning representative would plan the installation project and a determination would be made regarding the available energy services. If it is determined that the current natural services in the area are not adequate to support the proposed Project, the Applicant would be required to pay a fee to cover the cost of the additional natural gas services required (SoCalGas 2010).

Additionally, SCE would provide electricity to the Project site. A SCE regional planner was contacted to determine if electricity services in the Project area are considered adequate and could support the proposed Project. According to SCE, electricity service could be provided to the Project site without significant impact to available capacity (see Table 3.8-5). The proposed Project would include the relocation of the two existing transformers on the Project site, as well as the installation of two additional transformers. Further, the Project would include undergrounding of the existing power lines and the installation of additional underground power lines. The Applicant would be required to engage the SCE planning department and submit a request for a meter spot. The incorporation of standard regulatory requirements and proposed measures would ensure consistency with the City’s energy use goals and policies contained within the CON Element of the General Plan. Therefore, impacts would be less than significant.
Table 3.8-5. Estimated Electricity Usage for the Proposed Hotel Development

<table>
<thead>
<tr>
<th>Use</th>
<th>Area (ft²)</th>
<th>Electricity Usage Factor (kWh/ft² • year)</th>
<th>Electricity Usage Per Day (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hotel</td>
<td>261,324</td>
<td>9.95</td>
<td>7,124</td>
</tr>
<tr>
<td>Retail</td>
<td>21,364</td>
<td>13.55</td>
<td>793</td>
</tr>
<tr>
<td>Restaurant</td>
<td>12,040</td>
<td>47.45</td>
<td>1,565</td>
</tr>
<tr>
<td>Total</td>
<td>294,728</td>
<td>-</td>
<td>9,482</td>
</tr>
</tbody>
</table>

Source: Southern California Air Quality Management District (SCAQMD 1993).

Standard Conditions of Approval

MM UT-3a If additional natural gas and/or electrical energy services are required to accommodate the proposed Project, the Applicant would be required to pay a mitigation fee to SoCalGas prior to the issuance of building permits by the City.

MM UT-3b The Applicant should be required to demonstrate the use of Energy Star qualified appliances in the main hotel, as well as in each of the secondary hotel buildings, prior to hotel occupancy.

MM UT-3c Prior to the issuance of building permits, the Applicant should demonstrate that the hotel design limits solar exposure to the maximum extent feasible in order to avoid heat gain and reduce utility usage for heating. The design shall incorporate features that provide shading at suitable times of the day and year when heat exposure is typically greatest.

MM UT-3d Prior to the issuance of a building permit, the Applicant shall demonstrate to the City that the hotel complies with all applicable requirements of the CALGreen (California Code of Regulations Title 24, Part 11), which was adopted as M.M.C. Chapter 15.24.

MM UTL-3e To reduce long-term impacts, consistent with the City of Malibu General Plan policies the Applicant will implement the following measures as determined feasible by the City: 1) provide preferential parking spaces for carpools and vanpools; 2) implement an onsite circulation plan in parking lots to reduce vehicle queuing; 3) use solar or low emission water heaters; 4) use central water heating systems; 5) use built-in energy efficient-appliances; 6) provide shade trees to reduce building heating/cooling...
needs; 7) use energy-efficient and automated controls for air conditions; (8) use double-glass paned windows; 9) use energy-efficient lighting; 10) substitute materials where feasible (e.g., use water-based paints and other materials which have low life-cycle emissions); 11) reschedule truck deliveries and pickups to off-peak hours; 12) provide on-site truck loading zones; and 13) provide shuttle service for guests and visitors.

Plan Requirements and Timing. The Applicant shall pay all mitigation fees, including all necessary gas and electrical infrastructure fees, and demonstrate compliance with the CALGreen prior to the issuance of building permits by the City. Additionally, the Applicant shall demonstrate the proposed Project’s use of Energy Star qualified appliances to the City prior to the issuance of a Temporary Certificate of Occupancy or a Certificate of Occupancy.

Monitoring. The City shall review all Project plans to ensure that they include all necessary infrastructure updates and comply with CALGreen.

Cumulative Impacts

Impact Description

UT-4 The proposed Project would incrementally contribute to an increase in potable water demand that could strain potable water supply and water supply infrastructure capacity (Class III).

District 29 has determined that based on the its present system capacity and the current system conditions, as well as the Applicant’s agreement with Pepperdine, it would be able to provide the allocated 109,000 gpd potable water service to the proposed Project. While the Project would be able to obtain potable water, the additional demand from approved, pending, and proposed development has the potential to increase the demand that could exceed the cumulative capacity of the City’s potable water supply and water supply infrastructure. Increased use of recycled water, particularly through implementation of the proposed CCWTF, could reduce the demand for sources of potable water required by individual developments; however, a substantial increase in cumulative development and associated demand would approach, but not exceed the availability existing supplies and capacity of delivery systems, requiring the addition of new potable water infrastructure.
Table 3.8-6. Estimated Cumulative Water Consumption for Pending, Approved, and Proposed Development in the Civic Center Vicinity

<table>
<thead>
<tr>
<th>Development</th>
<th>Size</th>
<th>Consumption Rate</th>
<th>Potable Water Consumption Per Day (gal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial</td>
<td>274,000</td>
<td>390 (gallons/1,000 sf/day)</td>
<td>106,860</td>
</tr>
<tr>
<td>Single-Family Residential</td>
<td>5</td>
<td>312 (gallons/du/day)</td>
<td>1,560</td>
</tr>
<tr>
<td>Restaurant</td>
<td>20,000</td>
<td>1,200 (gallons/1,000 sf/day)</td>
<td>24,000</td>
</tr>
<tr>
<td>Institution/Office</td>
<td>52,500</td>
<td>240 (gallons/1,000 sf/day)</td>
<td>12,600</td>
</tr>
<tr>
<td>Proposed Project</td>
<td>181,000</td>
<td>(refer to Table 3.8-3)</td>
<td>46,854</td>
</tr>
<tr>
<td>Total</td>
<td>-</td>
<td>-</td>
<td>170,274</td>
</tr>
</tbody>
</table>

1 Projects include the Crummer and Towing sites, La Paz, Whole Foods and Sycamore Village commercial centers, and the Santa Monica College and Los Angeles County Sheriff’s station.

Notes: du – dwelling unit; Potable water consumption per day was estimated at 120% of the wastewater generated per day (City of Malibu 2008). Water use required for landscaping maintenance is not included in this water budget as it is anticipated the majority would be irrigated through recycled water supplies.

The requirement of approximately 170,000 gpd would be a substantial increase in potable water demand in a region with few natural sources of potable water; however, coordination and compliance with all measures recommended by the City regarding the individual Project water requirements and verification that appropriate funds have been received for the development of water supply and distribution facilities would reduce impacts to adverse, but less than significant.

Residual Impacts

With the implementation of these mitigation measures all impacts would be reduced to less than significant levels.
3.9 PUBLIC SERVICES

The following section describes existing public services within the City of Malibu (City), and evaluates the operation and capacity of these public services with the development of the proposed Project. Existing public services utilized during construction and operation of the proposed Project includes police and fire protection, schools, hospitals, and solid waste management. Public services within the City are primarily provided by City employees and private contractors acting under the City’s direction and supervision, as well as by Los Angeles County through a number of special districts.

The analysis in this section incorporates information from personal communication with the Los Angeles County Fire Department (LACFD), the Los Angeles County Sheriff’s Department (LASD), and the Santa Monica-Malibu Unified School District (SMMUSD). Documents referenced include Malibu area environmental reports (e.g. Pepperdine University Campus Life Project EIR, Legacy Park EIR, Los Angeles County Fire Management Plan, etc.) as well as City and federal publicly-available information (e.g., California Highway Patrol Southern Division information page, CalRecycle, Malibu Permitted Waste Haulers, California Department of Education Critically Overcrowded School Program, etc.).

3.9.1 Existing Conditions

3.9.1.1 Police and Fire Protection Services

Police Protection

The LASD provides a variety of law enforcement and community services within the City and adjacent unincorporated areas. The LASD provides services under contract with the City, including municipal police services1 and transit policing.2

Police services for Malibu are based out of LASD Region I, Malibu/Lost Hills Station located at 27050 Agoura Road south of Highway 101, approximately 9.8 miles (driving

1 Municipal police services include routine patrol, parking violations, preliminary investigation, traffic regulation and emergency call response.
2 Transit policing services include police services to the Los Angeles County Metropolitan Transportation Authority (MTA) for bus service.
distance) north of the Project site. Access between this station and the City is generally via Las Virgenes / Malibu Canyon Road. The station currently serves a population of 93,255 within a 178.6 square mile area. Full-time staff includes 162 employees, 133 of whom are sheriff’s deputies who perform law enforcement, supervision, and management duties (Pers. Comm. Rampulla).

The LASD dispatches patrol units in three separate shifts within the Malibu area. During the early morning shift (approximately 10:00 p.m. to 6:00 a.m.), the LASD dispatches two cars with two deputies in each to patrol the City. The day shift includes four cars with one deputy in each and one motorcycle unit, four days a week. The evening shift includes the same deployment level as the day shift, with the exception of the motorcycle unit, which is not used at night. Four days a week, the evening shift also includes one Driving Under Influence (DUI) car. According to LASD, the Department is currently operating at a level of service of 1.3 deputies per 1,000 residents (Pers. Comm. Brooks).³ Response times and goals are provided in Table 3.9-1. As shown in Table 3.9-1, actual response times are faster than the Department’s goal for all categories of service calls.

<table>
<thead>
<tr>
<th>Type of Service Call</th>
<th>Response Time (minutes)</th>
<th>Actual</th>
<th>Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency</td>
<td>6.7</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Priority</td>
<td>8.6</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Routine</td>
<td>25.4</td>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>

The LASD responds to non-emergency incidents on private property as a routine call with an average response time of approximately 25 minutes. Noise and disturbance complaints are handled like any other routine call for service to the LASD. For such complaints on private property, sheriff’s deputies contact the responsible party (e.g., homeowner, facility manager) and issue a warning.

The California Highway Patrol (CHP) Southern Division maintains jurisdiction of area highways surrounding the City. CHP officers enforce traffic laws through the incorporated City, but do not actively patrol within City limits (i.e. the CHP is not called

³ The Safety Element of the City’s General Plan does not specify an objective for patrol response time or sheriff’s deputy to resident ratio.
3.9 PUBLIC SERVICES

for city-level violations and does not typically set up DUI checkpoints; these activities are the responsibility of the LASD) (Pers. Comm. Wallace). The CHP’s primary mission is to ensure safe and efficient operation of commercial and regulated vehicles, recovery of stolen vehicles, and implementation of homeland security measures. The Southern Division maintains 1,123 uniformed officers and 359 non-uniformed personnel (CHP 2012). CHP typically has two cars patrolling the greater Malibu area during the daytime, and nighttime patrols are supplied on an on-call basis (Pers. Comm. Wallace). The nearest CHP office is located in Moorpark, approximately 18 miles from the Project site.

9 Fire Protection

Fire protection services within the City and adjacent unincorporated areas are provided primarily by the LACFD, and include both emergency and non-emergency fire and protection services. Emergency services include fire response, emergency medical response, hazardous materials response, and public assistance. Non-emergency services include life guarding services, fire and life safety inspections, building inspections, fire code investigations, code compliance and public education. The County of Los Angeles Fire Code (Los Angeles County Code, Title 32) and City’s General Plan Safety Element (S) provide the official established standards, policies, and goals for construction, design, and distribution of fire suppression facilities.

The LACFD currently operates 171 stations and employs approximately 3,012 firefighters, lifeguards and other emergency responders, and 1,822 support employees (administrative, mechanics, dispatchers, legislative analysts, etc.) (LACFD 2011b). Seven LACFD fire stations (Station Nos. 67, 69, 70, 71, 72, 88 and 99) provide fire protection services within the City. Four of these stations are located within City limits (Station Nos. 70, 71, 88 and 99). Staffing levels of each station are shown in
Table 3.9-2 below. There is currently an adequate firefighter-to-population ratio of approximately one firefighter for every 300 residents (Pers. Comm. Bagwell). The response time for emergencies for 2011-2012 was 4.8 minutes (Pers. Comm. Bagwell).

Table 3.9-2. Malibu Area Fire Station Staffing Levels

<table>
<thead>
<tr>
<th>Station</th>
<th>Location</th>
<th>Equipment and Staffing</th>
<th>Approximate Distance from Project site*</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>4206 N. Cornell Road, Agoura Hills</td>
<td>3-person engine company</td>
<td>12 miles</td>
</tr>
<tr>
<td>67</td>
<td>25801 Ptuma Road, Calabasas</td>
<td>3-person engine company</td>
<td>6 miles</td>
</tr>
<tr>
<td>69</td>
<td>401 S. Topanga Canyon, Topanga</td>
<td>4-person engine company</td>
<td>12 miles</td>
</tr>
<tr>
<td>70</td>
<td>3970 Carbon Canyon Road, Malibu</td>
<td>4-person engine company</td>
<td>3 miles</td>
</tr>
<tr>
<td>71</td>
<td>28722 PCH, Malibu</td>
<td>3-person engine company, 2-person paramedic squad</td>
<td>6 miles</td>
</tr>
<tr>
<td>72</td>
<td>1832 Decker Canyon Road, Malibu</td>
<td>3-person engine company</td>
<td>17 miles</td>
</tr>
<tr>
<td>88</td>
<td>23720 Malibu Road, Malibu</td>
<td>3-person engine company, 2-person paramedic squad</td>
<td>1 miles</td>
</tr>
<tr>
<td>99</td>
<td>32550 PCH, Malibu</td>
<td>3-person engine company</td>
<td>11 miles</td>
</tr>
<tr>
<td>125</td>
<td>5215 Las Virgenes Road, Agoura Hills</td>
<td>3-person engine company</td>
<td>11 miles</td>
</tr>
</tbody>
</table>

*Driving distance

While the stations provided in Table 3.9-2 are closest to the Project site, all LACFD would provide fire protection and paramedic services to the Project area and would be dispatched as needed based on distance and availability. The “first-in” station for calls is Station No. 88, located at 23720 Malibu Road, approximately one mile east of the Project site (Figure 3.9-1). Station No. 88 has a three-person engine company and a two-person paramedic squad. The average response time by LACFD to the Project area is less than five minutes. The Civic Center area currently has an existing system of fire hydrants for use during fire fighting activities. The Project site has two existing fire hydrants along PCH.

According to the National Fire Protection Association guidelines, an area should maintain a firefighter-to-population ratio of approximately one firefighter to every 2,000 citizens.
Public Service Facilities within the Project Site Vicinity

LEGEND
- City of Malibu
- Pepperdine University
- Project Site
- **Public Service Facilities**
 - Fire Protection
 - Los Angeles County Fire Department
 - Station 88
 - Police Protection
 - Former Malibu Sheriff’s Department
 - Schools and Education
 - Webster Elementary School
 - Colin McEwan High School (Private)
 - Our Lady of Malibu School (Private)
 - Caltrans
 - Maintenance Yard
- Maintenance Yard

FIGURE 3.9-1

Malibu Creek
Malibu Lagoon
Pacific Ocean
Malibu Colony
Malibu Bluffs Park
Amarillo Beach

SCALE IN FEET
0 900
3.9 PUBLIC SERVICES

3.9-6 Rancho Malibu Hotel Project
Public Draft EIR

3.9 PUBLIC SERVICES

1 Wildfire Protection

2 For a more detailed discussion of fire protection, particularly related to wildland fires, refer to Section 3.6, Fire Protection and Hazardous Materials. For a more detailed discussion of the adequacy of water supply in the Civic Center area, see Section 3.8, Public Utilities.

3.9.1.2 Schools and Education Facilities

Schools

4 Within City limits, public education is provided by the SMMUSD. The SMMUSD operates 11 elementary schools, three middle schools, two high schools, one continuation school and adult education programs. Three elementary schools provide service to Malibu residents for kindergarten through fifth grade. One high school provides service for grades six through 12. There are also private elementary schools, high schools, and colleges serving the Malibu area.

5 Total enrollment within the SMMUSD for the 2011-2012 school year was 11,344 students (SMMUSD 2012). Enrollment in Malibu area elementary schools was 847 students and enrollment in Malibu Middle School and High School was 1,157 students (Pers. Comm. Hatch). Seven schools within the SMMUSD are included on the state list of qualifying schools to receive state funds for school expansion. None of the listed schools serves City residents (California Department of Education 2012). All Malibu area schools are below service capacity as shown in Table 3.9-3, below.
3.9 PUBLIC SERVICES

Table 3.9-3. Enrollment and Capacity of Malibu Area Schools

<table>
<thead>
<tr>
<th>School</th>
<th>Location</th>
<th>Student Enrollment</th>
<th>Capacity*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td>Webster Elementary</td>
<td>3602 Winter Canyon Drive</td>
<td>337</td>
<td>509</td>
</tr>
<tr>
<td>Point Dume Elementary</td>
<td>6955 Fernhill Drive</td>
<td>257</td>
<td>310</td>
</tr>
<tr>
<td>Cabrillo Elementary</td>
<td>30237 Morning View Drive</td>
<td>253</td>
<td>375</td>
</tr>
<tr>
<td>Malibu Middle School and High School</td>
<td>30215 Morning View Drive</td>
<td>1,157</td>
<td>1,221</td>
</tr>
</tbody>
</table>

* Capacity information based on 2003 data.

Webster Elementary School is the only public school that falls within a mile of the Project site. It is located at 3602 Winter Canyon Road, approximately 750 feet east of the Project site.

The City contains one private school, Our Lady of Malibu School, which provides kindergarten through eighth grade. The Our Lady of Malibu Catholic Church and School is located adjacent to Webster Elementary School, approximately 600 feet east of the Project site (see Figure 3.9-1).

3.9.1.3 Recreation

The City’s Parks and Recreation Master Plan (2000) addresses a study area that includes both incorporated City lands and unincorporated areas within the City’s sphere of influence (City of Malibu 2000). The Project site is located in the vicinity of substantial recreational opportunities due to the region’s natural beauty, beaches, and climate. The combination of the miles of beachfront and scenic ocean and mountain views create a highly desirable landscape for recreation. Malibu’s coastline, the Santa Monica Mountains, and City parklands are integral to quality of life for the city of
Malibu’s residents, and is a key draw for the City’s approximately 15 million annual visitors.

The City owns and manages several parks in the vicinity of the proposed Project area. The City owns and operates the Charmlee Wilderness Park, Malibu Bluffs Park, Las Flores Creek Park, and Trancas Canyon Park. The City is responsible for the management of the Malibu Equestrian Center through a lease from the SMMUSD. The City also manages and owns the Michael Landon Center and the sports fields at Malibu Bluffs Park.5

The City contains numerous parks and beaches that are owned and operated by state, county, and federal agencies. The City lies completely within the Santa Monica Mountains National Recreation Area (SMMNRA), which is administered by the National Park Service. Although the City is within the SMMNRA boundaries, the City only owns a small portion of the recreational land available to the residents of the City and surrounding areas. Other recreation facilities within the City are owned and/or operated by Los Angeles County. These recreation facilities include: Nicholas Canyon Beach, Zuma County Beach, Dan Blocker State Beach, Las Tunas State Beach, and Westward Beach (part of Point Dume State Beach). The City has no jurisdiction over the beaches within the City limits.

The State of California Department of Parks and Recreation owns and manages Malibu Lagoon State Park, Malibu Pier, Malibu Creek State Park, Point Dume State Preserve, and Robert H. Meyer Memorial State Beach. The County and the Mountains Recreation and Conservation Authority (MRCA) also maintains more than 15 public vertical accessways to the beach throughout the City.

Existing parks, open space, beaches, and other recreational facilities in the vicinity of the Civic Center and surrounding area include:

- **Santa Monica Mountains National Recreation Area** – with 153,075 acres, SMMNRA is the world's largest urban national park, containing many individual parks and open space preserves. The California State Park system owns 42,000

5 The City of Malibu is currently (2013) working with the Santa Monica Mountains Conservancy for a proposed land swap where the City would gain ownership of the 83 acres of Bluffs Park under Conservancy ownership in exchange for giving the Conservancy control over the 532 acre Charmlee Wilderness Park.
acres, the National Park Service controls 21,500 acres, and the rest of the
SMMNRA lands are in local agencies parks, university study reserves, and
private property conservation easements. The SMMNRA includes local State
Parks, including Malibu Creek State Park and Malibu Lagoon State Beach, and
Malibu Bluffs Open Space.

• **Malibu Creek State Park** – over 7,000 acres of natural parkland with 15 miles of
streamside trails, located in the hills north of the Civic Center area.

• **Malibu Lagoon State Beach** (also known as Surfrider Beach) – State beach and
park with picnic tables and nature area, located at the estuary where Malibu Creek
meets the Pacific Ocean. Facilities include fee and street parking, restrooms,
drinking water, hiking and nature trails, and disabled access. The park also
includes the Adamson House, a national historic site.

• **Malibu Pier** – 720-foot long historic landmark and public pier open for
recreational use, located at the east end of Malibu Lagoon State Beach. The pier is
used for fishing and contains retail uses, a restaurant, and parking.

• **Malibu Bluffs Park** – six-acre City-owned public park overlooking the Pacific
Ocean with recreational facilities, including two baseball diamonds, a multi-
purpose field, community center, and picnic tables, located on the south side of
the intersection of PCH and Malibu Canyon Road.

• **Malibu Bluffs Open Space** – 83 acres of open land owned by the Santa Monica
Mountain Conservancy, adjacent to and west of Malibu Bluffs Park, with
approximately 2.3 miles of hiking trails that traverse the park. Trails provide
linkages from the northern access point at Malibu Canyon Road and PCH to the
southern access at Malibu Road, where vertical easements provide public access
to the beach.

• **Alumni Park** – 30-acre University-owned park with lawns, rolling hills, ponds,
and mature trees, located on the Pepperdine campus on Malibu Canyon Road and
PCH.

• **Legacy Park** – 17-acre environmental and educational City-owned public park
with open space and walking paths exhibiting five local habitats, located in the
Civic Center area. The park is also designed link into the City’s storm water
treatment facility to improve water quality in Malibu Creek, Malibu Lagoon, and
at Malibu Lagoon State Beach.

The City of Malibu’s Local Coastal Program (LCP) includes a Trails and Public Access
Map (City of Malibu 2002) that outlines plans for future trail access across the City. This
map shows the projected Malibu Pacific Trail running along two sides of the Project site.
This trail is shown running along Malibu Canyon Road on the west side of the property
and along Civic Center Way along the northeast side of the property. The Malibu Creek
Trail is also shown running along Malibu Canyon Road north of the Project site. The
Malibu Pacific Trail would link the Malibu Creek Trail to rest of the trail network. The
Malibu Pacific Trail is not currently developed.

3.9.1.4 Libraries

The City is a member of the Los Angeles County Public Library system, a network of
community libraries throughout the County of Los Angeles. The Malibu Library is
located at 23519 Civic Center Way.

The Malibu Library provides adult and juvenile reference services and materials,
including audiovisual materials, compact disks, videocassettes, computers, and internet
access. The Malibu Library is the only library serving the City but provides access to all
5,488,446 volumes, 789,237 titles, 6,742 subscriptions and 59,352 government
publications within the interconnected Los Angeles County Public Library system
(County of Los Angeles Public Library 2012).

3.9.1.5 Solid Waste and Recycling Services

Solid waste disposal and recycling services within the City are provided by City-
approved permitted solid waste haulers and the County of Los Angeles within the Malibu
Garbage Disposal District (MGDD). The MGDD includes portions of the City and some
unincorporated areas surrounding the City; however, it does not include the Project site
(Los Angeles County 2012). For development outside of the MGDD, property owners are
2012-2013, the City approved 19 haulers to provide trash, recycling, and green waste
removal services.
The Simi Valley Landfill and Recycling Center and the Calabasas Landfill are the primary disposal facilities of non-recyclable solid waste generated within the City. The Simi Valley landfill is projected to reach its capacity around 2052 (Los Angeles County 2012). The Calabasas landfill is projected to reach its capacity around 2028 (Los Angeles County 2009). Recyclable materials are sorted at the Simi Valley Landfill and Recycling Center and transported to various recycling destinations.

In 1989, the State of California passed into law Assembly Bill (AB) 939, the California Integrated Waste Management Act, which requires all cities and counties to reduce waste directed to local landfills based on weight. AB 939 required a 25% waste reduction by the year 1995 and a 50% waste reduction by 2000. Both goals have been met by the City due to increased recycling efforts by the citizens of the City (City of Malibu 2009). In 2011, AB 341 established a state policy goal that no less than 75% of solid waste be diverted from landfills by 2020, and mandated local jurisdictions to implement commercial recycling requirements by July 1, 2012. AB341 requires any business (including schools and government facilities) that generates four cubic yards or more of waste per week, and multifamily buildings with five or more units to arrange for recycling services. AB341 builds on the AB 939 requirement that every jurisdiction divert at least 50% of its waste.

The City’s General Plan Conservation Element (CON) promotes waste diversion and material recycling in private development, business and operations (CON Policy 5.1.1) and encourages recycling through public education, promotion of using recycled materials, and development of residential and commercial recycling programs (CON Policy 5.1.2). Annual per capita disposal rates for residents of Malibu as measured in pounds per day per resident were 12.8. This is lower than the per resident disposal rate target of 18.4 pounds per day and the lowest rate of disposal in the last four years (CalRecycle 2012a).

6 The disposal rate target is the amount of disposal that is approximately equivalent to the current 50% diversion requirement. To meet the 50% goal, jurisdictions must not dispose of more than their 50% per capita disposal target.

7 A per capita disposal and goal measurement system will help to determine each jurisdiction’s progress toward achieving its Integrated Waste Management Act (AB 939) diversion goals. The 50% diversion requirement will now be measured in terms of per-capita disposal expressed as pounds per person per day.
3.9 PUBLIC SERVICES

3.9.1.6 Other Public Services

Other City services provided in the Project area include Public Works/Engineering Services, Planning Department, Environmental Sustainability Department, Parks and Recreation Department, and general governance and administrative functions (i.e., City Council, City Administrators). City water and sewer services are discussed in Section 3.8, Public Utilities; recreation amenities and services are discussed in Section 3.10, Land Use and Recreation; and City road maintenance and other transportation services are discussed in Section 3.11, Traffic and Transportation.

The County of Los Angeles provides additional services including Superior Court, County Jail and juvenile detention facilities, assessor, tax collection, and flood control and water conservation. The County also provides services related to child support, public health, and various social services. The City is included in multiple County of Los Angeles special districts, such as vector control, fire, water, garbage disposal, libraries, and sanitation services districts.

State of California public services include the California Highway Patrol, CalFire, Office of Emergency Services, and the California Air and Army National Guards that can respond during large-scale emergencies in the City. The state also provides various health and human services including employment development, health and welfare, mental health, and social services. County and state services are not included in the purview and regulations of the City and therefore are not discussed in detail in this Environmental Impact Report (EIR).

3.9.2 Regulatory Setting

3.9.2.1 Federal Regulations

There are no directly applicable federal regulations that would govern provision of public services to the proposed Project.

3.9.2.2 State Regulations

Assembly Bill 341 (AB341). In 2011, AB 341 established a State policy goal that no less than 75-percent of solid waste generated be source reduced, recycled, or composted by
2020, and requiring CalRecycle to provide a report to the Legislature that recommends strategies to achieve the policy goal by January 1, 2014. The bill also mandates local jurisdictions to implement commercial recycling by July 1, 2012. AB341 requires any business (including schools and government facilities) that generates 4 cubic yards or more of waste per week, and multifamily buildings with five or more units to arrange for recycling services.

Assembly Bill 939, Solid Waste Reduction. The California Integrated Waste Management Act of 1989 (AB 939) was enacted as a result of a national crisis in landfill capacity, as well as a broad acceptance of the hierarchy (reduce, reuse, recycle, environmentally sound landfilling and transformation) as the desired approach to solid waste management. AB 939 mandated local jurisdictions to meet waste diversion goals of 25% by 1995 and 50% by 2000 and established an integrated framework for program implementation, solid waste planning, and solid waste facility and landfill compliance. Other elements included encouraging resource conservation and considering the effects of waste management operations. The diversion goals and program requirements are implemented through a disposal-based reporting system by local jurisdictions under California Integrated Waste Management Board (CIWMB) regulatory oversight. Since the adoption of AB 939, landfill capacity has increased. Regional capacity problems exist, but capacity is no longer considered the statewide crisis it once was. AB 939 has achieved substantial progress in waste diversion, program implementation, solid waste planning, and protection of public health and safety and the environment from the operation of landfills and solid waste facilities. The City offers recycling programs for both commercial and residential uses.

Senate Bill 1374, Construction and Demolition Waste Reduction. Senate Bill 1374 (SB 1374) requires that the annual report submitted to CIWMB include a summary of the progress made in diversion of construction and demolition waste materials. In addition, SB 1374 requires the CIWMB to adopt a model ordinance suitable for adoption by any local agency that required 50–75% diversion of construction and demolition waste materials from landfills by March 1, 2004. Local jurisdictions are not required to adopt their own construction and demolition ordinances, nor are they required to adopt CIWMB’s model by default. However, adoption of such an ordinance may be considered by CIWMB when determining whether to impose a fine on a jurisdiction that has failed to implement its Source Reduction and Recycling Element (SRRE).
Assembly Bill 75, Waste Diversion by State Agencies. Assembly Bill 75 (AB 75), passed in 1999, took effect on January 1, 2000. This bill added new provisions to the Public Resources Code, mandating that state agencies develop and implement an Integrated Waste Management Plan (IWMP); it also mandated that community service districts providing solid waste services report disposal and diversion information to the city, county, or regional agency in which the community service district is located.

The changes brought about by AB 75 required each state agency or large state facility (e.g., state universities, community colleges, prisons within the Department of Corrections, facilities of the Department of Transportation, and any other agencies identified by the CIWMB) to develop an IWMP by July 1, 2000; to divert at least 25% of its solid waste from landfills or transformation facilities by January 1, 2002; and to divert 50% by January 1, 2004. In addition to the waste diversion goals, all state agencies are required to buy recycled materials from 12 different categories, ranging from paper and plastic to paint, solvents, and lubricating oils.

Title 24 of the California Administrative Code, California Building Energy Efficiency Standards. Energy consumption by new buildings in California is regulated by the State Building Energy Efficiency Standards, embodied in Title 24 of the California Code of Regulations (CCR) (Title 24 is the California Building Code [CBC]). The efficiency standards apply to both new construction and rehabilitation of both residential and nonresidential buildings and regulate energy consumed for heating, cooling, ventilation, water heating, and lighting. The building efficiency standards are enforced through the local building permit process. Local government agencies may adopt and enforce energy standards for new buildings, provided these standards meet or exceed those provided in Title 24.

The California Energy Commission’s Building Energy Efficiency Standards provide the regulations and standards to implement Title 24 requirements and were last updated in 2008. Compliance with Title 24 energy efficiency requirements can be achieved through following a prescriptive approach outlined in the standards or following a performance approach using computer modeling. The prescriptive approach offers relatively little design flexibility but is easy to use, while the performance approach allows design flexibility that can be used to find the most cost-effective solutions, but which requires multiple calculations. The standards address the features listed below:
• Building envelope (i.e., building components that are in contact with the outside: windows, skylights, roofs, walls, floors, slabs);
• Mechanical systems: heating, ventilation, air conditioning (HVAC), water heating, pipe insulation, mechanical efficiency;
• Indoor lighting;
• Outdoor lighting; and
• Sign lighting.

The California Green Building Standards Code (CALGreen), Title 24, California Code of Regulations, Part 11. CALGreen, which took effect in January 2011, requires that new buildings reduce water consumption, increase building system efficiencies, divert construction waste from landfills, and install low pollutant-emitting finish materials. CALGreen has approximately 52 nonresidential mandatory measures and an additional 130 provisions that have been placed in the appendix for optional use. Some key mandatory measures for commercial occupancies include specified parking for clean air vehicles, a 20% reduction of potable water use within buildings, a 50% construction waste diversion from landfills, use of building finish materials that emit low levels of volatile organic compounds, and commissioning for new, nonresidential buildings over 10,000 square feet.

Senate Bill 50 and Proposition 1A School Funding. Senate Bill 50 (SB 50), or the Leroy F. Greene School Facilities Act of 1998, imposes new limitations on the power of cities and counties to require mitigation of school facilities impacts as a condition of approving new development. SB-50 amends Section 17620 of the Education Code to authorize school districts to levy statutory developer fees at levels that may be significantly higher than those previously permitted, but also provides new and stricter standards for school districts to follow when levying fees. School Districts would continue to be authorized to charge development fees (also known as Level 1 fees) of $1.93 per square foot on residential buildings and $0.31 per square foot on commercial or industrial buildings. However, pursuant to Government Code Sections 65995.5 and 65995.7, SB 50 authorizes school districts to charge additional Level 2 development fees to match 50% of school construction costs of state funds, and Level 3 development fees to fund 100% of school construction costs if state funds are not available. SB 50 placed a $9.2-billion state bond measure on the ballot at the November 3, 1998, election (Proposition 1A). The effectiveness of many of SB 50’s provisions was contingent on the passage of Proposition 1A. Now that Proposition 1A has passed, SB 50 is fully operative.
Section 65996 of the Government Code, School Mitigation Fees. Section 65996 designates Section 17620 of the Education Code (the mitigation fees authorized by SB 50) and Section 65970 of the Government Code to be the exclusive method for considering and mitigating development impacts on school facilities.

3.9.2.3 Local Policies and Regulations

LCP Land Use Plan (LUP). Policies of the LUP are designed to assure orderly, balanced utilization and conservation of coastal zone resources, taking into account the social and economic needs of the state’s and City’s residents.

LCP Local Implementation Plan (LIP). The LIP was adopted to implement the policies outlined in the LUP of the LCP by providing detailed guidance regarding development in the Coastal Zone. The Chapters of the LIP that are most relevant to the proposed Project include:

- **LUP Policy 2.49:** A trail offer of dedication shall be required in new development where the property contains a LCP mapped trail alignment or where there is substantial evidence that prescriptive rights exist. An existing trail, which has historically been used by the public, may be relocated as long as the new trail alignment offers equivalent public use. Both new development and the trail alignment shall be sited and designed to provide maximum privacy for residents and maximum safety for trail users.

City of Malibu General Plan. The City’s General Plan was adopted in 1996 and last revised in 2004. The General Plan is primarily a policy document that sets goals and policies concerning the community and gives direction to growth and development. The General Plan consists of the seven state mandated elements. Elements with policies applicable to public services include the: Open Space and Recreation Element (Chapter 2.0), Conservation Element (Chapter 3.0), and Safety and Health Element (Chapter 5.0). The General Plan policies ensure that new development meets City standards and is consistent with City goals. Specific General Plan policies that would be applicable to the proposed Project are included below.

General Plan Land Use Element (LU). The City’s General Plan includes measures requiring fire protection.
3.9 Public Services

- **LU Policy 1.3.3:** The City shall require fire protection measures for development.

General Plan Open Space Element (OS). The City’s General Plan states that Malibu should include and recreation amenities.

- **OS Policy 1.2.3:** The City shall require development to link and integrate open space visually, and link open space to activity centers, other open spaces and scenic routes through a system of trails.

General Plan Safety Element (S). The City’s General Plan states that Malibu should be a community that is prepared for effective response to emergencies, and recovery when they occur as well as a community that is exceptionally safe and healthy.

- **S Objective 2.1:** A comprehensive plan for response to all levels of emergency situations.
 - **S Policy 2.1.1:** The City shall cooperate to achieve efficient and prompt response by local agencies to those emergencies, which require no outside help.
 - **S Policy 2.1.2:** The City shall coordinate efficient utilization of emergency assistance provided by neighboring communities and county agencies under mutual-aid response.
 - **S Policy 2.1.3:** The City shall develop a plan to ensure that in situations of extreme emergency the community is prepared to survive until outside assistance arrives.

- **S Objective 3.1:** Actively promote health and safety so that residents are exceptionally safe and healthy by national standards.
 - **S Policy 3.1.1:** The City shall facilitate programs so that people feel safe, and crime and violence are minimized.
 - **S Policy 3.1.3:** The City shall assess risks to the health and safety of citizens and visitors, and inform the public about those risks and ways to avoid them.
 - **S Policy 3.1.4:** The City shall encourage efforts by private organizations to enhance community health and safety.
3.9 PUBLIC SERVICES

General Plan Conservation Element (CON). The City’s General Plan states that amounts of solid waste should be reduced and recycled.

- CON Objective 5.1: 50% reduction in the amount of solid waste generated by the community and disposed of in landfills by the year 2000.
 - CON Policy 5.1.1: The City shall reduce solid waste.
 - CON Policy 5.1.2: The City shall encourage recycling.

3.9.3 Environmental Impacts

3.9.3.1 Thresholds for Determining Significance

Based upon policy guidance provided by the City’s General Plan, impacts resulting from a project would be potentially significant if the project would result in:

- Increased demand for public services that exceeds either the existing supply or capacity of the infrastructure (or financially feasible infrastructure that could be developed) required to service additional demand and/or equipment; or
- Alter the nature of the demand for public services causing increased costs or service delivery limitations.

Appendix G of the California Environmental Quality Act (CEQA) Guidelines states that a proposed project’s impacts are considered to have a potentially significant impact on the environment if the project would:

a) Result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives for any of the public services:
 i. Fire Protection
 ii. Police Protection
 iii. Schools
 iv. Other Public Facilities;

b) Increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated; or
c) Include recreational facilities or require the construction or expansion of
recreational facilities, which might have an adverse physical effect on the
environment.

3.9.3.2 Impact Assessment Methodology

In order to assess impacts on public service systems, existing and forecast capacities of
service providers were obtained from management personnel, the General Plan, and prior
studies. The capacities of existing landfills and the consistency of recycling rates with the
goals outlined in AB 939 and AB 341 were used to assess the impacts of solid waste
generated by the proposed Project. LASD and LACFD personnel and response times
were compared to national standards for determining potential impacts to police and fire
protection services, specifically staffing and service demands.

The Project would not add to long-term regional populations that utilize library services.
The increase in library visits from Project hotel patrons would be negligible in
comparison to overall visits from regional residents. Therefore, the Project’s impact on
library services is not analyzed in Section 3.9.3.4, Project Impacts, Mitigation Measures,
and Residual Impacts.

3.9.3.3 1986 and 1998 Project Environmental Review Findings

Developers have been attempting to permit and construct a hotel at the Project site for
many years, and efforts to date have included obtaining CCC approval for a 300-room
hotel in 1986, completion of a certified EIR in 1997 and approval of a previous 146-room
hotel design by the Malibu City Council in 1998. Applicable findings of environmental
review performed for these projects are described below.

California Coastal Commission 1986 Approval of a 300-Room Hotel

In January 1986, the California Coastal Commission (CCC) approved the following
project (Permit No. 5-85-418) for the subject property: 300 room hotel (222,200 square
feet), 32,800 square foot community center, offices, restaurant, information kiosk and art
center, and 1,039 parking spaces. The CCC’s approval has been kept valid over the years
and the most recent permit extension (the 26th extension) was issued by the CCC setting
the new expiration date as January 7, 2014. The EIR completed for that project determined that the project would not result in an increase in public services or facilities.

Findings of the 1998 Project EIR

The 1998 EIR determined that the Project would have an insignificant effect on public services. Fire protection was deemed adequate since the proposed Project would have incorporated all safety and fire prevention features required by the LACFD and no additional or altered services would be needed. Police protection was addressed through incorporation of safety and crime-prevention features required by the LASD and private security onsite 24-hours a day. It was determined that schools were not impacted by the Project because it would not generate additional students since the Project would not include housing.

3.9.3.4 Project Impacts and Mitigation Measures

Impact Description

PS-1 Implementation of the proposed Project would incrementally increase demand for police protection services, particularly during and after special events (Class II).

The proposed Project would incrementally increase demands for police protection services provided by the LASD and CHP related to theft, trespassing, vandalism, shoplifting, public intoxication, drunk driving, speeding, and noise complaints, of which the latter four crimes have potential to occur during and after major special events. As discussed in Section 3.6, Fire Protection and Hazardous Materials, the maximum hotel building occupancy is approximately 1,750 hotel guests and employees. In addition, the proposed Project would also include two event lawns which could host major special events over the course of the year, including weddings, parties, bar/bat mitzvah, and charitable events, so that the total hotel grounds occupancy could potentially increase to over 2,000 guests and employees at one time. These events could include use of amplified music and serving of alcoholic beverages. Although the Project is expected to be well-managed and include provision of trained onsite security personnel, such events have the potential to lead to noise complaints from surrounding residents related to use of
amplified music and incrementally increase demand for police services for disturbances, such as public intoxication, drunk-driving offenses and related civil disturbances.

While LASD currently maintain adequate capacity to provide overall police protection services within the Project area, increased demand for police protection services during peak evening events may exceed the ability of agencies to adequately respond during individual situations. However, the Project does not exceed the capacity of existing LASD services and would not require provision of new or physically-altered facilities to maintain service ratios; therefore, this impact on police protection services would be considered potentially significant, but subject to feasible mitigation.

Mitigation Measures

MM PS-1a The Applicant shall prepare and implement a Private Security Plan that shall include security staff training and instructions for appropriate resolution of event-related disturbances (i.e., amplified music, public intoxication, etc.).

MM PS-1b The Applicant shall prepare a Special Event Management Plan that shall include establishment of event notification requirements and coordination and incident response protocols with the City and LASD. The Plan shall also detail the hours of event operation, event capacity, allowable noise levels, and appropriate staff response procedures for disturbances, identification of transportation options for intoxicated guests, etc.

Plan Requirements and Timing. The Applicant shall prepare a Private Security Plan and Special Event Management Plan and provide it to the City and Los Angeles County Sheriff’s Department for review and approval prior to the issuance of a Certificate of Occupancy.

Monitoring. The Private Security Plan and Special Event Management Plan shall be subject to review and approval by City staff and the LASD. The Applicant shall submit annual reports to the City that identify the number of special events held, including general levels of the number of persons in attendance, use of outdoor amplified music and any noise or other complaints received.
Impact Description

PS-2 The Project would incrementally increase the demand for LACFD services through increased demand for both emergency and non-emergency fire and protection services, particularly during major wildfire events (Class III).

Approval of the proposed Project would incrementally increase demand for both non-emergency and emergency fire protection services provided by the LACFD. Increased demand for non-emergency services could include services such as fire safety inspections (e.g., vegetation clearance), building inspections, fire code investigations and code compliance. Incremental increases in emergency responses could include emergency medical response, hazardous materials response, and responses to structural or small local onsite fires.

In addition to routine emergency and non-emergency responses, Project implementation would result in construction of 274,775 square feet of new development in a Very High Fire Hazard Severity Zones (VHFHSZ). The location of the Project would expose potential future employees and guests to wildfire hazards (e.g., smoke, flames, ash, embers, landslides, downed power lines and trees) and traffic-related hazards while increasing demand on fire services during such emergencies when demand for fire protection services is at its highest. The LACFD initially approved the Applicant’s site design and building design construction features, fuel modification, fire suppression, and disaster preparedness procedures as of November 2011, though issuance of a Certificate of Occupancy will not occur until pending water requirements are fulfilled and the construction of the Project is complete. These pending water requirements include implementation of a fire sprinkler system for the Project, installation of 16 additional fire hydrants and verification that adequate flow can be maintained for fire water service in addition to domestic water use (LACFD 2011c).

The proposed Project includes multiple measures to address wildfire hazards, including use of fire resistant building materials, vegetation clearing and management, a 26 foot-wide perimeter fire access road and buffer, use of fire resistant landscaping and a proposal that employees and guests “shelter in place” in the onsite underground parking garage and subterranean hotel space during wildfires (Project Delivery Analysts 2012). Additionally, during times of emergency the site is proposed for use as a staging area of emergency personnel and use as a helicopter landing area. These designs are discussed more fully in Section 3.6, Fire Protection and Hazardous Materials.
The Project would incrementally increase population requiring fire protection services in
the City, with an estimated maximum 2,000 guests and employees being present during
peak periods. However, the firefighter-to-population ratio would remain below
acceptable levels according to National Fire Protection Association (NFPA) standards.\footnote{Current number of firefighters is 36. Current population is 12,645. Current ratio is approximately 1:300. Population plus Project hotel and party patrons would be 14,645. This would reduce the ratio to approximately 1:400, which is still within the NFPA recommended standard of 1:2000.}
In addition, the proposed Project would be well within the five-minute response time
from Station No. 88. Finally, Project development and operation would be subject to
stringent regulations associated with development in a VHFHSZ and would include
multiple onsite measures to reduce wildfire hazards. Developments identified by the City
as having a large impact on public services may be required to pay additional fees to
offset the impact (City of Malibu 2009).

The Project does not exceed the capacity of existing LACFD services and would not
require provision of new or physically altered facilities to maintain service ratios;
therefore, with applicable standard regulatory conditions impacts of increased demand
for fire protection services would be \textit{less than significant}.

\textbf{Standard Regulatory Condition}

\textit{MM PS-2a} Prior to construction, the final and Fuel Modification Plan shall be
submitted to the Fire Prevention Bureau, Forestry Division of the LACFD
for review and approval. The Applicant shall incorporate all site design
features required by the LACFD, ensuring provision of:

\begin{itemize}
 \item Adequate fire department access;
 \item Proper placement of street numbers and emergency signage;
 \item Water supply capable of providing adequate fire flow;
 \item Knox boxes at all vehicular gates;
 \item Installation of fire protection systems and equipment (i.e., sprinkler
 systems and additional fire hydrants);
 \item Implementation of fire safety measures during construction;
 \item Portable fire extinguishers;
 \item Brush thinning and maintenance;
\end{itemize}
• Buffer zones between development and native vegetation;
• Low ignition landscaping;
• Fire-resistant construction materials;
• First-aid station located on-site; and
• Underground shelter in place facility.

Plan Requirements and Timing. The Applicant shall submit the final Fuel Modification Plan to the LACFD for approval and shall submit proof of satisfactory flow tests for all site fire hydrants concurrent with submittal of building plans. A copy of the approved Fuel Modification Plan shall be submitted to the City Planning Department.

Monitoring. The final Fire Sprinkler Plan and Fire Alarm Plan shall be submitted to the LACFD for final review and approval. The Applicant shall submit annual reports to the City that confirm and identify results of sprinkler and alarm checks according to California Fire Code maintenance testing and maintenance guidelines (2010 CFC 24.9.903 and 907).

Mitigation Measures

No mitigation measures would be required.

Impact Description

PS-3 The proposed Project would potentially increase the number of school-aged children served by SMMUSD Malibu area schools (Class III).

Employment for the Project is not expected to have a large effect on Malibu area school enrollment. The majority of employees are anticipated to come from the existing work force within Malibu and the region (refer to Section 4.3.3, *Population and Housing*). School aged children of workers already in the area would be accounted for in school enrollment for the schools serving Malibu and the surrounding communities. In addition, all Malibu schools are currently well within their enrollment capacity and any incremental increase in the number of students enrolled in Malibu area schools would be accommodated within the existing capacity of these schools. Impacts to school services
would be further offset by fees that may be required by the SMMUSD to compensate for impacts caused by the new development (City of Malibu 2009). Furthermore, the Project would not exceed the existing SMMUSD infrastructure capacity or require provision of new or physically altered facilities to maintain educational services in the Malibu area. Therefore, given normal enrollment fluctuations experienced from year-to-year the impact of proposed Project on SMMUSD Malibu-area schools would be less than significant.

Mitigation Measures

No mitigation measures required.

Impact Description

PS-4 Solid waste generated by the proposed Project would not exceed the capacity of existing facilities used by the City (Class III).

Under the Malibu Integrated Waste Management Program, garbage disposal would be coordinated between one of the 19 city approved hauling companies and the facility owner and operator.

Taking into account existing recycling programs, the proposed hotel, spa and restaurant and retail uses are projected to produce approximately two tons of waste per employee per year or approximately 11 pounds per day per employee (CalRecycle 2006). The number of employees is estimated to be 250 full-time, part-time, seasonal and permanent employees at any given time. The proposed Project would generate approximately 600 tons per year or 1.6 tons per day (tpd) of solid waste and dispose of approximately 457 tons per year or 1.3 tons per day (Table 3.9-4).

Table 3.9-4. Estimated Waste Production

<table>
<thead>
<tr>
<th>Building Use</th>
<th>Size (sf)</th>
<th>Estimated Employees(^1)</th>
<th>Estimated Waste Produced (tpd)(^2)</th>
<th>Estimated Waste Disposed (tpd)(^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>294,728</td>
<td>250</td>
<td>1.6</td>
<td>1.3</td>
</tr>
</tbody>
</table>

\(^1\) Number of employees is estimated by a factor from the SCAG Employment Density Study of 1 employee per 1,179 sf of hotel/motel space (SCAG 2001).

\(^2\) Based on 13 pounds of solid waste per employee per day prior to recycling diversion. Solid waste per employee after recycling diversion is 11 pounds (CalRecycle 2006).

\(^3\) Large hotels divert approximately 23% of their waste (CalRecycle 2006).
As mentioned previously, the Simi Valley Landfill and Recycling Center and the Calabasas Landfill are the primary disposal facilities of non-recyclable solid waste for the City. The Simi Valley landfill has an estimated remaining capacity of 119 million cubic yards (mcy) and is projected to reach its capacity around 2052 (Los Angeles County 2012). The Calabasas landfill has an estimated remaining capacity of 25 mcy and is projected to reach its capacity around 2028 (Los Angeles County 2009). Permitted and active landfills in Los Angeles County that could be utilized by the Project are included in Table 3.9-5.

Table 3.9-5. Project Area Landfills

<table>
<thead>
<tr>
<th>Landfill</th>
<th>Driving Distance from Project Site (miles)</th>
<th>Remaining Capacity (mcy)</th>
<th>Closure Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simi Valley</td>
<td>32</td>
<td>119</td>
<td>2052</td>
</tr>
<tr>
<td>Calabasas</td>
<td>10</td>
<td>25</td>
<td>2028</td>
</tr>
<tr>
<td>Sunshine Canyon</td>
<td>36</td>
<td>112</td>
<td>2037</td>
</tr>
<tr>
<td>Scholl Canyon Sanitary Landfill</td>
<td>41</td>
<td>9</td>
<td>2030</td>
</tr>
</tbody>
</table>

Source: CalRecycle 2012b.

The Project would incrementally increase the amount of solid waste that would be disposed of in area landfills. In accordance with AB 341, the Project would be required to provide recycling services to help offset this impact. Additionally, the City may require additional fees that could be used towards development of new facilities or expansion of existing facilities.

The Project’s contribution would be minimal on a regional scale and does not exceed the capacity of existing Los Angeles County landfills or require provision of new or physically altered facilities to maintain service; therefore, with the implementation of standard regulatory condition Project impacts would be less than significant.

Additionally, Project impacts could be further reduced with the implementation of recommended mitigation measures below.

Standard Regulatory Conditions

MM PS-4a Pursuant to the City’s Construction and Demolition Debris Recycling Program, an affidavit and certification to implement a Waste Reduction and Recycling Plan for the proposed Project shall be completed and
submitted to the City Environmental Sustainability Department prior to building permit issuance. The Plan shall include plans to recycle at a minimum 50% of discarded materials, such as concrete, sheetrock, wood, and metals, from proposed construction. Upon completion of the Project, a Summary Report must be submitted to the Environmental Sustainability Director for approval.

MM PS-4b Pursuant to the City’s Integrated Waste Management Program, the Project shall provide a plan for the disposal, storage, and collection of solid waste material for the Project. The development of the plan shall be coordinated with City-permitted solid waste collection and disposal firms.

Recommended Mitigation Measures

MM PS-4c Convenient facilities for interior and exterior onsite recycling shall be established at the Project site.

MM PS-4d Recycled-content materials shall be used in structural and decorative building components and in surfacing wherever feasible.

Plan Requirements and Timing. The Applicant shall complete and submit to the City for approval an affidavit and certification to implement a Waste Reduction and Recycling Plan for the proposed Project. As part of this plan, a list of recycled materials proposed for use in construction shall be submitted, as well as proof of a service agreement from one of the City-permitted solid waste collection and disposal firms.

Monitoring. Upon completion of the Project, a Summary Report shall be submitted to the Environmental Sustainability Director for approval prior to issuance of a Temporary Certificate of Occupancy or Certificate of Occupancy.
3.9 PUBLIC SERVICES

Impact Description

PS-5 The proposed Project would result in a less than significant increase in use of adjacent parks and recreational facilities that would not exceed the capacity of existing facilities (Class III).

The Project would incrementally increase population utilizing parks and recreational services in the City, with an estimated maximum 2,000 guests and employees being present during peak periods. It is anticipated that hotel patrons would utilize the recreational facilities in the vicinity of the Project site, particularly Malibu Bluffs Park and Pepperdine’s Alumni Park. Additionally, increased visitation could occur at the nearby Legacy Park. Incremental increases would not be anticipated to result in a significant degradation of facilities or overuse. While the proposed Project would affect a currently proposed trail alignment, the incorporation of public sidewalks and internal public paths would not result in the Project blocking or inhibiting completion of a regional trail (refer to Section 3.11, Traffic and Transportation). Therefore, impacts would be less than significant.

3.9.3.5 Cumulative Impacts

Impact Description

PS-6 The proposed Project would result in a less than significant contribution to cumulative impacts to public services in the region (Class III).

The proposed Project would incrementally increase demand for public facilities and services, in combination with 35 other pending projects within the City. When the Project is considered in combination with these other Projects, it would incrementally contribute to cumulative impacts to public services, including police and fire protection services. However, as noted above, both the LASD and LACFD maintain ratios of sheriff’s deputies and firefighters that substantially exceed national standards. In addition, both agencies meet local or national standards for response times. The relatively low level of pending cumulative development would not be anticipated to exceed the ability of these agencies to provide adequate public safety services in the Malibu region. Any impacts from the proposed Project to schools would be mitigated by payment of development
impact fees required by the SMMUSD (City of Malibu 2009). The Project would contribute to an incremental cumulative impact on landfill capacity; however, with incorporation of mitigation requiring the recycling diversion of waste from landfills, the Project’s contribution would not be cumulatively considerable. Cumulative impacts related to fire hazards are discussed in Section 3.6, Fire Protection and Hazardous Materials. Therefore, the cumulative impact of additional demand on public services is considered less than significant.

3.9.3.6 Residual Impacts

Inclusion of suggested mitigation measures would reduce impacts associated with increased demand for police and fire protection services to an insignificant level. Solid waste disposal would have a residual impact of incrementally increasing the amount of solid waste disposed of in Los Angeles County landfills, although this impact would be less than significant.
3.10 LAND USE

This section provides information on existing and planned uses of the Project site and physical land uses within the City of Malibu (City) Civic Center area. This section also evaluates the proposed Project’s consistency with adopted goals, programs, and policies in the City’s General Plan, the Malibu Municipal Code (M.M.C.), the Local Coastal Program (LCP), and related planning policy documents. Sources utilized in the development of this section include the City’s General Plan, M.M.C, and LCP, including the Land Use Plan (LUP) and Local Implementation Plan (LIP).

3.10.1 Existing Setting

3.10.1.1 Regional Setting

The City encompasses a 27-mile long narrow strip of land along the coast of the Pacific Ocean extending from the shoreline into the lower foothills of the Santa Monica Mountains to the north. The City is bordered to the north by unincorporated land within Los Angeles County and parklands under federal and state ownership within the Santa Monica Mountains National Recreation Area (SMMNRA). Commercial development is generally limited to frontages along Pacific Coast Highway (PCH), particularly in the east end of the City and within the Civic Center area. Much of the shoreline in the City is developed with residential uses, and such uses extend into the lower foothills, often as distinct canyon or ridgeline neighborhoods, separated by undeveloped foothill parkland or open space.

Existing commercial development within the City consists primarily of retail commercial, office, and service uses with very limited visitor-serving overnight accommodations. Existing hotel services in the City include five inns, hotels, and motels with a combined total of 115 rooms. None of these facilities are within the Civic Center area, although several of them are located within in commercial zones along PCH to the east of the Project site. The Malibu RV Park supports 142 recreational vehicle (RV) sites and up to 35 tent sites are available to visitors of the Park. Additionally, the nearby Villa Graziadio Executive Center at Pepperdine University (Pepperdine) offers 50 guest rooms. Villa Graziadio caters mostly to professional / educational training and seminar attendees. Due to its scenic mountain backdrop and extended shoreline with many public beaches, visitors to the City come from a myriad of locations, ranging from Los Angeles area residents to international tourists. The City is also a popular destination for special
events, such as weddings. However, as noted above, visitor-serving overnight accommodations are limited.

3.10.1.2 Local Setting

The Project site is located within the City’s Civic Center area, a generally level area within Malibu Creek Valley that supports areas of both commercial and institutional uses. The Project site is located on an elevated terrace on the western edge of the Civic Center. The Civic Center is the primary commercial district of the City, and it includes commercial retail, service industry spaces, small- to mid-sized office buildings, and recreational uses. Developed areas are distributed amongst substantial undeveloped areas. The Civic Center also includes many public facilities, including City Hall and a County government center.

The Civic Center area, including the Project site, is designated for Community Commercial, General Commercial, Visitor-Serving Commercial (1 and 2), and Institutional uses under the City’s adopted LCP (see Figure 3.10-1). However, consistent with the overall semi-rural environment of the City, this commercially-developed area is not highly urbanized. The low-density distribution of the structures, low-profile of building heights and design elements, and limited landscaping amongst undisturbed open space maintains a spacious and small-town feel. The Civic Center area is surrounded by rural residential uses on hillsides to north, public open space along Malibu Creek and Lagoon on the east, multi-family and rural residential to the west, and PCH to the south. Commercial, recreation, open space and residential uses lie south of PCH.

Office uses include professional office buildings of one to two stories that support professional service and business support uses, such as insurance, dry cleaners, medical, dental and law offices. Public uses in the area include Malibu City Hall, located off of Stuart Ranch Road in the northern section of the Civic Center area, and a Los Angeles County government center with a Los Angeles County Sheriff’s Department (LASD) substation, courthouse¹ and the Malibu Library. Webster Elementary School, Our Lady of Malibu Church and School, and a Southern California Edison facility are located off of Civic Center Way in the northwest portion of this area. The City’s newly constructed 26-acre Legacy Park is located between Civic Center Way and PCH. The Malibu Racquet Club, a commercial recreational facility, is located west of City Hall.

¹ The Malibu Courthouse was closed in May 2013.
City of Malibu Existing Land Use within the Project Site Vicinity

FIGURE 3.10-1
3.10 LAND USE

3.10.1.3 Project Vicinity

The Project is located on a roughly triangular 27.8-acre site delineated by PCH to the south, Malibu Canyon Road to the west, and Civic Center Way to the northeast. The land uses immediately surrounding the Project site include public open space (i.e., Malibu Bluffs Park) and undeveloped land designated for single-family homes to the south, Pepperdine and its Alumni Park to the west, and a mix of institutional and residential land uses to the northeast. Institutional uses include the Los Angeles County Road Maintenance Facility and Webster Elementary School, and residential uses include multi-family and rural residential lots, including several condominium complexes and single-family homes, respectively.

The Project site is currently vacant and supports a range of vegetation types, including native coastal sage scrub habitat and residual trees and shrubs from past nursery operations (See also Section 3.4, Biological Resources).

The Project site is zoned as Commercial Visitor-Serving 2 (CV-2). The CV-2 zoning district is intended to provide for visitor-serving uses, including hotels, which serve visitors and residents while respecting the rural character and natural environmental setting of Malibu (M.M.C. Section 17.28.010). Hotels are conditionally permitted uses in the CV-2 zoning designation.

3.10.2 Regulatory Setting

This section summarizes federal, state, regional, and City land use goals and policies that are directly relevant to the proposed Project.

3.10.2.1 Federal Regulations

There are no federal regulations that pertain directly to local land use planning and/or require issuance of permits by federal agencies for the proposed Project. Federal Clean Air Act and Clean Water Act standards are administered by the U.S. Environmental Protection Agency (U.S. EPA) and ultimately implemented by the Regional Water Quality Control Board (RWQCB) and South Coast Air Quality Management District (SCAQMD). These federal regulations are addressed in Section 3.2, Air Quality and Section 3.7, Hydrology and Water Quality.
3.10.2.2 State Policies and Regulations

California Coastal Act. The Project site is located within the California Coastal Zone, which was established pursuant to the California Coastal Act of 1976. This Act requires that planning and development within the Coastal Zone be consistent and compatible with the unique characteristics of coastal resources. The Coastal Act requires that its goals and policies be implemented by local government through the LCP process. Malibu’s LCP was adopted by the California Coastal Commission on September 13, 2002, and in December 2004, the City gained regulatory authority for development in the City’s Coastal Zone.

Porter-Cologne Water Quality Act. The Porter-Cologne Water Quality Act of 1969 is the basic water quality control law for California. The Act established the State Water Resources Control Board (SWRCB) and divided the state into nine regional basins, each under the jurisdiction of a RWQCB. The SWRCB is the primary state agency responsible for the protection of California’s water quality and groundwater supplies. The RWQCBs carry out the regulation, protection, and administration of water quality in each region. Each regional board is required to adopt a water quality control plan or basin plan that recognizes and reflects the regional differences in existing water quality, the beneficial uses of the region’s ground and surface water, and local water quality conditions and problems.

3.10.2.3 Regional and Local Policies and Regulations

Water Quality Control Plan, Los Angeles Region. The City is in the jurisdiction of the Los Angeles RWQCB, Region 4. The Water Quality Control Plan: Los Angeles Region – Basin Plan for the Coastal Watersheds of Los Angeles and Ventura Counties (Basin Plan) was adopted in 1994 and amended in 2007. This Basin Plan gives direction on the beneficial uses of the state waters within Region 4, describes the water quality that must be maintained to support such uses, and provides programs, projects, and other actions necessary to achieve the standards established in the Basin Plan.

Water Quality Control Plan for Ocean Waters of California. The revised Water Quality Control Plan for Ocean Waters of California (Ocean Plan) was adopted by the SWRCB in 2005 and approved by the U.S. EPA in 2006. The Ocean Plan contains water quality objectives and effluent limits that apply to all discharges to the coastal waters of California. Waste management systems that discharge to the ocean must be designed and
operated in a manner to maintain a healthy marine ecosystem and not adversely impact the health of recreational users.

Regional Comprehensive Plan (RCP). The Southern California Association of Governments (SCAG) developed the 2008 RCP to address important regional land use planning issues, including housing, employment, traffic/transportation, water, and air quality. The RCP identifies voluntary best practices to approach growth and infrastructure challenges in a regionally-integrated and comprehensive way. It also includes goals and outcomes to measure progress toward a more sustainable region.

Regional Transportation Plan/ Sustainable Communities Strategy. The Regional Transportation Plan (RTP) is a long-range transportation plan that is developed and updated by SCAG every four years. The RTP provides a goals and policies for transportation investments throughout the region. Using growth forecasts and economic trends projected over a 20-year period, the RTP considers the role of transportation in the broader context of economic, environmental, and quality-of-life goals for the future, identifying regional transportation strategies to address mobility needs. The Sustainable Communities Strategy (SCS) is a newly required element of the RTP. The SCS integrates land use and transportation planning strategies to reduce transportation demand and achieve emissions reduction targets set by the California Air Resources Board (CARB).

South Coast Air Quality Management Plan (SCAQMP). The SCAQMP was adopted in December 2012 to meet both state and federal Clean Air Act planning requirements for all areas under the SCAQMD jurisdiction, including the South Coast Air Basin. The 2012 AQMP was developed through a regional multi-agency effort involving SCAQMD, CARB, SCAG, and U.S. EPA. State and federal planning requirements include developing emissions control strategies, attainment demonstrations, reasonable further progress, and maintenance plans. The AQMP also addresses the 2012 RTP/SCS, including updated emission inventory methodologies for various source categories and SCAG’s latest growth forecasts.

City of Malibu Local Coastal Program. The City lies entirely within with the California Coastal Zone, as defined by the California Coastal Act. The Coastal Act requires that its goals and policies be implemented by local government through the LCP process. The LCP is composed of two parts: the LUP and the LIP. Both plans were adopted by the California Coastal Commission on September 13, 2002.
LCP Land Use Plan (LUP)

Policies of the LUP are designed to assure orderly, balanced utilization and conservation of coastal zone resources, taking into account the social and economic needs of the state’s and City’s residents (refer to Table 3.10-1).

LCP Local Implementation Plan (LIP)

The LIP was adopted to implement the policies outlined in the LUP of the LCP by providing detailed guidance regarding development in the Coastal Zone. The Chapters of the LIP that are most relevant to the proposed Project include:

- **LIP Chapter 3, Zoning Designations and Permitted Uses:** Contains zoning boundaries and maps, general regulations and development standards, and other measures for ensuring compliance with the LCP, including guidelines for signs, landscaping, fuel modification, and placement of communication facilities.

- **LIP Chapter 5, Native Tree Protection:** Provides for the protection and preservation of native trees.

- **LIP Chapter 6, Scenic, Visual, and Hillside Resource Protection Ordinance:** Enhances and protects the scenic and visual qualities of coastal and mountain areas within the City as a resource of public importance.

- **LIP Chapter 8, Grading:** Ensures that new development minimizes the visual and resource impacts of grading and landform alteration.

- **LIP Chapter 9, Hazards:** Ensures that new development shall minimize risks to life and property in areas of high geologic, flood, and fire hazard.

- **LIP Chapter 11, Archeological/Cultural Resources:** Avoids damage to or destruction of important cultural resources within the City of Malibu.

- **LIP Chapter 13, Coastal Development Permits:** Establishes the process for the review of all development within the coastal zone of the City of Malibu to ensure that it will be consistent with the provisions of the LCP.

- **LIP Chapter 15, Requirements for Land Divisions:** Provides guidance for land divisions and mergers.

- **LIP Chapter 17, Water Quality Protection Ordinance:** Protects and enhances coastal waters within the City in accordance with the policies of the LCP.

- **LIP Chapter 18, Onsite Wastewater Treatment System (OWTS) Standards Ordinance:** Protects coastal waters from impacts resulting from the design, siting, installation, operation, and maintenance of onsite wastewater treatment systems (OWTS).
Malibu Municipal Code, M.M.C. Title 17 (Zoning Ordinance) regulates land use and development throughout the City. California law requires the City’s zoning code to be consistent with the Land Use Element of the City’s General Plan and is intended to implement the land use policies in the General Plan. The M.M.C. identifies the uses that are allowed on parcels within the City. The proposed Project site is zoned CV-2, which allows for commercial hotel use, on the M.M.C. Zoning Map.

According to the M.M.C., parcels with the CV-2 zoning designation are required to comply with the standards contained in Chapter 17.28 and Section 17.24.040 (CC Lot Development criteria), along with the standards in the following Chapters:

- **M.M.C. Chapter 17.40, Property Development and Design Standards:** Ensures that new or modified uses and development are consistent with the City’s land use policies and goals.

- **M.M.C. Chapter 17.48, Off-Street Parking and Loading Requirements:** Assures the provision of adequate off-street parking facilities in conjunction with any development.

- **M.M.C. Chapter 17.52, Signs:** Provides standards regulating the design, quality of materials and construction, illumination, location and maintenance of all signs, sign structures and billboards.

- **M.M.C. Chapter 17.62, Development Permits:** Requires review of proposed developments to determine compliance with the zoning standards, consistency with the General Plan, and to protect the public health, safety and welfare.

- **M.M.C. Chapter 17.66, Conditional Use Permits:** Ensures adequate public review and input for all development projects which potentially impact the community; ensures that the proposed development does not impair the integrity of the zoning district; and provides the opportunity to impose reasonable and necessary conditions to assure compatibility.

- **M.M.C. Chapter 17.68, Temporary Use Permits:** Regulates short-term placement of activities so as to avoid incompatibility between such uses and surrounding areas.

- **M.M.C. Chapter 17.72, Variances:** Relieves the owner of property from standards or requirements of the zoning code title which make impractical or impossible reasonable use of a property in the same manner that other property of like character in the same vicinity and zone can be used.

These standards provide detailed requirements for development in the City, including building height, setback, and grading requirements, and other site development criteria.
City of Malibu General Plan. The City’s General Plan was adopted in 1996 and last revised in 2004. The General Plan is primarily a policy document that sets goals and policies concerning the community and gives direction to growth and development. The General Plan consists of the seven state mandated elements: Land Use Element (Chapter 1.0), Open Space and Recreation Element (Chapter 2.0), Conservation Element (Chapter 3.0), Circulation and Infrastructure Element (Chapter 4.0), Safety and Health Element (Chapter 5.0), Noise Element (Chapter 6.0) and Housing Element (Chapter 7.0). In addition, it outlines the programs that were developed to accomplish the goals and policies of the General Plan. The General Plan policies ensure that new development meets City standards and is consistent with City goals. Specific General Plan policies that would be applicable to the proposed Project are catalogued and analyzed for consistency in Table 3.10-1 below.

3.10.3 Environmental Impacts

3.10.3.1 Thresholds for Determining Significance

Land use impacts were assessed based upon the extent of anticipated physical impacts as they relate to various resources areas (e.g., air quality, noise, aesthetics, and hazards) that can affect land use compatibility. For the purposes of the analyses in this Environmental Impact Report (EIR), the proposed Project would have a significant environmental impact under the California Environmental Quality Act (CEQA) if it would:

- Physically divide an established community;
- Conflict with any applicable land use plan, policy, or regulation of an agency with jurisdiction over the project adopted for the purpose of avoiding or mitigating an environmental impact, particularly where the project’s potential physical impacts are found to be significant; or
- Conflict with any applicable habitat conservation plan or natural community conservation plan.

Land use impacts which are not significant may result in secondary effects, such as changes to traffic or utility demand, which may be significant.

3.10.3.2 Impact Assessment Methodology

Consistency with General Plan, LCP, and M.M.C. goals, policies, and programs has been evaluated within individual resource sections of this EIR. The following section includes an assessment of the City’s land use policies that are most applicable to the proposed Project, as laid out in the General Plan, LCP, and M.M.C., and the Project’s level of
compliance with these stated policies. Project elements that may be potentially inconsistent with an adopted goal, policy, or program are summarized in this section, along with related physical environmental consequences.

The Project, as currently designed, would require several discretionary requests (i.e., variances, site plan reviews and a minor modification), as well as other permits granted by the City. These permits would only be approved if the City finds that the Project would be consistent with the City’s goals, and the necessary findings in support of each discretionary request could be made. As such, potential Project inconsistencies with existing policies that would only occur if approved through the City by granting a discretionary permit are considered to be “potentially consistent” with the existing policy, stating that the permit would be required. However, if the potential Project inconsistencies requiring a variance, site plan review, minor modification, or other permit generate secondary impacts that are inconsistent with City goals and policies, then the Project is considered to be “potentially inconsistent.” Discretionary requests that would be required for the Project as designed include:

Varniances
- Non-exempt grading in excess of 1,000 cubic yards per acre;
- Construction on slopes in excess of 2½ to 1;
- Parking located within the required front yard setback;
- Reduction of the total number of required parking spaces; and
- Height of the main building to exceed 28 feet, with a maximum height of 36 feet, 2 inches.

Site Plan Review
- A site plan review for the height of the secondary hotel buildings to exceed 18 feet, with a maximum height of 28 feet proposed.

Minor Modification
- A minor modification to reduce the required front yard setback.

Additional Requests
- A conditional use permit for hotel use, construction of more than 500 square feet (sf) of commercial space, restaurant use and onsite and offsite alcohol sales;
- A tentative tract map for a commercial airspace subdivision (146 hotel rooms and 2 retail spaces); and
Developers have been attempting to permit and construct a hotel at the Project site for many years, and efforts to date have included obtaining CCC approval for a 300-room hotel in 1986, completion of a certified EIR in 1997 and approval of a previous 146-room hotel design by the Malibu City Council in 1998. Applicable findings of environmental review performed for these projects are described below.

California Coastal Commission 1986 Approval of a 300-Room Hotel

In January 1986, the California Coastal Commission (CCC) approved the following project (Permit No. 5-85-418) for the subject property: 300-room hotel (222,200 sf), 32,800 sf community center, offices, restaurant, information kiosk and art center, and 1,039 parking spaces. The CCC’s approval has been kept valid over the years and the most recent permit extension (the 26th extension) was issued by the CCC setting the new expiration date as January 7, 2014. The EIR completed for this project found that the project would be consistent with the Malibu/Santa Monica Mountains Interim Area Plan (adopted by the County of Los Angeles Board of Supervisors in December 1981).

Findings of the 1998 Project EIR

The EIR for an earlier project planned for the subject property that was approved in 1998 was prepared prior to certification of the City’s LCP in 2004 and found that there would be no significant land use impacts after mitigation. The 1998 EIR also determined there would be no significant impacts due to unmitigated inconsistencies with the Coastal Act. The EIR identified a potential inconsistency with Coastal Act parking requirements, but went on to explain the Coastal Commission would not approve the project unless they determined there was adequate parking. The EIR also found the 1998 project to be consistent with the General Plan and the draft Civic Center Specific Plan, which was still in development at the time. The proposed Project was also found not to have any policy inconsistencies related to land use, size and scale, or community general character compatibility. Variance requests that required City approval were outlined as inconsistent with six of the City’s Interim Zoning Ordinance development standards. The EIR found one land use impact that was potentially inconsistent and required mitigation. Operation of the hotel’s banquet facilities were found to have the potential to conflict with Malibu’s rural character; however, incorporation of a mitigation measure that limited hours of use
was determined to reduce the impact to less than significant. Therefore, there were no significant land use impacts identified in the 1998 EIR.

3.10.3.4 Land Use Impact Analysis

General Plan and LCP Policy Compliance

Table 3.10-1 presents the City’s General Plan and LCP policies that are most relevant to the proposed Project, and provides a short evaluation of the elements of the Project that are potentially inconsistent with the General Plan or LCP. Project consistency with plans and policies are determined by City staff. These elements are further evaluated in the appropriate environmental issue sections of this EIR, as indicated in the table. Required mitigation measures would be expected to achieve consistency, unless mitigation is not possible for a given issue. If this is the case, it is indicated in the appropriate section of the EIR.

3.10.3.5 Project Impacts, Mitigation Measures, and Residual Impacts

The proposed Project would develop a large hotel and supporting visitor-serving uses (i.e., spa and retail), which would be consistent with the City’s designation of the Project site as CV-2. The Civic Center serves as the City’s major commercial district, with allowable uses including retail, cultural and entertainment uses, particularly for the existing visitor-serving uses, such as hotels.

As discussed in Table 3.10-1, the proposed Project would have several potential inconsistencies with the adopted City policies. Potential inconsistencies with City policy are primarily related to aesthetics and visual resources, biological resources, geology and soils, noise, and traffic. However, the proposed Project could be found to be consistent with City policies, but only after incorporation of mitigation measures from other sections throughout this EIR.

Insignificant Impacts

Implementation of the proposed Project would not result in the physical division of an established community or conflict with any adopted applicable habitat conservation plan or natural community conservation plan. The Project would be located on an undeveloped site in the vicinity of a mix of commercial and institutional, residential and recreational, and open space uses. The site is well-separated from surrounding uses by topography and roads.
Table 3.10-1. General Plan and Local Coastal Program Policy Compliance

<table>
<thead>
<tr>
<th>Policy</th>
<th>Consistency Finding and Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Plan – Land Use Element</td>
<td></td>
</tr>
<tr>
<td>LU Policy 1.1.2: The City shall ensure that land uses avoid or minimize adverse impacts on water quality and other natural resources, such as undisturbed watershed and riparian areas.</td>
<td>Potentially Consistent – The proposed Project includes substantial hillside grading and site alteration, which would result in potentially significant impacts to water quality, and potentially downstream riparian habitats, which could be reduced to insignificance through mitigation and BMPs, included in Sections 3.4 Biological Resources and 3.7 Hydrology and Water Quality.</td>
</tr>
<tr>
<td>LU Policy 1.1.3: The City shall control surface runoff into coastal waters, wetlands, and riparian areas.</td>
<td>Potentially Consistent – The proposed Project would involve substantial hillside grading and site alteration with removal of almost all vegetative cover from the site and could create impacts to downstream riparian habitats. See Section 3.4, Biological Resources and Section 3.7, Hydrology and Water Quality.</td>
</tr>
<tr>
<td>LU Policy 1.1.5: The City shall require careful site planning which blends development with the natural topography.</td>
<td>Potentially Consistent – The Project requires substantial hillside grading that would alter the natural topography, including reduction in elevation of approximately five feet across much of the site and creation of extensive areas of manufactured cut and fill slopes to expand level developable area; however, the majority of grading proposed would be associated with the understructure of the hotel and parking area, removal and recompaction, and safety, which are exempt from the maximum allowed onsite grading limits. Approximately 50,000 cubic yards of grading would be considered non-exempt. See Section 3.5, Geology and Soils and Section 3.1, Aesthetics and Visual Resources.</td>
</tr>
<tr>
<td>LU Policy 1.3.2: The City shall require proposed development to avoid geologic safety hazards created by development.</td>
<td>Potentially Consistent – While the site would be constructed over the Malibu Bowl Fault and the Malibu Coast Fault Zone, which traverses the southern portion of the Project site, geotechnical analysis of the proposed Project site indicates that these faults are not active and that no significant geologic safety hazards would result from the Project. See Section 3.5, Geology and Soils.</td>
</tr>
<tr>
<td>LU Policy 1.3.3: The City shall require fire protection measures for development.</td>
<td>Potentially Consistent – The proposed Project includes a Fuel Modification Plan that includes a Setback Zone, an Irrigated Zone, a Native Brush Thinning Zone, a Fire Access Road Zone and a long-term fire maintenance agreement. This Plan is subject to Los Angeles County Fire Department (LACFD) review and approval. Measures proposed could be enhanced through incorporation of mitigation measures included in Section 3.6, Fire Protection and Hazardous Materials.</td>
</tr>
</tbody>
</table>
Table 3.10-1. General Plan and Local Coastal Program Policy Compliance (Continued)

<table>
<thead>
<tr>
<th>Policy</th>
<th>Consistency Finding and Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>LU Policy 1.4.5: The City shall require hillside management review of all hillside development prior to project approval.</td>
<td>Potentially Consistent – The Project includes a variance for development on a hillside. All hillside development plans would require City review and approval. See Section 3.1, Aesthetics and Visual Resources.</td>
</tr>
<tr>
<td>LU Policy 2.1.4: The City shall require development to be landscaped so that the project blends in with the environment and neighborhood.</td>
<td>Potentially Consistent – The proposed Project includes a landscaping plan that is consistent with the character of the surrounding area. Additional landscaping is proposed as part of a native habitat mitigation plan in Section 3.4, Biological Resources would assist in blending and mitigating the visual contrast of proposed structures.</td>
</tr>
<tr>
<td>LU Policy 2.1.5: The City shall protect and preserve public and private ocean and mountain views, by striking an equitable balance between the right to reasonable use of one’s property including the maintenance of privacy and the right to protection against unreasonable loss of views.</td>
<td>Potentially Consistent – The Project requires substantial grading that would alter the natural topography, including reduction in elevation of approximately five feet across much of the Project site. Additionally, structures would be visible along the ridgelines of the Project site as viewed from other areas, which would result in contrast of the Project with the existing topography. In particular, views from Malibu Canyon Road, PCH and the Malibu Knolls neighborhood would be substantially affected; however, due to the elevated location of the neighborhood and distance of protected private views being more than 1,000 feet away from the Project site, it is anticipated that the Project would not result in a substantial loss in ocean views. Views from surrounding roadways of the mountains and ocean would not be significantly affected. As a result, the development would not create an unreasonable loss of mountain and ocean views. See Section 3.1, Aesthetics and Visual Resources.</td>
</tr>
<tr>
<td>LU Policy 2.1.6: The City shall encourage pedestrian friendly design in concentrated commercial areas.</td>
<td>Potentially Consistent – The proposed Project would include an internal network of walkways and a sidewalk along the segment of Malibu Canyon Road between the Project's main entrance and PCH. However, no pedestrian improvements are provided along Malibu Canyon Road north to Civic Center Way or along Civic Center Way. Further, no pedestrian improvements are provided to link the Project to the larger Civic Center area (e.g., hillside stairway). Provision of pedestrian amenities would encourage hotel guests and the public to walk to Pepperdine and Civic Center businesses. However, mitigation measures requiring provision of pedestrian facilities would ensure Project consistency. See Section 3.11, Traffic and Transportation.</td>
</tr>
</tbody>
</table>
Table 3.10-1. General Plan and Local Coastal Program Policy Compliance (Continued)

<table>
<thead>
<tr>
<th>Policy</th>
<th>Consistency Finding and Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>LU Policy 2.2.1: The City shall require adequate infrastructure, including but not limited to roads, water, and wastewater disposal capacity, as a condition of proposed development.</td>
<td>Potentially Consistent – The Project proposes adequate water supply infrastructure through use of water from Los Angeles County Water District No. 29, additional water allocated in an agreement with Pepperdine and extension of water mains to serve the site; however, proposed landscaping would appear to exceed the City’s maximum allowable water allocation. Project generated traffic would contribute to cumulative congestion at area roadways, which would be subject to feasible mitigation. Similarly, the Project does not propose adequate pedestrian facilities, but sidewalk/trail construction, dedication of easements and payment of fees could mitigate these impacts. See Section 3.6, Fire Protection and Hazardous Materials, Section 3.8, Utilities, Section 3.7, Hydrology and Water Quality and Section 3.11, Traffic and Transportation.</td>
</tr>
<tr>
<td>LU Policy 2.2.8: The City shall require adequate wastewater management for development.</td>
<td>Potentially Consistent – The proposed Project would include an OWTS; however, the Project site is presently prohibited from the development of an OWTS in the RWQCB’s Basin Plan. Onsite disposal of wastewater through the proposed OWTS is proposed via spray irrigation over large turf and forested lawns and water would not enter the groundwater; therefore, no impacts to groundwater are anticipated. The City has found that with incorporation of mitigation measures in Section 3.7, Hydrology and Water Quality, the proposed system would adequately manage wastewater for the proposed Project.</td>
</tr>
<tr>
<td>LU Policy 3.1.1: The City shall ensure visitor-serving and recreational uses are compatible with the natural resources and aesthetic values of the area.</td>
<td>Potentially Consistent – The proposed Project is zoned and intended for a hotel development and is one of the few sites in the City so designated. However, the proposed Project would substantially alter the existing physical character of the site and vicinity and would contrast with the existing natural and aesthetic characteristics of the area. Although proposed landscaping would reduce the visual contrast, proposed large structures and retaining walls would substantially alter the viewshed. However, proposed mitigation measures would ensure Project policy consistency. See Section 3.1, Aesthetics and Visual Resources.</td>
</tr>
</tbody>
</table>
Table 3.10-1. General Plan and Local Coastal Program Policy Compliance (Continued)

<table>
<thead>
<tr>
<th>Policy</th>
<th>Consistency Finding and Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>LU Policy 4.1.6: The City shall promote extensive landscaping in new projects while emphasizing low volume irrigation and the use of native, fire-resistant and drought-tolerant plant materials.</td>
<td>Potentially Consistent – Landscape design would include low volume irrigation and the use of native fire-resistant and drought-tolerant plant materials in accordance with the LACFD Fuel Modification Program; however, proposed landscaping would appear to exceed the City’s maximum allowable water allocation. See also Section 3.1, Aesthetics and Visual Resources, Section 3.8, Utilities, and Section 3.6, Fire Protection and Hazardous Materials.</td>
</tr>
<tr>
<td>LU Policy 4.1.7: The City shall require visually aesthetic screening of service areas and well landscaped parking lots.</td>
<td>Potentially Consistent – The proposed parking and service areas would be screened with native vegetation, including California live oaks and California black walnut trees. Additionally, the Project would include a four-level subsurface parking area to reduce the area required for surface parking, which would further reduce aesthetic impacts of onsite parking.</td>
</tr>
<tr>
<td>LU Policy 4.3.2: The City shall require buildings within the Civic Center Area to reflect (a) the uniqueness of this location as the City’s town center, (b) its close proximity to the beach and ocean, and (c) a “community village” character with small-scale, low-rise buildings. Development in the Civic Center will be guided by those policies and implementation measures in the Plan that are generally applicable to commercial development.</td>
<td>Potentially Consistent – The proposed Project’s Spanish Colonial-style architecture is found throughout Malibu and would be architecturally compatible with the Civic Center. Proposed mitigation measures would reduce Project inconsistency with this policy. See Section 3.1, Aesthetics and Visual Resources.</td>
</tr>
<tr>
<td>General Plan – Open Space and Recreation Element</td>
<td></td>
</tr>
<tr>
<td>OS Policy 1.2.3: The City shall require development to link and integrate open space visually, and link open space to activity centers, other open spaces and scenic routes through a system of trails.</td>
<td>Potentially Consistent – The Project would alter the visual continuity that presently exists between the Project site and surrounding parks and open space on Pepperdine, Malibu Bluffs Park and the Crummer property and open hillsides to the north. Incorporation of mitigation measures in Section 3.4, Biological Resources would include a more densely vegetated hillside open space corridor that would help to visually link the Project site to surrounding open spaces. As proposed, the Project does not currently include a trail easement to accommodate the proposed Malibu Pacific Trail along Malibu Canyon Road or Civic Center Way as required in the LCP. However, mitigation measures in Section 3.11, Traffic and Transportation would ensure consistency with this policy.</td>
</tr>
</tbody>
</table>
Table 3.10-1. General Plan and Local Coastal Program Policy Compliance (Continued)

<table>
<thead>
<tr>
<th>Policy</th>
<th>Consistency Finding and Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Plan – Conservation Element</td>
<td></td>
</tr>
<tr>
<td>CON Policy 1.1.1:</td>
<td>Potentially Consistent – The proposed Project would remove and/or damage substantial coastal sage scrub habitat that currently supports habitat linkages between the Environmentally Sensitive Habitat Area (ESHA) within the public trust lands of Malibu Bluffs Park and the larger open spaces within the Santa Monica Mountains. However, incorporation of mitigation measures to create native woodlands on Project hillside and natural areas would address this impact. See Section 3.4, Biological Resources.</td>
</tr>
<tr>
<td>The City shall minimize disruption of natural systems and areas rich in biodiversity and avoid consumption of ecologically sensitive lands including ESHAs, significant watersheds, wildlife habitat linkages, disturbed sensitive resource areas, blueline streams and significant oak woodlands.</td>
<td></td>
</tr>
<tr>
<td>CON Policy 1.1.4:</td>
<td>Potentially Consistent – The proposed Project would potentially impact onsite habitats and area habitat linkages between ESHA. However, there is no ESHA on the Project site; therefore, no ESHA would be impacted by the Project. Mitigation measures to create native woodlands on Project hillsides and natural areas would address the impact to habitat linkages. See Section 3.4, Biological Resources.</td>
</tr>
<tr>
<td>The City shall protect ESHAs as a priority over development and against any significant disruption of habitat values.</td>
<td></td>
</tr>
<tr>
<td>CON Policy 1.2.7:</td>
<td>Potentially Consistent – The proposed Project would result in increased night lighting that may affect wildlife; however, incorporation of mitigation measures included in Section 3.4, Biological Resources, would reduce impacts to remaining and proposed natural areas on the Project site and vicinity.</td>
</tr>
<tr>
<td>The City shall reduce impacts resulting from night lighting so as not to disturb natural habitats.</td>
<td></td>
</tr>
<tr>
<td>CON Policy 2.1.2:</td>
<td>Potentially Consistent – The proposed Project would result in the excavation and removal of two archaeological sites; however, implementation of mitigation measures proposed in Section 3.3, Cultural Resources would require redesign on the proposed Project to avoid direct impacts to the most sensitive portions of the site. With implementation of these measures and others outlined in the 2012 Cultural Resources Management Plan (CRMP), the most sensitive cultural resource areas would be protected from destruction or alteration and would sufficiently mitigate impacts to onsite cultural resources, consistent with this policy.</td>
</tr>
<tr>
<td>The City shall avoid the destruction or alteration of cultural resources.</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.10-1. General Plan and Local Coastal Program Policy Compliance (Continued)

<table>
<thead>
<tr>
<th>Policy</th>
<th>Consistency Finding and Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Plan – Circulation and Infrastructure Element</td>
<td></td>
</tr>
<tr>
<td>C Policy 1.1.1: Where level of service at signalized intersections and roadways is below LOS C, the City shall ensure that proposed development maintains the then current LOS. Where LOS at signalized intersections and roadways is at LOS C or above, the City shall ensure that proposed development (1) does not cause a degradation of LOS greater than or equal to two% in the circumstances set forth in Land Use Implementation Measure 70 and (2) does not degrade LOS below LOS C.</td>
<td>Potentially Consistent – The proposed Project would increase area traffic. The Applicant-prepared traffic study, which was peer reviewed and approved by an independent transportation consultant, finds that Project-related impacts to area intersections can be successfully mitigated. Final plans would be reviewed and approved by the City. See Section 3.11, Traffic and Transportation.</td>
</tr>
<tr>
<td>C Policy 1.3.1: The City shall require sufficient off-street parking.</td>
<td>Potentially Consistent – The Project includes a variance for the provision of parking. The M.M.C. calls for 939 spaces, but the traffic study determined that peak demand would be 509 spaces: the proposed Project includes 543 spaces. The variance request would need to be reviewed and approved by the City, ensuring that existing plans adequately accommodate all parking needs for employees and visitors. See Section 3.11, Traffic and Transportation.</td>
</tr>
<tr>
<td>General Plan – Safety and Health Element</td>
<td></td>
</tr>
<tr>
<td>S Policy 1.2.1: The City shall require development to provide for analyses of site safety related to potential hazards of fault rupture, earthquake ground shaking, liquefaction, and rockfalls.</td>
<td>Potentially Consistent – The proposed Project would be constructed over the Malibu Bowl Fault and the Malibu Coast Fault Zone, which traverses the southern portion of the site; however, a geotechnical analysis of the Project site indicates that these faults are not active and that no significant geologic safety hazards would result from the Project. See Section 3.5, Geology and Soils.</td>
</tr>
<tr>
<td>S Policy 1.2.2: The City shall require development to provide site safety analyses related to landsliding, debris flows, expansive soils, collapsible soils, erosion/sedimentation, and groundwater effects.</td>
<td>Potentially Consistent – Portions of the proposed Project would be constructed in areas subject to historic landslides and over moderately expansive soils; however, geotechnical analysis indicates that potential impacts can be fully mitigated. See Section 3.5, Geology and Soils.</td>
</tr>
<tr>
<td>General Plan – Noise Element</td>
<td></td>
</tr>
<tr>
<td>N Policy 1.1.2: The City shall protect noise sensitive land uses from negative impacts of proximity to noise generating uses.</td>
<td>Potentially Consistent – Operation of outdoor function areas, including the event lawns and outdoor pool, would likely exceed City noise thresholds at adjacent sensitive receptors. However, mitigation measures requiring limits on outdoor event amplified music and regular monitoring of onsite events would ensure consistency with this policy. See Section 3.12, Noise.</td>
</tr>
</tbody>
</table>
Table 3.10-1. General Plan and Local Coastal Program Policy Compliance (Continued)

<table>
<thead>
<tr>
<th>Policy</th>
<th>Consistency Finding and Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUP Policy 2.25 New development shall provide off-street parking sufficient to serve the approved use in order to minimize impacts to public street parking available for coastal access and recreation.</td>
<td>Potentially Consistent – As discussed in context for C Policy 1.3.1 above, the Project would provide adequate parking and is not anticipated to result in overflow parking on public streets. However, the Project site’s Malibu Canyon Road frontage is currently used as limited overflow parking (e.g., up to 30 cars) for the often overcrowded recreation and coastal access parking occurring in Malibu Bluffs Park. Construction of the proposed Project would restrict public parking along the site’s frontage and would potentially adversely affect public street parking available for coastal access and recreation. After construction is complete, on street parking will resume in certain locations, with portions removed for safety purposes around the vehicular driveways. However, mitigation measures requiring provision of replacement parking would ensure consistency with this impact. See Section 3.11, Transportation and Traffic.</td>
</tr>
<tr>
<td>LUP Policy 2.27 The implementation of restrictions on public parking, which would impede or restrict public access to beaches, trails or parklands shall be prohibited except where such restrictions are needed to protect public safety and where no other feasible alternative exists to provide public safety. Where feasible, an equivalent number of public parking spaces shall be provided nearby as mitigation for impacts to coastal access and recreation.</td>
<td>Potentially Consistent – The Project would eliminate on street parking for up to 30 cars on Malibu Canyon Road. This parking is north of PCH and therefore not in close proximity to coastal recreation; however, due to limited coastal parking at Malibu Bluffs Park, onstreet parking along Malibu Canyon Road is commonly used for overflow parking during busy periods. However, mitigation measures requiring provision of replacement parking would ensure consistency with this impact. See Section 3.11, Transportation and Traffic.</td>
</tr>
<tr>
<td>LUP Policy 2.33 Priority shall be given to the development of visitor-serving and commercial recreational facilities designed to enhance public opportunities for coastal recreation. On land designated for visitor-serving commercial and/or recreational facilities, priority shall be given to such use over private residential or general commercial development. New visitor-serving uses shall not displace existing low-cost visitor-serving uses unless an equivalent replacement is provided.</td>
<td>Potentially Consistent – The Project includes visitor-serving uses and is properly designated for the visitor-serving commercial uses; no existing low-cost visitor-serving uses would be being displaced.</td>
</tr>
</tbody>
</table>

2 AMEC staff have observed as many as 10 cars parked along this segment of road during overflow conditions at Malibu Bluffs Park; however, parking would remain available on PCH west of the Park entrance and on the north side of Malibu Canyon Road.
Table 3.10-1. General Plan and Local Coastal Program Policy Compliance (Continued)

<table>
<thead>
<tr>
<th>Policy</th>
<th>Consistency Finding and Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUP Policy 2.35 New development of luxury overnight visitor-serving accommodations shall be designed to provide for a component of lower cost overnight visitor accommodations (e.g. campground, RV park, hostal, or lower cost hotel/motel). The lower-cost visitor accommodations may be provided onsite, offsite, or through payment of an in-lieu fee into a fund to subsidize the construction of lower-cost overnight facilities in the Malibu-Santa Monica Mountains Coastal Zone area of Los Angeles County or Ventura County. The Applicant shall be required to provide lower-cost overnight accommodations consisting of 15% of the number of luxury overnight accommodations that are approved.</td>
<td>Potentially Consistent – The proposed Project does not include lower cost overnight accommodations. As such, an in-lieu fee would need to be paid to the City to support lower-cost visitor accommodations in the area. The amount of the fee would be equivalent to $10,419 per required unit of lower cost overnight accommodations, plus an additional amount for inflation from January 2000 to the date of approval of the coastal development permit, in accordance with LIP Section 12.10, New Luxury Overnight Accommodations. Upon payment of this assessed fee, the proposed Project would be potentially consistent with this policy requirement.</td>
</tr>
<tr>
<td>LUP Policy 2.37 Priority shall be given to the development of visitor-serving commercial and/or recreational uses that complement public recreation areas or supply recreational opportunities not currently available in public parks or beaches. Visitor-serving commercial and/or recreational uses may be located near public park and recreation areas only if the scale and intensity of the visitor-serving commercial recreational uses is compatible with the character of the nearby parkland and all applicable provisions of the LCP.</td>
<td>Potentially Consistent – The proposed Project would not be highly visible from Malibu Bluffs Park. Proposed development would be visible from areas trails, but would constitute a minor change in existing views from trail locations. See Section 3.1, Aesthetics and Visual Resources.</td>
</tr>
<tr>
<td>LUP Policy 2.49 A trail offer of dedication shall be required in new development where the property contains a LCP mapped trail alignment or where there is substantial evidence that prescriptive rights exist. An existing trail, which has historically been used by the public, may be relocated as long as the new trail alignment offers equivalent public use. Both new development and the trail alignment shall be sited and designed to provide maximum privacy for residents and maximum safety for trail users.</td>
<td>Potentially Consistent – The proposed Project includes sidewalk improvements along portions of Malibu Canyon Road to link to PCH, but lacks such linkage along the proposed trail corridor to Civic Center Road where evidence of ongoing pedestrian activity exists. In addition, the proposed Project does not include trail easement dedication along Civic Center Way, although evidence of ongoing pedestrian use (e.g., dirt trails) exists along this corridor as well. Construction of a sidewalk/trail along Malibu Canyon Road and dedication of an easement and payment of a pro-rata share of funds for trail construction along Civic Center Way would mitigate these impacts. See Section 3.11, Traffic and Transportation.</td>
</tr>
</tbody>
</table>
Table 3.10-1. General Plan and Local Coastal Program Policy Compliance (Continued)

<table>
<thead>
<tr>
<th>Policy</th>
<th>Consistency Finding and Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUP Chapter 3 (Marine and Land Resources)</td>
<td></td>
</tr>
<tr>
<td>Coastal Act Policies, Public Resources Code Section 30231 The biological productivity and the quality of coastal waters, streams, wetlands, estuaries, and lakes appropriate to maintain optimum populations of marine organisms and for the protection of human health shall be maintained and, where feasible, restored through, among other means, minimizing adverse effects of waste water discharges and entrainment, controlling runoff, preventing depletion of ground water supplies and substantial interference with surface water flow, encouraging waste water reclamation, maintaining natural vegetation buffer areas that protect riparian habitats, and minimizing alteration of natural streams.</td>
<td>Potentially Consistent – See discussion for LU Policy 1.1.3 from the General Plan Land Use Element describing potential consistency with the incorporation of mitigation.</td>
</tr>
<tr>
<td>LUP Policy 3.45 All new development shall be sited and designed so as to minimize grading, alteration of physical features, and vegetation clearance in order to prevent soil erosion, stream siltation, reduced water percolation, increased runoff, and adverse impacts on plant and animal life and prevent net increases in baseline flows for any receiving water body.</td>
<td>Potentially Consistent – The proposed Project would include approximately 229,000 cubic yards (cy) of cut and 40,000 cy of fill, with approximately 190,000 cy of material proposed for export. Overall site topography of the mesa-top would be lowered by approximately five feet and extensive areas of manufactured cut and fill slopes installed; however, the majority of grading proposed would be associated with the understructure of the hotel and parking area, removal and recompack, and safety, which are exempt from the maximum allowed onsite grading limits. Approximately 50,000 cy of grading would be considered non-exempt. The Project would also result in the removal of virtually all native vegetation from the site, including eight to 10 acres of successional coastal sage scrub. See Section 3.4, Biological Resources, Section 3.5, Geology and Soils, and Section 3.7, Hydrology and Water Quality.</td>
</tr>
</tbody>
</table>
Table 3.10-1. General Plan and Local Coastal Program Policy Compliance (Continued)

<table>
<thead>
<tr>
<th>Policy</th>
<th>Consistency Finding and Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUP Policy 3.59 All new development shall be sited and designed to minimize required fuel modification and brushing to the maximum extent feasible in order to minimize habitat disturbance or destruction, removal or modification of natural vegetation, and irrigation of natural areas, while providing for fire safety, as required by Policies 4.45 through 5.54. Development shall utilize fire resistant materials and incorporate alternative fuel modification measures, such as fire walls (except where this would have impacts on visual resources), and landscaping techniques, where feasible, to minimize the total area modified. All development shall be subject to applicable federal, state and county fire protection requirements.</td>
<td>Potentially Consistent – The Project has developed a fuel modification map that has been reviewed and approved by City staff. The proposed Project would result in loss of native habitat, including eight to 10 acres of coastal sage scrub, due to fuel modification, construction of the Project, and wastewater spray irrigation. Only limited amounts of existing native vegetation would remain onsite; however, acquisition by the Applicant of a conservation easement replacing the impacted habitat at a 2.7:1 ratio successfully mitigates this impact. Additionally, Project plans have been reviewed by the LACFD and approved pending a flow check of vicinity water systems. See Section 3.4, Biological Resources and Section 3.6, Fire Protection and Hazardous Materials.</td>
</tr>
<tr>
<td>LUP Policy 3.63 New developments shall be sited and designed to preserve oak, walnut sycamore, alder, toyon, or other native trees that are not otherwise protect as ESHA. Removal of native trees shall be prohibited except where no other feasible alternative exists. Structures, including roads or driveways, shall be sited to prevent any encroachment into the root zone and to provide an adequate buffer outside of the root zone of individual native trees in order to allow for future growth.</td>
<td>Potentially Consistent – The proposed Project would result in the removal and relocation of several existing California black walnut trees on the Project site. However, the limited number of small stature native trees does not meet the definition of protected trees in LIP Chapter 5. These trees would be removed and relocated or replaced on the property. The Project’s Landscape Plan incorporates some native shrubs, and groundcover. See Section 3.4, Biological Resources and Section 3.6, Fire Protection and Hazardous Materials.</td>
</tr>
</tbody>
</table>
| **LUP Policy 3.95** New development shall be sited and designed to protect water quality and minimize impacts to coastal waters by incorporating measures designed to ensure the following:
 a. Protecting areas that provide important water quality benefits, areas necessary to maintain riparian and aquatic biota and/or that are susceptible to erosion and sediment loss.
 b. Limiting increases of impervious surfaces.
 c. Limiting land disturbance activities such as clearing and grading, and cut-and-fill to reduce erosion and sediment loss.
 d. Limiting disturbance of natural drainage features and vegetation. (Resolution No. 07-04 (LCPA No. 05-001)) | Potentially Consistent – The proposed Project would increase impervious surfaces and remove substantial areas of native hillside vegetation. The Project would also result in approximately 229,000 cy of cut and 40,000 cy of fill with creation of manufactured slopes in many areas throughout the site; however, the majority of grading proposed would be associated with the understructure of the hotel and parking area, removal and recompaction, and safety, which are exempt from the maximum allowed onsite grading limits. Approximately 50,000 cy of grading would be considered non-exempt. See Section 3.4, Biological Resources and Section 3.5, Geology and Soils. |
Table 3.10-1. General Plan and Local Coastal Program Policy Compliance (Continued)

<table>
<thead>
<tr>
<th>Policy</th>
<th>Consistency Finding and Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUP Policy 3.96 New development shall not result in the degradation of the water quality of groundwater basins or coastal surface waters including the ocean, coastal streams, or wetlands. Urban runoff pollutants shall not be discharged or deposited such that they adversely impact groundwater, the ocean, coastal streams, or wetlands, consistent with the requirements of the Los Angeles Regional Quality Control Board's municipal stormwater permit and the California Ocean Plan.</td>
<td>Potentially Consistent – Project impacts to surface waters would generally be short-term during construction or until establishment of landscaping, and could be addressed through mitigation measures included in Section 3.7, Hydrology and Water Quality. See also discussion for LU Policy 1.1.3 from the General Plan Land Use Element above.</td>
</tr>
<tr>
<td>LUP Policy 3.100 New development shall be sited and designed to minimize impacts to water quality from increased runoff volumes and nonpoint source pollution. All new development shall meet the requirements of the Los Angeles Regional Water Quality Control Board (RWQCB) in the Standard Urban Storm Water Mitigation Plan For Los Angeles County and Cities in Los Angeles County (March 2000) or subsequent versions of this plan.</td>
<td>Potentially Consistent – See discussion for LUP Policy 3.96 above and LU Policy 1.1.3 from the General Plan Land Use Element above.</td>
</tr>
<tr>
<td>LUP Policy 3.125 Development involving onsite wastewater discharges shall be consistent with the rules and regulations of the L.A. Regional Water Quality Control Board, including Waste Discharge Requirements, revised waivers and other regulations that apply.</td>
<td>Potentially Consistent – The proposed Project is currently prohibited from developing an OWTS and associated discharges, due to inconsistency with RWQCB requirements within the Prohibition Area. Although the Applicant is seeking an exception from the RWQCB’s Basin Plan, the Project includes an OWTS and, as such, is potentially inconsistent with this requirement. However, if an exemption is granted, the proposed Project is designed to be a zero discharge system, capable of treating and disposing of wastewater with no discharge to surface water bodies. The system is designed to dispose of all flows via evapotranspiration, and would therefore have no percolation into groundwater or the stormwater system. If the RWQCB determines that the Project’s plan for a zero discharge OWTS would not be feasible or consistent with the Basin Plan, then the Project would be required to connect to the City’s proposed Civic Center Wastewater Treatment Facility (CCWTF). See Section 3.7, Hydrology and Water Quality.</td>
</tr>
</tbody>
</table>
Table 3.10-1. General Plan and Local Coastal Program Policy Compliance (Continued)

<table>
<thead>
<tr>
<th>Policy</th>
<th>Consistency Finding and Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUP Policy 3.133 New development shall include protective setbacks from surface waters, wetlands and floodplains for conventional or alternative OSTSs, as well as separation distances between OSTS system components, building components, property lines, and groundwater. Under no conditions shall the bottom of the effluent dispersal system be within five feet of groundwater.</td>
<td>Potentially Consistent – The proposed Project’s OWTS is designed to be a zero discharge system, capable of treating and disposing of wastewater with no discharge to surface water bodies. The system is designed to dispose of all flows via evapotranspiration, and would therefore have no percolation into groundwater or the stormwater system. If the RWQCB determines that the Project’s plan for a zero discharge OWTS would not be feasible or consistent with the Basin Plan, then the Project would be required to connect to the City’s proposed CCWTF. Therefore, no impacts to groundwater would occur, consistent with this policy. See Section 3.7 Hydrology and Water Quality.</td>
</tr>
<tr>
<td>LUP Policy 3.134 The construction of private sewage treatment systems shall be permitted only in full compliance with the building and plumbing codes and the requirements of the Los Angeles RWQCB. A coastal development permit shall not be approved unless the private sewage treatment system for the project is sized and designed to serve the proposed development and will not result in adverse individual or cumulative impacts to water quality for the life of the project.</td>
<td>Potentially Consistent – See discussion for LUP Policy 3.125 above.</td>
</tr>
<tr>
<td>LUP Chapter 5 (New Development)</td>
<td></td>
</tr>
<tr>
<td>LUP Designation COMMERCIAL VISITOR SERVING (CV): The CV designation provides for visitor-serving uses such as hotels and restaurants that are designed to be consistent with the rural character and natural environmental setting, as well as public open space and recreation uses. Uses allowed in the other commercial categories may be permitted as part of projects approved on parcels designated CV, so long as at least 50% of the overall floor area of any individual project is devoted to visitor-serving uses. The maximum Floor to Area Ratio (F.A.R.) is 0.15. The F.A.R. may be increased to a maximum of 0.25 where public benefits and amenities are provided as part of the project. CV designations are divided into two levels of density. Hotels are only permitted in CV-2 designations, the highest density designation.</td>
<td>Potentially Consistent – The proposed Project is a commercial hotel in a portion of the Civic Center area designated as CV-2, which permits commercial visitor-serving land uses, including hotels. The proposed Project would be constructed to the maximum F.A.R. of 0.15 or 15%.</td>
</tr>
</tbody>
</table>
Table 3.10-1. General Plan and Local Coastal Program Policy Compliance (Continued)

<table>
<thead>
<tr>
<th>Policy</th>
<th>Consistency Finding and Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUP Policy 5.8 Pedestrian and bicycle circulation shall be required as part of all new commercial development.</td>
<td>Potentially Consistent – The proposed Project does not include pedestrian elements, such as sidewalks or trails along Malibu Canyon Road east of the Project entrance to Civic Center Way or dedication of easements and provision of funding for trail construction along Civic Center Way. However, mitigation measures included in Section 3.11, Traffic and Transportation would assure consistency with this policy.</td>
</tr>
<tr>
<td>LUP Policy 5.39 Any Coastal Development Permit for a land division resulting in the creation of additional lots shall be conditioned upon the retirement of development credits (TDCs) at a ratio of one credit per new lot created.</td>
<td>Potentially Consistent – The proposed Project includes the development of commercial airspace subdivisions to permit private ownership of all 146 hotel rooms and two retail tenant spaces. As part of the Project, the underlying parcels constituting the Project site will be merged. There would not be a net increase in the number of lots onsite.</td>
</tr>
<tr>
<td>LUP Policy 5.60 New development shall protect and preserve archaeological, historical and paleontological resources from destruction, and shall avoid and minimize impacts to such resources.</td>
<td>Potentially Consistent – The proposed Project would result in the excavation and removal of two archaeological sites; however, implementation of mitigation measures proposed in Section 3.3, Cultural Resources would require redesign on the proposed Project to avoid direct impacts to the most sensitive portions of the site. With implementation of these mitigation measures from the EIR and others outlined in the 2012 CRMP, the most sensitive cultural resource areas would be protected from destruction or alteration and would sufficiently mitigate impacts to onsite cultural resources, consistent with this policy.</td>
</tr>
<tr>
<td>LUP Policy 5.64 New development on sites identified as archaeologically sensitive shall include onsite monitoring of all grading, excavation and site preparation that involve earth moving operations by a qualified archaeologist(s) and appropriate Native American consultant(s).</td>
<td>Potentially Consistent – Onsite monitoring during construction within archaeologically sensitive areas would ensure consistency with this policy. See Section 3.3, Cultural Resources.</td>
</tr>
</tbody>
</table>
Table 3.10-1. General Plan and Local Coastal Program Policy Compliance (Continued)

<table>
<thead>
<tr>
<th>Policy</th>
<th>Consistency Finding and Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUP Policy 6.5 New development shall be sited and designed to minimize adverse impacts on scenic areas visible from scenic roads or public viewing areas to the maximum feasible extent. If there is no feasible building site location on the proposed project site where development would not be visible, then the development shall be sited and designed to minimize impacts on scenic areas visible from scenic highways or public viewing areas, through measures including, but not limited to, siting development in the least visible portion of the site, breaking up the mass of new structures, designing structures to blend into the natural hillside setting, restricting the building maximum size, reducing maximum height standards, clustering development, minimizing grading, incorporating landscape elements, and where appropriate, berming.</td>
<td>Potentially Consistent – The proposed Project would be highly visible from both PCH and Malibu Canyon Road, both City-designated scenic roads. The Project would constitute a substantial change from the current undeveloped aesthetic of the site; however, the site has been planned for hotel development since such a project was first approved in 1986. Proposed Project landscaping combined with proposed mitigation measures (e.g., increased building setbacks, reductions in maximum building height, and creation of native woodland) would help ensure Project consistency with this policy. See Section 3.1, Aesthetics and Visual Resources.</td>
</tr>
<tr>
<td>LUP Policy 6.7 The height of structures shall be limited to minimize impacts to visual resources. The maximum allowable height, except for beachfront lots, shall be 18 feet above existing or finished grade, whichever is lower. On beachfront lots, or where found appropriate through Site Plan Review, the maximum height shall be 24 feet (flat roofs) or 28 feet (pitched roofs) above existing or finished grade, whichever is lower. Chimneys and rooftop antennas may be permitted to extend above the permitted height of the structure.</td>
<td>Potentially Consistent – The proposed Project’s maximum building height is 28 to 30 ½ feet high, with a 32.4-foot elevator and rooftop access stairway in the main building. A variance for height in excess of the maximum allowed by LIP Section 3.6 would require review and approval by the City.</td>
</tr>
</tbody>
</table>
Table 3.10-1. General Plan and Local Coastal Program Policy Compliance (Continued)

<table>
<thead>
<tr>
<th>Policy</th>
<th>Consistency Finding and Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUP Policy 6.9 All new development shall be sited and designed to minimize alteration of natural landforms by:</td>
<td>Potentially Consistent. Please see discussion under LUP Policies 3.45 and 3.95 above.</td>
</tr>
<tr>
<td>a) Conforming to the natural topography.</td>
<td></td>
</tr>
<tr>
<td>b) Preventing substantial grading or reconfiguration of the project site.</td>
<td></td>
</tr>
<tr>
<td>c) Eliminating flat building pads on slopes. Building pads on sloping sites shall utilize split level or stepped-pad designs.</td>
<td></td>
</tr>
<tr>
<td>d) Requiring that man-made contours mimic the natural contours.</td>
<td></td>
</tr>
<tr>
<td>e) Ensuring that graded slopes blend with the existing terrain of the site and surrounding area.</td>
<td></td>
</tr>
<tr>
<td>f) Minimizing grading permitted outside of the building footprint.</td>
<td></td>
</tr>
<tr>
<td>g) Clustering structures to minimize site disturbance and to minimize development area.</td>
<td></td>
</tr>
<tr>
<td>h) Minimizing height and length of cut and fill slopes.</td>
<td></td>
</tr>
<tr>
<td>i) Minimizing the height and length of retaining walls.</td>
<td></td>
</tr>
<tr>
<td>j) Cut and fill operations may be balanced onsite, where the grading does not substantially alter the existing topography and blends with the surrounding area. Export of cut material may be required to preserve the natural topography.</td>
<td></td>
</tr>
<tr>
<td>LUP Policy 6.14 The height of permitted retaining walls shall not exceed six feet. Stepped or terraced retaining walls up to twelve feet in height, with planting in between, may be permitted. Where feasible, long continuous walls shall be broken into sections or shall include undulations to provide visual relief. Where feasible, retaining walls supporting a structure should be incorporated into the foundation system in a stepped or split level design. Retaining walls visible from scenic highways, trails, parks, and beaches should incorporate veneers, texturing and/or colors that blend with the surrounding earth materials or landscape.</td>
<td>Potentially Consistent: Although highly visible from PCH, a scenic roadway, the Project’s proposed retaining walls would be consistent with this requirement [standard for design is set forth in LIP Section 6.5(B)(3)]. See Section 3.1, Aesthetics and Visual Resources.</td>
</tr>
<tr>
<td>LUP Policy 6.21 New commercial development within the Civic Center shall be sited and designed to minimize obstruction to the maximum feasible extent of public views of the ridge lines and natural features of the Santa Monica Mountains through measures such as clustering development, and restricting height and bulk of structures.</td>
<td>Potentially Consistent: Proposed structures would obstruct portions of available Santa Monica Mountain views for both eastbound and westbound traffic on PCH, particularly of the lower ridgelines. However, all other views of the mountains for the remainder of the Project site would remain unobstructed. See Section 3.1, Aesthetics and Visual Resources.</td>
</tr>
</tbody>
</table>
Table 3.10-1. General Plan and Local Coastal Program Policy Compliance
(Continued)

<table>
<thead>
<tr>
<th>Policy</th>
<th>Consistency Finding and Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUP Policy 6.23 Exterior lighting (except traffic lights, navigational lights, and other similar safety lighting) shall be minimized, restricted to low intensity fixtures, shielded, and concealed to the maximum feasible extent so that no light source is directly visible from public viewing areas.</td>
<td>Potentially Consistent; Project lighting is proposed to be hooded, shielded, and directed downward to minimize light spill over, and dense landscaping plantings would also help minimize visibility of lighting; however, careful review of final design would be required to ensure the design, direction and screening mechanisms employed for all major lighting fixtures. See Section 3.1, Aesthetics and Visual Resources.</td>
</tr>
</tbody>
</table>

Upon completion, the proposed Project would contribute to the intensification of commercial development within the Civic Center to serve visitors and residents. Therefore, the proposed hotel uses would complement the surrounding existing and planned uses in the vicinity of the Project site and would not physically divide an established community. Impacts related to the division of an established community would be less than significant.

The proposed Project would result in elimination of all virtually existing native habitats onsite. However, there is no designated critical habitat on the site and it is not addressed in or protected under any habitat conservation plan or natural community conservation plan. Further, such impacts with respect to the removal and/or modification of intact coastal sage shrub, considered to be a sensitive vegetative community by the City, have already been successfully mitigated through purchase and dedication of offsite habitat and the Project would be subject to further mitigation to reduce impacts to biological resources (see Section 3.4, Biological Resources).

3.10.3.6 Residual Impacts

The proposed Project would not result in significant impacts to Land Use; therefore, no residual impacts would occur.
3.11 TRANSPORTATION AND TRAFFIC

This section analyzes the potential impacts to traffic based on the Transportation Impact Analysis (TIA) prepared by Overland Traffic Consultants, Inc. (OTC) for the proposed Project (see Appendix F; OTC 2013). OTC’s analysis was subject to several rounds of peer review by both City Engineering staff and the City of Malibu’s (City) consulting traffic engineer. AMEC reviewed this material for adequacy under the California Environmental Quality Act (CEQA) and incorporated the analysis into the following Transportation and Traffic section. This section also addresses impacts to pedestrian, transit, and bicycle facilities and users anticipated to result from construction and operation of the proposed Project.

The TIA contains analyses of local traffic circulation issues, focusing on potential increases in congestion at major intersections along Pacific Coast Highway (PCH). Two visits by OTC were made to the Project site in July 2012. During these site visits, OTC assessed existing traffic operations during the morning and afternoon weekday peak hours, as well as the weekend midday peak hours. These field surveys were conducted to assist in determining the roadway and intersection geometry and traffic signal operations. AMEC has also observed traffic operations, roadway conditions, on-street parking and pedestrian use on multiple visits to the Project site.

The roadways and intersections included in the TIA were identified jointly by OTC and City staff based on 1) the likely magnitude and location of Project-generated traffic, 2) the potential for newly generated trips to impact streets and roadways in the Project area and 3) conformance with the City’s Traffic Impact Analysis Guidelines. Existing and Project conditions have been evaluated at 10 key intersections during the weekday morning and afternoon peak hours, as well as the weekend midday peak hours. As required by the City, the traffic analyses were conducted in accordance with the City’s Traffic Impact Analysis Guidelines.

The scope and methodology of the TIA was developed in consultation with City staff and conforms to standards for such analyses set forth in adopted City Traffic Impact Analysis Guidelines. The TIA and this section consider and assess intersections that could be substantially affected by Project-generated traffic. The adequacy of existing and proposed parking areas to accommodate parking demand generated from Project implementation, as well as the Project’s effect on parking facilities in the vicinity of the Project site associated with existing businesses and other vehicular destinations, are also assessed.
3.11 TRANSPORTATION AND TRAFFIC

Project Details

The proposed Project would be located on a 27.8-acre site at the northeast corner of PCH and Malibu Canyon Road. Primary access to the site would be provided by a single divided limited access driveway of approximately 120 feet in width off of Malibu Canyon Road, located approximately 680 feet north of the PCH centerline (Main Entrance). Vehicular access would primarily consist of right turns in and out of this driveway. Left turn access by vehicles proceeding southbound on Malibu Canyon Road toward PCH would be controlled by a proposed new raised center median on Malibu Canyon Road, approximately 1,300 feet in length and four to 10 feet in width.

Project site access would also include two additional 16-foot wide secondary driveways on Malibu Canyon Road; one 200 feet north and the other 30 feet south of the Main Entrance (referred to herein as the “northern driveway” and “southern driveway,” respectively). These two driveways would connect to a 26-foot wide internal road system for service, delivery, employee and fire emergency access. The northern driveway would provide primary service access to the hotel and a 40-space employee parking lot, accommodate deliveries to the site, provide external services access (e.g., cleaning, repairs, landscaping, etc), accommodate access for hotel guest loading and unloading, and provide for emergency access to the perimeter and the interior of the Project site. The northern driveway would be open to traffic at Malibu Canyon Road, but “chained off” past the delivery bays and employee parking area to limit access to the secondary hotel buildings. ¹ The southern driveway would be an emergency access point only and would

¹ The OTC study identifies the northern driveway being used for hotel guest loading and unloading. Guests would use the main access driveway for registration purposes, exit through the Main Exit and re-enter the site at the northern driveway, unload their vehicles at the secondary hotel building(s), then use internal service access to reach the parking garage. Departing guests would also presumably use the northern driveway. It is unclear how the chains across the road would be lowered or opened for guests.
3.11 TRANSPORTATION AND TRAFFIC

be chained in two locations, including its intersection with Malibu Canyon Road and at
the intersection of the service road with the guest registration parking lot.

The proposed Project would provide 543 designated parking spaces, including 54 parking
spaces in two separate at-grade parking lots, an employee parking lot with 40 parking
spaces and a guest registration parking lot with 14 parking spaces. Additionally, a four-
level parking structure (with three subterranean levels) located on the western side of the
property would contain the remainder of the parking spaces, 489 spaces, for guests. An
additional 238 cars could be parked to serve major events as necessary using valet
parking to stack or tandem park cars within the parking structure, so that the proposed
Project could accommodate a total of 781 cars onsite if needed.

The proposed Project includes construction of 800 feet of frontage improvements along
Malibu Canyon Road, extending from the intersection of Malibu Canyon Road with PCH
past the main entrance to the northern driveway. These improvements include a sidewalk
or trail of five to six feet in width, allowing hotel guests, visitors and employees to walk
from the main entrance to PCH.² No frontage improvements, sidewalk, or trails are
proposed along the remaining 725 feet of the site from the northern driveway to the
intersection of Malibu Canyon Road with Seaver Way [i.e., Pepperdine University
(Pepperdine) access] and Civic Center Way. As such, the proposed Project does not
provide pedestrian facilities along this portion of the site’s frontage.

3.11.1 Existing Conditions

3.11.1.1 Area Roadway Network

The Project site is located on the northeast corner of Malibu Canyon Road and PCH in
the City. It is bounded by PCH to the south, Malibu Canyon Road to the northwest, and
Civic Center Way to the northeast (see Figure 3.11-1). PCH and Malibu Canyon Road
both provide regional access through the City.

The City has four roadway classifications that apply to the local road network including,
Major Arterials, Minor Arterial, Collectors, and Locals (City of Malibu 1995).

- Major arterial roadways provide access from rural to urban areas and access to
 freeways. A typical major arterial consists of a 100-foot right-of-way with six
 lanes and controlled access, divided by a raised or striped median. Major arterials,

² City of Malibu policy favors installation of more informal trails such as use of decomposed granite over
developed concrete sidewalks.
serving as an intercity or community facility carry the majority of traffic between
the City, adjacent communities, and the freeway system.

- Minor arterial streets provide through service to commercial areas and between
cities and may also provide access to highways and freeways. A minor arterial
typically consists of an 80-foot right-of-way with four lanes, typically with a
raised or painted median.

- Collector streets collect traffic from local streets within residential areas.
“Collectors” are typically characterized by both two-lane and four-lane undivided
roadways with 64-foot rights-of-way. Collectors within this classification move
moderate volumes of traffic through the community and serve as routes for locally
generated traffic to connect to major and minor arterials.

- Local streets provide access to individual properties. “Locals” are two-lane,
undivided roadways with frequent driveway access and 48- to 58-foot rights-of-
way, although many of the City’s canyon access roads have less right-of-way.
These roads are intended to provide access to adjacent residential land uses and to
feed traffic to collectors and arterials.

The primary roadways in the Project vicinity are described below.

Pacific Coast Highway: PCH would typically be designated a major arterial. However,
given its topographical and safety constraints, PCH in the City is limited to four lanes and
is designated as a modified major arterial (City of Malibu 1995). PCH is a state route that
generates traffic east and west through the Project area. In the Project vicinity, PCH provides four
travel lanes (i.e., two in each direction) with a third eastbound lane provided on its
eastbound approach to Webb Way. PCH is posted with a speed limit of 50 miles per hour
(mph) west of Malibu Canyon Road and 45 mph east of Malibu Canyon Road.

PCH is designated as a route in the Los Angeles County Congestion Management Plan
(CMP). Traffic volumes on PCH range from approximately 35,700 Average Daily Trips
(ADT) (i.e., vehicles per day) between John Tyler Drive and Malibu Canyon Road (west
of the Project site) to approximately 31,000 ADT at Paradise Cove Road (approximately
five miles to the west). In the vicinity of the Project site, PCH carries approximately
46,400 ADT at its intersection with Cross Creek Road (City of Malibu 2012).
Study Area Intersections and Existing Transportation Facilities

Legend
- City of Malibu
- Los Angeles County
- Study Intersection and Number (see key below for LOS definition)

Legend
- Proposed Project Location
- Study Intersection and Number (see key for LOS definition)
- Class III Bike Lane
- Metro Route 534 and Bus Stops

Scale in Feet

Study Intersection Level of Service (LOS)
- Excellent/Good (A-C)
- Fair (D)
- Poor/Failure (E-F)

Notes:
- Worst-case LOS are shown.
- No LOS shown at Intersection 3 as it does not yet exist.

Intersection Problems
1. Malibu Bluffs State Park & PCH – Excessive 0.5-mile long southbound vehicle queues.
2. Malibu Canyon Road & PCH – Excessive 0.5-mile long southbound vehicle queues.
3. Webb Way & PCH – Excessive peak hour congestion; lack of left turn storage.
4. Cross Creek Road & PCH – Excessive congestion on the western leg of the intersection.

Study Intersection Level of Service (LOS)
- Excellent/Good (A-C)
- Fair (D)
- Poor/Failure (E-F)

Notes:
- Worst-case LOS are shown.
- No LOS shown at Intersection 3 as it does not yet exist.

Intersection Problems
2. Malibu Canyon Road & PCH – Excessive 0.5-mile long southbound vehicle queues.
6. Webb Way & PCH – Excessive peak hour congestion; lack of left turn storage.
7. Cross Creek Road & PCH – Excessive congestion on the western leg of the intersection.
Malibu Canyon Road: Malibu Canyon Road is designated a north-south arterial roadway that extends from PCH across the Santa Monica Mountains National Recreation Area (SMMNRA) to the Ventura Freeway (Highway 101) (as Las Virgenes Road). Malibu Canyon Road generally has one lane in each direction north of Civic Center Way. Two lanes in each direction are provided between PCH and Civic Center Way, with the road narrowing to two lanes northeast of Civic Center Way. Near Mulholland Highway, Malibu Canyon Road becomes Las Virgenes Road, which connects with Highway 101 three miles to the north to provide regional access to communities south of Highway 101. Malibu Canyon Road carries approximately 9,400 vehicles per day near its intersection with PCH. Additionally, Malibu Canyon Road is estimated to carry 23,009 ADT north of Civic Center Way (City of Malibu 2012).

Civic Center Way: Civic Center Way is a two-lane east-west collector roadway that borders the Project site on the north and east (City of Malibu 1995). Civic Center Way connects to Malibu Canyon Road to the west, Cross Creek Road to the east, and includes a short tight U-turn “onramp” connection for eastbound traffic onto westbound PCH adjacent to the Project site. Civic Center Way adjacent to the site traverses Winter Canyon Road, provides access to two schools and several neighborhoods, and is a relatively high speed road with a narrow cross section. Civic Center Way is estimated to carry 5,082 ADT between Webb Way and Cross Creek (City of Malibu 2012).

Stuart Ranch Road / Webb Way: Stuart Ranch Road and Webb Way are two-lane north-south local streets that provide access to vacant and developed lands within the City’s Civic Center. Webb Way provides a short connection between Civic Center Way and PCH, and Stuart Ranch Road serves areas north of Civic Center Way (City of Malibu 1995).

Cross Creek Road: Cross Creek Road is a two-lane north-south local street that provides access from PCH to the City’s primary commercial centers (City of Malibu 1995).
3.11.1.2 Traffic Safety and Operations on PCH

Traffic safety is an important concern to residents and public agencies along the 21-mile reach of PCH in the City. PCH serves as a major commuter route, providing access to local residential neighborhoods and business as well as to tens of thousands of beachgoers daily during the spring, summer and fall months. In addition to serving as a major traffic arterial, PCH also supports high pedestrian and bicycle use, particularly along certain segments. The 2011 Pacific Coast Highway Traffic Safety Evaluation (PCH Traffic Safety Evaluation) prepared by the Los Angeles County Sheriff’s Department (LASD) found that segments of PCH currently have inadequate capacity to carry existing commuter traffic volumes and are subject to gridlock on peak summer days (LASD 2011). These conditions result in a more dangerous accident-prone roadway environment with the most common accident involving low-speed vehicle rear-end collisions. Additional concerns exist at particular intersections for the safety of pedestrian crossings and with bicycle traffic sharing travel lanes with traffic moving at 45-50 mph.

In the immediate Project vicinity, the PCH Traffic Safety Evaluation notes that the collision rate at the intersection of Malibu Canyon Road with PCH is the second highest in the City. Malibu Canyon Road carries the highest volume of traffic of any surface street in the City and regularly experiences southbound left turn vehicle queues of 1/2 mile in length, which reach from the intersection at PCH to (and sometimes beyond) the intersection with Civic Center Way. These queues exacerbate cut-through traffic past the schools and neighborhoods on Civic Center Way as motorists attempt to avoid delays associated with this queue.³

³ AM Peak hour southbound left turns onto Civic Center Way are prohibited from Malibu Canyon Road as are PM Peak Hour westbound right turns from PCH onto Webb Way to access Civic Center Way. These measures were aimed at preventing cut through traffic, although exactly how effective the measures are has yet to be determined.
The PCH Traffic Safety Evaluation also identifies a lack of storage capacity on Webb Way and the PCH left turn lanes, as well as poor signal timing and a lack of sidewalks on the north side of PCH. Additionally, at the intersection of Cross Creek Road and PCH, the report identifies westbound congestion, poor signal timing, and lack of a sidewalk on the south side of PCH as key concerns.

For the intersections along PCH in the Project vicinity, the PCH Traffic Safety Evaluation generally recommends installation of smart signal technology and/or changes in signal timing, installation of improved lighting to increase visibility and pedestrian safety, construction of acceleration and deceleration lanes, pedestrian improvements such as sidewalk construction or use of “smart crosswalks,” and installation of a Class II bike path on PCH as an area-wide improvement (see Section 3.11.1.6, Bicycle Facility Classifications). In order to address these safety issues in a manner consistent with City policy, the City is also conducting its own safety study of PCH.

3.11.1.3 Intersection Traffic Counts

Existing traffic counts were recorded in July 2012 by OTC at each of the TIA intersections. The following 10 study intersections within the Project vicinity, from west to east, were evaluated (refer to Figure 3.11-1):

1. Kanan Dume Road & PCH
2. Malibu Canyon Road & PCH
3. Malibu Canyon Road & Main Access Driveway at the proposed Project
4. Malibu Canyon Road & Civic Center Way
5. Civic Center Way & Webb Way/Stuart Ranch Road
6. Webb Way & PCH
7. Cross Creek Road & PCH
8. Malibu Pier Signal & PCH
9. Carbon Canyon Road & PCH
10. Las Flores Canyon Road & PCH

Traffic counts are provided in Appendix F. Weekday traffic counts were conducted on Thursday, July 12, 2012 from 7:00 a.m. to 9:00 a.m. and from 4:00 p.m. to 6:00 p.m.

4 Smart crosswalks are enhanced crosswalk system designed with lights, signage, or other systems to alert approaching motorists to the presence of a pedestrian at a street crossing.
Additionally, weekend traffic counts were conducted on Saturday, July 14, 2012 from 11:00 a.m. to 1:00 p.m.

The July 2012 counts were conducted when Pepperdine was in summer session. Consequently, while PCH is typically busiest during the summer, it is likely that more Pepperdine or student-associated vehicles may be expected during the fall, winter, and spring seasons. In accordance with the City’s Traffic Impact Analysis Guidelines, the TIA did not include pedestrian or bicyclist counts.

The traffic conditions analysis was conducted using the Intersection Capacity Utilization (ICU) method. The ICU method uses a ratio of the traffic volume over intersection capacity to establish the level of traffic congestions. This volume-to-capacity (V/C) ratio defines the proportion of an hour necessary to accommodate all the traffic moving through the intersection assuming all approaches were operating at full capacity.

3.11.1.4 Intersection Operations

Because traffic flow on arterials is most constrained at intersections, detailed traffic flow analyses focus on operating conditions of critical intersections during peak travel periods. The quality of service offered by any roadway can be described by measuring its level of service (LOS), a qualitative method for describing operational conditions within a traffic stream or at an intersection, generally in terms of such service measures as speed and travel time, freedom to maneuver, traffic interruptions, and comfort and convenience. In rating intersection operations, LOS A through F are used, where LOS A indicates free-flow operations and LOS F indicates congested operations. The City, through its Traffic Impact Analysis Guidelines, considers LOS C as the minimum acceptable operating standard for intersections for signalized and unsignalized intersections in the City during peak hour traffic (OTC 2013).

The Transportation Research Board’s (TRB) 2000 *Highway Capacity Manual* (HCM) is the standard used for evaluating all types of LOS (e.g., signalized, unsignalized, freeway intersections). The V/C ratio and the average control delay are used to determine intersection the LOS for signalized and unsignalized (e.g., stop-sign controlled) intersections respectively.

The LOS criteria for unsignalized intersections have different threshold values than those for signalized intersections primarily because drivers expect different levels of performance from different types of transportation facilities. The expectation is that a signalized intersection is designed to carry higher traffic volumes than an unsignalized
intersection. Thus, a higher level of control-related delay is acceptable at a signalized intersection for the same LOS. The LOS criteria are summarized in Table 3.11-1.

Table 3.11-1. LOS Criteria for Signalized and Unsignalized Intersections

<table>
<thead>
<tr>
<th>LOS</th>
<th>Description</th>
<th>Signalized (V/C Ratio)</th>
<th>Unsignalized Average Control Delay (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Free flow conditions with low traffic density.</td>
<td>0.000-0.600</td>
<td>≤ 10</td>
</tr>
<tr>
<td>B</td>
<td>A stable flow of traffic.</td>
<td>0.601-0.700</td>
<td>＞ 10 – 15</td>
</tr>
<tr>
<td>C</td>
<td>Light congestion but stable, occasional backups behind left-turning vehicles.</td>
<td>0.701-0.800</td>
<td>＞ 15 – 25</td>
</tr>
<tr>
<td>D</td>
<td>Approaching instability, drivers are restricted, vehicles may be required to wait through more than one signal cycle.</td>
<td>0.801-0.900</td>
<td>＞ 25 – 35</td>
</tr>
<tr>
<td>E</td>
<td>At or near capacity with long queuing for left-turning vehicles. Blockage of intersection may occur if traffic signal does not provide for protected turning movements.</td>
<td>0.901-1.000</td>
<td>＞ 35 – 50</td>
</tr>
<tr>
<td>F</td>
<td>Jammed conditions with stoppages of long duration.</td>
<td>＞ 1.000</td>
<td>＞ 50</td>
</tr>
</tbody>
</table>

Source: OTC 2013.

LOS was calculated for the area intersections using the ICU and HCM procedures to calculate the V/C ratios and delay values for existing traffic conditions at each TIA intersection. Existing signalized intersections in the Project area generally operate at acceptable stable conditions of LOS C or better (refer to Table 3.11-2; see Figure 3.11-1). Four intersections currently operate at LOS C during at least one of the peak hours, while all other signalized intersections operating at LOS A or B.

3.11.1.5 Transit Services

The Los Angeles County Metropolitan Transportation Authority (MTA) operates bus service within the City. MTA Route 534 operates along PCH and Civic Center Way adjacent to the proposed Project site. Three bus stops are located in the immediate vicinity of the proposed Project site, one on either side of Malibu Canyon Road at its intersection with PCH, and one on the westbound side on Civic Center Way at Winter Canyon Road (see Figure 3.11-1). MTA weekday service on this route is provided by three eastbound and seven westbound buses during the morning peak hours, five eastbound and three westbound buses during the afternoon peak hours, and three buses in each direction during the weekend midday peak hours (refer to Table 3.11-3). MTA Bus Route 534’s terminus is at the Washington/Fairfax Transit Hub, with connections to MTA Routes 35, 37, 38, 105, 217, 705, and 780.
Table 3.11-2. Existing Weekday AM, Weekday PM and Weekend Peak Hour Intersection LOS

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Control</th>
<th>Weekday AM Peak Hour (7:00 a.m. – 9:00 a.m.)</th>
<th>Weekday PM Peak Hour (4:00 p.m. – 6:00 p.m.)</th>
<th>Weekend Peak Hour (7:00 a.m. – 9:00 a.m.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>V/C or Delay*</td>
<td>LOS</td>
<td>V/C or Delay*</td>
</tr>
<tr>
<td>1. Kanan Dume Road & PCH</td>
<td>Signal</td>
<td>0.394 A</td>
<td>0.633 B</td>
<td>0.715 C</td>
</tr>
<tr>
<td>2. Malibu Canyon Road & PCH</td>
<td>Signal</td>
<td>0.674 B</td>
<td>0.669 B</td>
<td>0.777 C</td>
</tr>
<tr>
<td>3. Malibu Canyon Road & Main Access Driveway</td>
<td>Driveway Stop</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4. Malibu Canyon Road & Civic Center Way</td>
<td>Signal</td>
<td>0.503 A</td>
<td>0.472 A</td>
<td>0.347 A</td>
</tr>
<tr>
<td>5. Webb Way & Civic Center Way</td>
<td>Four-way Stop</td>
<td>10.14 seconds B</td>
<td>22.15 seconds C</td>
<td>9.73 A</td>
</tr>
<tr>
<td>6. Webb Way & PCH</td>
<td>Signal</td>
<td>0.526 A</td>
<td>0.661 B</td>
<td>0.703 C</td>
</tr>
<tr>
<td>7. Cross Creek Road & PCH</td>
<td>Signal</td>
<td>0.594 A</td>
<td>0.781 C</td>
<td>0.800 C</td>
</tr>
<tr>
<td>8. Malibu Pier Signal & PCH</td>
<td>Signal</td>
<td>0.576 A</td>
<td>0.655 B</td>
<td>0.638 B</td>
</tr>
<tr>
<td>9. Carbon Canyon Road & PCH</td>
<td>Signal</td>
<td>0.538 A</td>
<td>0.644 B</td>
<td>0.648 B</td>
</tr>
<tr>
<td>10. Las Flores Canyon Road & PCH</td>
<td>Signal</td>
<td>0.581 A</td>
<td>0.691 B</td>
<td>0.678 B</td>
</tr>
</tbody>
</table>

Note: *LOS criteria for unsignalized intersections employ average control delay instead of V/C ratio.
Source: OTC 2013 (see Appendix F).

Table 3.11-3. Existing Transit Service

<table>
<thead>
<tr>
<th>Direction</th>
<th>Day of Week</th>
<th>Service Span</th>
<th>Headway¹ (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTA Bus Route 534²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastbound</td>
<td>Monday – Friday</td>
<td>6:18 A.M. – 9:17 P.M.</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Saturday</td>
<td>7:05 A.M. – 9:17 P.M.</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Sunday</td>
<td>7:18 A.M. – 9:17 P.M.</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Westbound</td>
<td>Monday – Friday</td>
<td>5:24 A.M. – 8:25 P.M.</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Saturday</td>
<td>6:01 A.M. – 8:25 P.M.</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Sunday</td>
<td>6:27 A.M. – 8:25 P.M.</td>
<td>45</td>
</tr>
</tbody>
</table>

Notes: ¹ Headway is the amount of time elapsed between pick-ups at any given transit stop.
² This service runs along the Malibu Canyon Road and Civic Center Way adjacent to the proposed Project site.
The availability of public transit is limited in the City. There are no rail stations in the City and existing services, such as MTA Route 534, predominately serve local trips. Additionally, headways ranging from 25 to 45 minutes between arrivals can lead to delays for transit-dependent individuals and may not make public transportation an attractive option for non-transit-dependent individuals. Ideal headways to make transit most useful to transit dependent households and attractive to non-transit dependent individuals are generally from 10 to 15 minutes during peak hours. However, the automobile-oriented, low-density nature of area land uses and large-block, arterial-based street system present a challenge to improving transit service to the area.

3.11.1.6 Bicycle Facilities

No existing Class I bike paths (paths that are completely separate from traffic) or Class II bike lanes (on-street marked bike lanes) are located adjacent to the Project site, including on PCH. However, PCH is designated as a Class III bike route (a street with signs denoting that it is a bicycle route), which provides for shared use with motor vehicle traffic. Given the maximum speed limits ranging from 45-50 mph on PCH, bicyclists tend to ride within or near the shoulder of PCH. However, while state law requires bicyclists to ride “as close as practicable to the right-hand curb or edge of the roadway,” it also provides a number of exemptions, such as when the road is too narrow for a car and bicycle to safely share a single lane (California Vehicle Code § 21202). The large volume of vehicles and high speed of traffic on PCH causes conflicts between bicyclists and motorists and poses a safety risk primarily to bicyclists (LASD 2011). During the first six months in 2010, there were over 96 collisions between motor vehicles and bicyclists on PCH in the City, four of which resulted in fatalities (Damavandi 2010). The overwhelming majority of these accidents were caused by motor vehicles, with excessive speed involved in approximately 35% of the accidents (Damavandi 2010).

In 2010, City officials began examining the process of making bicycling safer and a more viable alternative to driving in the City. The City’s Public Safety Commission met with

PCH is a widely used Class III bike route within the City, including fronting the Project Site. However, high speeds and large traffic volumes can make PCH a dangerous place to ride.
bicycle experts to hear a presentation on the benefits of becoming a Bicycle Friendly Community. The designation would require a number of changes to the City’s planning and infrastructure, including: a 10- to 20-year plan to develop a cohesive network of trails and roads accessible by bicycles; plans for the development of bicycle parking and other infrastructure; safety courses and public service announcements to educate drivers on their legal responsibilities towards bicycles; and a commitment from law enforcement officials to rigorously enforce existing laws that prevent intimidation and harassment of bicyclists (Adkisson 2011). In 2011, the City started the design on the PCH Bike Route Improvements project, which will improve the existing Class III facility from Busch Drive to the western City limits and proposing to install a Class II facility on the ocean side of PCH in the Zuma Beach area. Additionally, in 2012, the City began the PCH Safety Study. This study consists of examining the safety of all modes of transportation, including bicycles and pedestrians, on PCH.

Additionally, the PCH Traffic Safety Evaluation recommended that a Class II bikeway should be established for the entire length of PCH, which would provide a restricted right-of-way designated for the exclusive or semi-exclusive use of bicyclists. However, without roadway widening, which in some cases may be infeasible, the resultant loss of coastal access parking and other factors could create potential inconsistencies with City and State coastal access policies, reducing the feasibility of such improvements. Such a bikeway would prohibit travel by motor vehicles or pedestrians, except for vehicle parking and cross flows by pedestrians and motorists at marked locations (LASD 2011).

3.11.1.7 Pedestrian Facilities

Pedestrian facilities comprise sidewalks, crosswalks, and off-street paths that are intended to provide safe and convenient routes for pedestrian travel. City policy discourages the development of formal sidewalks to avoid the creation of a suburban atmosphere (City of Malibu 1995). Rather, meeting pedestrian needs with unpaved (i.e., dirt or gravel) paths or walkways would be preferable to paved suburban-style sidewalks (refer to General Plan Land Use Element Policy 2.4.6). Within the immediate vicinity of the proposed Project site (i.e., along Malibu Canyon Road, Civic Center Way, and PCH), fully-developed sidewalks are only present on the west side of Malibu Canyon Road adjacent to Pepperdine’s Alumni Park, extending from the Seaver Drive entrance to campus from PCH. The Project site frontage on the east side of Malibu Canyon Road currently supports an unimproved road shoulder, which appears to receive light to moderate use as a dirt trail. Segments of both sides of Civic Center Way also support similar informal dirt
The intersection of Malibu Canyon Road with Civic Center Way is served by only two crosswalks, with the only paved sidewalk located on the westbound side of Malibu Canyon Road. As shown, while the crosswalk provides access to the northern corner of the proposed Project side there is currently no sidewalk frontage.

Crosswalks are located at the intersections of Malibu Canyon Road with Civic Center Way and Malibu Canyon Road with PCH. However, these crosswalks only provide access across certain sides of the intersection. For example, there are two crosswalks present at the four-way intersections of Malibu Canyon Road with Civic Center Way and PCH. Further, in some cases (e.g., Civic Center Way), the crosswalks lead to an unpaved area rather than a sidewalk.

Pedestrian traffic in the Project area is generated largely by Pepperdine, Malibu Bluffs Park, local neighborhoods off Civic Center Way, and two schools on Winter Canyon Road. AMEC staff has observed pedestrians using the informal road shoulder dirt trails on Civic Center Way and Malibu Canyon Road. During events, such as sports leagues or tournaments, some users of Malibu Bluffs Park also park their cars within the Project site frontage along Malibu Canyon Road and walk to Malibu Bluffs Park. However, pedestrian volumes in the Project area appear to be generally low. This is related to the distance between homes, businesses and facilities, as well as the general lack of pedestrian facilities. For example, there are no commercial facilities in the immediate Project vicinity and the stores and businesses of the Civic Center are located almost 3/4 mile to the east with no developed sidewalks or trails linking the Project site to this commercial area. Further, roadways in the vicinity tend to be relatively high speed and the lack of a roadside sidewalk or trail may further discourage pedestrian travel due to safety concerns.
3.11.1.8 Future Transportation Network Improvements

The City recently received approval for more than $14 million in Measure R grant funds for improvements to PCH and several intersections. The grant will allow the City to conduct necessary projects contingent on the recommendations of the PCH Traffic Safety Evaluation, which focuses on safety improvement recommendations for the 21-mile extent of PCH within City limits (City of Malibu 2013). Awarded by MTA, the grant will fund the following projects:

- Bike route improvements;
- Median enhancements along PCH between Webb Way and Corral Canyon Road;
- A left turn signal phase at the intersection of Big Rock Drive with PCH;
- Crosswalk improvements at 21439 PCH;
- Arrestor bed improvements at Kanan Dume Road;
- Regional Traffic Messaging that will include permanent and mobile messaging systems; and
- Widening of Civic Center Way in locations between Malibu Canyon Road and Webb Way.

In addition to these grant funded improvements, the approved La Paz Project is required to fund improvements to the intersections of PCH with Webb Way and Cross Creek Road, including restriping to improve peak hour LOS.

3.11.2 Regulatory Setting

3.11.2.1 Federal Regulations

Americans with Disabilities Act of 1990: Titles I, II, III, and V of the Americans with Disabilities Act (ADA) have been codified in Title 42 of the United States Code, beginning at Section 12101. Title III prohibits discrimination on the basis of disability in places of public accommodation (i.e., businesses and non-profit agencies that serve the public) and commercial facilities (i.e., other businesses). This regulation includes Appendix A to Part 36, Standards for Accessible Design, which establishes minimum standards for ensuring accessibility when designing and constructing a new facility or altering an existing facility. Examples of key guidelines include detectable warning for pedestrians entering traffic where there is no curb, a clear zone of 48 inches for the pedestrian travelway, and a vibration-free zone for pedestrians.
3.11 TRANSPORTATION AND TRAFFIC

3.11.2.2 State Regulations

Traffic analysis in the State of California is guided by policies and standards set at the state level by the California Department of Transportation (Caltrans) and the local jurisdictions. The proposed Project is within the City’s jurisdiction and, therefore, subject to adopted City transportation policies and guidelines, which are consistent with Caltrans policies and standards. Furthermore, Caltrans retains jurisdiction over PCH in Malibu and would be responsible for any permitting related to the highway. In addition, seven of the intersections analyzed are located on PCH, which is part of the Los Angeles County CMP.

3.11.2.3 Local Regulations

City of Malibu General Plan. The General Plan provides a framework within which individual property owners can plan the development of their property and ensure basic infrastructure and services are available and adequate.

Land Use (LU) Element

The goals and policies of the LU Element are consistent with and complementary to the goals and policies of other elements in the City’s General Plan, including the following:

- LU Policy 2.4.6: The City shall avoid improvements which create a suburban atmosphere such as sidewalks and street lights.

Conservation (C) Element

The C Element sets forth policies and standards for the rational and cost-efficient provision and extension of public services and infrastructure, such as transportation and transit systems, to support planned development and protect natural resources. It establishes present transportation and infrastructure conditions and is structured to accommodate future growth and development patterns. The goals and policies of the C Element are consistent with and complementary to the goals and policies of other elements in the City’s General Plan, including the following:

- C Goal 1: Safe, environmentally sensitive, and efficient transportation for the City.
 - C Policy 1.1.1: Where level of service at signalized intersections and roadways is below LOS C, the City shall ensure that proposed development maintains the then-current LOS. Where LOS at signalized...
intersections and roadways is at LOS C or above, the City shall ensure that proposed development: 1) does not cause a degradation of LOS greater than or equal to 2% in the circumstances set forth in Land Use Implementation Measure 70; and 2) does not degrade LOS below LOS C.

- **C Policy 1.1.2**: The City shall utilize sound traffic engineering and enforcement principles to safely regulate traffic and improve traffic flow.

- **C Policy 1.1.3**: The City shall improve traffic flow through procedural improvements.

- **C Policy 1.1.4**: The City shall reduce peak-time traffic.

- **C Policy 1.2.1**: The City shall promote a balanced and integrated transportation system and reduce dependence on the automobile.

- **C Policy 1.2.2**: The City shall encourage the use of alternative modes of transportation.

- **C Policy 1.2.3**: The City shall develop year-round local and regional public transportation.

- **C Policy 1.2.4**: The City shall develop bikeways, pedestrian walkways, and equestrian paths in areas that can safely accommodate them.

- **C Policy 1.3.1**: The City shall require sufficient off-street parking.

- **C Policy 1.3.2**: The City shall develop alternate parking opportunities for recreational uses to minimize disruption of residential neighborhoods and to reduce air pollution.

City of Malibu Local Coastal Program. The City lies entirely within the California Coastal Zone, as defined by the California Coastal Act. The Coastal Act requires that its goals and policies be implemented by local government through the Local Coastal Program (LCP) process. The LCP is composed of two plans: the Land Use Plan (LUP) and the Local Implementation Plan (LIP). The LCP was adopted by the California Coastal Commission on September 13, 2002.

Land Use Plan. The LUP has several policies regarding circulation and traffic. These include the following:
• **LUP Policy 2.49**: A trail offer of dedication shall be required in new development where the property contains a LCP mapped trail alignment or where there is substantial evidence that prescriptive rights exist. An existing trail which has historically been used by the public may be relocated as long as the new trail alignment offers equivalent public use. Both new development and the trail alignment shall be sited and designed to provide maximum privacy for residents and maximum safety for trail users.

• **LUP Policy 7.3**: Improvements to existing public roads shall be permitted as necessary for public safety and to improve access to recreation areas where such improvements are consistent with all policies of the LCP.

• **LUP Policy 7.4**: Improvements to major road intersections for public safety or increased vehicle capacity shall be permitted, as necessary, in existing developed areas and where such improvements are sited and designed to be consistent with all policies of the LCP.

• **LUP Policy 7.5**: In scenic areas, roadway improvements, including culverts, bridges or overpasses, shall be designed and constructed to protect public views and avoid or minimize visual impacts and to blend in with the natural setting to the maximum extent feasible.

• **LUP Policy 7.12**: Restrictions on or elimination of existing on-street public parking on PCH and adjacent side-streets shall not be permitted unless a comparable number of replacement parking spaces are provided in the immediate vicinity and it is demonstrated that such restrictions or elimination will not adversely impact public access to the shoreline.

Local Implementation Plan. The LIP implements the policies of the LUP of the LCP. The implementation measures governing traffic and circulation under various sections of the LIP are as follows:

• **Section 3.12**: The purpose of the Parking Regulations section of the LIP is to ensure adequate off-street parking facilities in conjunction with any residential, commercial, or other use or development. These standards provided in the section should be considered the minimum required for preserving the public health, safety, and welfare. LIP Section 3.12.3, related to specific parking requirements, details parking requirements in accordance with the list of uses. LIP Section 3.12.5 provides development standards for
parking facilities. Apart from these parking regulations, there are no other implementation actions in the LIP pertaining to traffic and circulation.

City of Malibu Municipal Code. The Malibu Municipal Code (M.M.C.) contains the laws of the City. Title 17 of the M.M.C. specifically discusses the zoning regulations pertaining to new development. Chapter 17.48 pertains to off-street parking and loading requirements, including the following, which apply to all parking areas with six or more spaces:

- **17.48.050(C)(3) – Screening.** Parking areas shall be screened from view from all designated highways.

- **17.48.050(E) – Landscaping.**

 o 1. A landscaped planter bed of at least five feet in width with a six-inch high cement concrete berm shall be installed along the entire perimeter except for those areas devoted to perpendicular access ways;

 o 2. A minimum of 5% of the paved parking area shall be devoted to interior planting areas. Extensive use of trees is encouraged. All planting areas shall be at least three feet wide. Perimeter planting shall not be considered part of this required interior planting; and

 o 3. Where topography and gradient allow, parking lots should be depressed and/or screened from view by landscaped berms and hedges.

- **17.48.050(F) – Lighting.** Lighting, where provided to illuminate a parking area, shall be hooded and so arranged and controlled so as not to cause nuisance either to highway traffic or to adjacent properties.

3.11.3 Environmental Impacts

3.11.3.1 Thresholds for Determining Significance

Significance thresholds for determining transportation and traffic impacts were identified by the City. The City considers a traffic impact to be potentially significant if the related increases in the V/C ratio value equals or exceeds adopted thresholds for signalized intersections or unsignalized intersections (refer to Tables 3.11-4 and 3.11-5). Additionally, a significant traffic impact for an arterial street would occur if the V/C ratio on a CMP roadway segment operating at an unacceptable LOS (i.e., LOS D, E, or F) increases by 0.05 or more.
Table 3.11-4. Significant Traffic Impact Criteria for Signalized Intersections

<table>
<thead>
<tr>
<th>LOS</th>
<th>Final V/C Value</th>
<th>Increase in V/C Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>> 0.710 – 0.800</td>
<td>≥ +0.040</td>
</tr>
<tr>
<td>D</td>
<td>> 0.810 – 0.900</td>
<td>≥ +0.020</td>
</tr>
<tr>
<td>E or F</td>
<td>≥ 0.91</td>
<td>≥ +0.010</td>
</tr>
</tbody>
</table>

Note: *If either the Final V/C Value or Increase in V/C Value is met or exceeded, the impact to transportation would be considered significant.

Source: OTC 2013 (see Appendix F).

Table 3.11-5. Significant Traffic Impact Criteria for Unsignalized Intersections

<table>
<thead>
<tr>
<th>City of Malibu Significance Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Degrades the LOS at an unsignalized intersection to an unacceptable level of LOS D or worse</td>
</tr>
<tr>
<td>2. Increases delay at an unsignalized intersection operated at an unacceptable level by five or more seconds</td>
</tr>
<tr>
<td>3. Results in satisfying the most recent California Manual on Uniform Traffic Control Devices (MUTCD) peak hour volume warrant or other warrants for traffic signal installation at the intersection</td>
</tr>
</tbody>
</table>

Source: OTC 2013 (see Appendix F).

The CEQA Guidelines for Transportation and Traffic were used to develop additional significance thresholds for transportation issues not identified specifically by the City, such as parking capacity or alternative transportation. Accordingly, the proposed Project would result in significant impacts to transportation if it would:

a) Cause an increase in traffic which is substantial in relation to the existing traffic load and capacity of the street system (i.e., result in a substantial increase in either the number of vehicle trips, the volume to capacity ratio, etc);

b) Conflict with an applicable congestion management program, including, but not limited to level of service standards and travel demand measures, or other standards established by the county congestion management agency for designated roads or highways;

c) Substantially increase hazards due to a design feature (e.g. sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment);

d) Result in inadequate emergency access;

e) Result in inadequate parking capacity; or

f) Conflict with adopted policies, plans, or programs supporting alternative transportation (e.g., bus turnouts, bicycle racks).

Significant impacts to pedestrian or bicycle facilities are defined to occur when:

- g) The project conflicts with existing or planned pedestrian or bicycle facilities; or
3.11 TRANSPORTATION AND TRAFFIC

h) The project creates pedestrian or bicycle demand without providing adequate facilities and/or where additional traffic may increase pedestrian or bicycle safety hazards per item d above.

Significant impacts to transit facilities are defined to occur when:

i) The project conflicts with existing or planned transit facilities; or,

j) The project generates potential transit trips without providing adequate facilities for pedestrians and bicyclists to access transit routes and stops.

3.11.3.2 Impact Assessment Methodology

The traffic impacts of the proposed Project were evaluated in the TIA using trip generation, trip distribution, and trip assignment for four scenarios including a No Project Scenario and a Plus Project Scenario for Existing Year (2012) and Future Years (2016 and 2030) scenarios. Estimates of Project-generated traffic were calculated using the industry standard 2012 traffic generation rates developed by the Institute of Transportation Engineers (ITE). However, to be more conservative than ITE-based estimates, non-guest trip estimates for the retail, spa and fitness center uses were added to the calculated hotel trips to account for additional non-guest traffic. The estimated Project directional trip distribution was based on the Project area roadway network, traffic flow patterns in and out of the Project area, and other traffic studies recently prepared for the general area. Using the traffic assignment at each intersection and the estimated Project traffic generation as provided in Table 2 of Appendix F, peak hour traffic volumes at each study location were calculated for each peak hour and for each scenario. This estimated assignment of the Project traffic flow provided the information necessary to analyze the potential Project traffic impacts at the TIA intersections (OTC 2013).

Future Year (2016) traffic volume projections were developed to analyze the traffic conditions after completion of other planned land developments, including the proposed Project. Descriptions of the related projects provided by the City, their locations, and estimated traffic volumes were used to estimate Future Year conditions (see Appendix F). In addition to the traffic generated by the related project list, other projects outside the Project area or projects unknown at this time may also contribute to the traffic volumes in the area. To account for this outside influence, an ambient annual growth factor (1.5%), agreed to by City staff, was applied to the 2012 traffic counts to establish Future Year (2016) traffic conditions. The use of both the related Project traffic volume growth and the ambient growth factor provides a conservative estimate of future traffic growth in the Project area for the Future Year scenario.
The traffic conditions analysis was conducted using the ICU method described in Section 3.11.1.3 above. The V/C ratio defines the proportion of an hour necessary to accommodate all the traffic moving through the intersection assuming all approaches were operating at full capacity. The Project’s traffic impact was calculated by comparing the Plus Project traffic volumes to the Existing, Future Year (2016) No Project traffic conditions for each of the peak hours (OTC 2013).

Parking Analysis

The parking requirements for the proposed Project were estimated in the TIA using the Parking Calculation in M.M.C. Chapter 17.48 and LIP Section 3.12, as well as the Urban Land Institute (ULI) shared parking model (M.M.C. Chapter 17.48 and LIP Section 3.12). The Parking Calculation is based on the sum of the peak parking demands for individual uses, which assumes the components of the hotel are generating peak parking demand at the same time during the day. The ULI shared parking model is based on parking demand data from the ULI “Shared Parking” Report, 2nd Edition (2005), which has been used as a reference to estimate employee and visitor peak parking demand requirements. The shared parking model utilizes M.M.C./LIP parking demand rates applied to the ULI hourly parking demand profiles for each use with adjustments for employee mode splits and internal captive market effects (i.e., reduction of parking demand due to patronage of multiple uses by hotel guests and visitors). The ULI parking accumulation profiles for hotel projects show the variation in the parking demand during different hours of the day for each component use. The hourly parking demand for each use is then combined in the shared parking model to estimate the parking demand generated by the Project.

Parking rate reductions for the proposed Project include a 90% mode adjustment for the hotel, retail, spa and gym employees. ULI recommends mode adjustments for hotel employees between 75-70%. Because of the remote Project location, a more conservative 90% mode adjustment (i.e., 10% parking reduction) for employees has been used. A conservative 100% mode split has been assumed for the hotel guests. The non-captive (i.e., non-guest visitors) adjustments include 50% for the retail/spa, 20% for the gym because of the 100-member limitation, 50% for the restaurant, consistent with ULI recommendations, and 90% for the banquet/reception, which is more conservative than the 60% recommend by ULI. Lastly, a 30% weekday and 75% weekend non-captive factor was used for the pool function area (OTC 2013).
Los Angeles Congestion Management Program Analysis

The adopted Los Angeles County CMP traffic growth forecasts for 2030 have been applied to develop another set of future traffic volumes for 2030. In addition to the CMP growth, the same current cumulative projects list has been included. Therefore, the total growth for the 2030 Project impact analysis consists of the CMP growth rate (9%) plus the current related projects per the City’s cumulative projects list. Adding the Project traffic to the Future Year (2030) No Project conditions provides the information necessary to calculate the Future Year (2030) Project traffic impacts at the TIA intersections for each scenario (OTC 2013).

As set forth in the CMP, the estimated transit trips generated by the Project during the peak hours is to be calculated by multiplying the total peak hour vehicle trips by 1.4 to convert vehicle trips to person trips. A second calculation converts the person trips to transit trips by multiplying the person trips by 3.5%.

Traffic Signal Warrant Analysis

The City requires a traffic signal warrant analysis when the LOS of an unsignalized intersection exceeds the City’s acceptable limits. A traffic signal warrant analysis was prepared in the TIA pursuant to the guidelines established in the MUTCD handbook to evaluate the need for a new traffic signal at Civic Center Way and Webb Way / Stuart Ranch Road.

Pedestrian and Bicycle Analysis

The PCH Traffic Safety Evaluation Study identified specific bicycle and pedestrian safety issues and concerns along PCH, including several intersections in the Project area. AMEC’s team has also observed and noted pedestrian and bicycle facilities and users on roadways surrounding the Project site. Although no pedestrian or bicyclist counts were performed, AMEC utilized the factors outlined in the Federal Highway Administration (FHWA) Pedestrian Planning Procedures Manual (FHWA 1978) to identify general potential pedestrian trip generation rates associated with the proposed Project, as well as a review of both onsite and offsite pedestrian attractors and generators. Such analysis is included to ensure consistency with General Plan C Element Policies 1.2.1, 1.2.2, and 1.2.4, which require the City to promote a balanced and integrated transportation system, reduce dependence on the automobile, encourage the use of alternative modes of transportation, and develop bikeways, pedestrian walkways, and equestrian paths in areas that can safely accommodate them.
3.11.3.3 1986 and 1998 Project Environmental Review Findings

California Coastal Commission 1986 Approval of a 300-Room Hotel

In January 1986, the California Coastal Commission (CCC) approved the following project (Permit No. 5-85-418) for the subject property: 300 room hotel (222,200 square feet), 32,800 square foot community center, offices, restaurant, information kiosk and art center, and 1,039 parking spaces. The CCC’s approval has been kept valid over the years and the most recent permit extension (the 26th extension) was issued by the CCC setting the new expiration date as January 7, 2014. The EIR completed for this project determined that the project would result in an average weekday vehicle trip increase of up to 7,289 vehicles, which would contribute further to congestion on PCH and a decrease in LOS at adjacent intersections. These impacts were found to be mitigable through implementation of a range mitigation measures, including provision of additional turn lanes at intersections adjacent to the project, accomplishing project related traffic/circulation improvements prior to operation of the project facilities, and providing turn lanes at the project entry/exit points.

Findings of the 1998 Project EIR

The project that was proposed in the 1998 EIR was determined to generate an estimated 2,160 daily trip ends (one-way trips), with approximately 80 trips expected to occur during the morning peak hour, 180 trips to occur during the afternoon peak hour, and 280 to occur during Saturday midday peak hour. The EIR found that cumulatively, this project would contribute to a deterioration in LOS at Malibu Canyon Road and Civic Center Way, PCH with Decker Road, PCH with Cross Creek, PCH with Las Flores Canyon Road, and PCH with Topanga Canyon Road. The project would also provide a total of 492 parking spaces, which would exceed the required 330 spaces. The 1998 EIR required mitigation of significant impacts associated with LOS deterioration to less than significant levels with mitigation measures including cost sharing of future transportation improvements and modifications to internal site circulation.

3.11.3.4 Project Impacts and Mitigation Measures

Impact Description

TT-1 Construction of the proposed Project would create potentially significant adverse short-term impacts to intersection operation and safety in the Project vicinity associated with the operation of
The proposed Project would be constructed over an approximately 24-month time period, comprised of several construction phases that would be characterized by different trip characteristics including:

- Site clearing and grading, which would involve the operation of heavy earthmoving equipment across the entire site and thousands of heavy haul truck trips to export soil;
- Installation of utilities and foundations, which would entail a decrease in heavy haul truck trips but an increase in material delivery trips, particularly cement trucks;
- Construction of the hotel and parking garage structure, which would entail ongoing material deliveries and the peak of construction worker traffic; and
- Completion of interior finishes and installation of landscaping and hardscape, which would involve substantial construction worker traffic and continued material deliveries.

Construction traffic would primarily access the site through the main access driveway on Malibu Canyon Road. Construction traffic routing is anticipated to involve most trips accessing the site by turning right (northbound) from PCH onto Malibu Canyon Road and then right into the Main Access Driveway. Trips exiting the site would turn right (northbound) onto Malibu Canyon Road. Although the exact destination and origin of construction trips would vary, the majority of trips are anticipated to then turn right (southeast-bound) onto Civic Center Way to access westbound PCH via the Civic Center Way “onramp” or eastbound PCH via Webb Way. A portion of construction trips may also use Malibu Canyon Road to access points east of the City. While access during construction would be generally limited to right-turn-in and right-turn-out at the main access driveway, some construction vehicles and heavy trucks would also access the portions of the site adjacent to Civic Center Way during clearing, grading, and installation of the wastewater disposal fields on the hillsides overlooking Winter Canyon.

The number of construction workers, the type and the amount of construction equipment, and the associated trip generation would vary throughout the construction phases as necessary in order to maintain the Project schedule. Over the 24-month construction period, an average of 50 workers would be onsite with a peak of up to 150 workers. Construction workers would typically be onsite before 7:00 a.m. and would generally end
work at 4:00 p.m. Construction worker traffic is estimated to be 100 non-peak hour trips (assuming an auto occupancy factor of 1.5 workers per vehicle), with only nominal construction worker traffic during commuter peak hour periods. The Applicant also proposes that the majority of the material delivery trips would be scheduled outside of the a.m. and p.m. peak hours to the maximum extent feasible.

However, materials deliveries would be ongoing throughout the Project construction phases and would involve a mix of single bed trucks and semi-trailers depending upon the material delivered. Over the course of Project construction, thousands of material delivery trips would occur, with larger semi-trailers used to deliver heavy construction equipment (e.g., scrappers, bulldozers, etc.) pipe, rebar, steel and wood beams, soil and fertilizer, specimen trees, and other large construction materials. Hundreds of cement trucks would also be required during foundation pouring activities and construction of the parking garage. The number of material delivery trips would vary by phase, with a maximum of dozens of trips on a typical weekday.

The highest levels of heavy construction vehicle traffic may be generated during the initial 2.5 to three month site preparation and grading stage, when thousands of heavy haul truck trips would be used to export excess soil and rock from the site. The volume of exported material associated the proposed Project is estimated to be approximately 189,760 cubic yards (cy). The Applicant proposes to use 20 cy capacity double truck/trailer combo vehicles to remove the material, which would require a total of approximately 9,488 truck trips over an approximately 2.5 month time period. Based on the export quantities and hauling schedule, the average traffic haul volume would be approximately 136 inbound and outbound trips per day, or an average of 13-14 heavy haul trucks existing or entering the site per hour for a typical work day. However, trucks with four or more axles are not permitted on PCH between Decker Road (to the west) and Topanga Canyon Boulevard (to the east) (Caltrans 2013). Consequently, depending on the haul route, the proposed Project may require smaller haul trucks, such as standard 10 cy capacity trucks, which would in turn require either a longer construction period or a greater number of haul trips per hour.

To accommodate this level of hauling, excavators and scrappers would be operating across the site to excavate basement and parking garage areas, remove the top five feet of soil, and deliver material to three front-end loaders that would be used to load the haul trucks. Assuming that 20 cy capacity haul trucks would be permitted by Caltrans (i.e., the Applicant is able to obtain a waiver to Caltrans’ prohibition on four or more axle vehicles
on PCH in the Project vicinity), on average these loads would require approximately 26-28 truck trips per hour (i.e., one trip to the site for loading and one trip away from the site for export). Assuming a passenger car equivalency (PCE) factor of 3.0 for affected on-lane capacities and turning movements, this level of truck traffic would be equivalent to 78-84 passenger car trips per hour.

Intersection Impacts

The origin and destination of construction traffic is not specifically known at this time. Most trips are assumed to originate or have a destination to the east in the Los Angeles Basin. However, construction trips could also use Malibu Canyon Road to access Westside cities (e.g., Calabasas), the San Fernando Valley, or points to the west, such as the Oxnard plain. Project construction traffic has the potential to impact operations at the several area intersections, including those of Malibu Canyon Road with PCH and Civic Center Way, Webb Way with both Civic Center Way and PCH and to a lesser extent, more distant intersections (e.g., Cross Creek Road and PCH). While most construction-related traffic would be scheduled outside of the peak hours, materials deliveries and heavy haul trucks used for export of excess material would occur throughout the day. Because of congestion on area roads, limited turn lane capacity, and required truck routing, large semi-trailer delivery or haul trucks would likely have the greatest potential to impact intersection operations.

During initial phases of construction, the proposed Project would add an estimated 26-28 haul truck trips per hour (i.e., one trip approximately every two minutes) for a period of 2.5 months to Malibu Canyon Road. A similar number of trips from large cement trucks and semi-trucks used for delivery could also occur during foundation installation and parking garage construction.

Heavy trucks exiting the site would enter the northbound lane on Malibu Canyon Road. Vehicles that need to access PCH would use Civic Center Way, turning onto the highway either at the U-turn “onramp” for westbound trips or via Webb Way for eastbound trips. Heavy haul trucks or other large vehicles entering the highway via the onramp could create hazards due to the tight nature of this turn and difficulty merging into high speed traffic due to the relatively steep grade. Those proceeding to Webb Way would incrementally increase congestion at its intersection with both Civic Center Way and PCH. Heavy trucks using these intersections would increase vehicle queue durations and delay frequency, and may also obstruct the intersection when turning onto Webb Way due to the length of the trailers. Additionally, heavy trucks and haul trucks turning onto...
PCH would also likely result in traffic delays along PCH as the trucks would require more time than an average passenger car to reach highway speeds. Heavy trucks operating along narrow Malibu Canyon Road would also slow traffic and increase vehicle queues and delays along this roadway during Project construction.

Other potential construction-related traffic impacts include idling, parked, or queued heavy trucks that could potentially obstruct visibility and traffic flows along Malibu Canyon Road. Further, construction activities would require parking for an estimated 50 to 150 construction workers during peak periods. Project construction may also require the temporary closure of traffic lanes on Malibu Canyon Road and potentially PCH and Civic Center Way to accommodate excavation for utility installation, operation of construction equipment, and installation of Project improvements. Depending on final construction plan details, lane closures could extend from a single day to several weeks. Project construction activities (e.g., lane closures) could also cause delays or rerouting of existing transit service.

Although the increase in construction-related traffic, particularly haul, cement, and delivery truck traffic, would be substantial in relation to the existing traffic load and capacity of the street system, these impacts would be limited to the 24-month construction period, with the greatest degree of disruption of traffic flows occurring during the five-month site preparation, grading, utility and foundation installation stage. Because increases in congestion would be short term, impacts to intersection operations are considered to be less than significant.

Public Safety

As discussed above, the proposed Project would potentially route construction traffic, including thousands of heavy haul, cement and delivery trucks, down Civic Center Way in order to gain access to PCH. Civic Center Way provides access to Webster Elementary School and Our Lady of Malibu Catholic Church and School, as well as several residential neighborhoods via two local streets, Winter Canyon Road and Vista Pacifica. Civic Center Way has a narrow paved width in places and lacks bike paths or frontage improvements such as sidewalks along most of its length, forcing pedestrians to use the road shoulders and bicyclists to share the travel lane with vehicles. The intersection of Civic Center Way and Winter Canyon Road is controlled by an existing signal and side street access from Vista Pacifica is controlled by a stop sign. Line of site to the north is approximately 500 feet from Winter Canyon Road and 800 feet from Vista Pacifica.
Posted speed limits are 40 mph south of Malibu Canyon Road, changing to 25 mph in the school zone near Winter Canyon Road when children are present.

Construction activities and increased truck traffic would occur while the schools are in session and during drop off and pick up times when school-related traffic peaks and dozens of cars along with buses would be entering or exiting Winter Canyon Road. Trucks proceeding down this road would initially descend a relatively steep grade in a posted 40 mph zone, with potential for unintended acceleration before the road transitions to a 25 mph zone and begins to flatten out. Due to the lack of frontage improvements, limited side street line of sight, and the downhill roadway topography on Civic Center Way, substantial increases in heavy truck traffic, particularly fully-laden haul trucks, along this narrow collector road would be considered substantial in relation to the existing traffic load and capacity of the street system, particularly due to the design constraints of this roadway. This traffic would present potentially significant safety hazards to vehicles exiting Winter Canyon Road and potentially Vista Pacifica, especially during school drop off and pick up periods when side street volumes are the greatest. In addition, pedestrians and cyclists using Civic Center Way, including students from the two schools who may walk or cycle, would be exposed to potentially significant safety hazards during Project construction. Further, the haul trucks and other construction traffic would pass through a crosswalk that provides access to the Civic Center/Winter Canyon bus stop along MTA Route 534, which may present additional safety hazards and delays for crossing pedestrians.

Haul trucks and other construction-related traffic would also present additional hazards to bicyclists on PCH. Large haul trucks and other construction traffic would likely occupy the lanes furthest to the right of PCH due to their slower speeds. Consequently, these trucks would travel in proximity to bicyclists who typically ride on the shoulder of PCH. As described previously, although PCH is designated through the City as a Class III bike route, it is very dangerous for bicyclists, with over 96 collisions occurring in the first six months of 2010 (Damavandi 2010). The addition of Project-related construction traffic, specifically heavy haul trucks, would result in additional short-term safety hazards along this highway.

Roadway Damage

During all construction phases associated with the proposed Project, Civic Center Way, Malibu Canyon Road, PCH, and Webb Way would experience thousands of construction related trips. These trips would include heavy haul trucks fully-laden with cut material, as
well as semi-trucks removing heavy construction equipment from the Project site. The asphalt pavement on Civic Center Way is currently deteriorated in places and is characterized by cracking and potholing. The City recently received $14 million in Measure R grants, a portion of which will be allocated to the widening of Civic Center Way between Malibu Canyon Road and Webb Way to address line of sight issues (City of Malibu 2013). Thousands of heavy truck trips on Civic Center Way throughout the construction phases of the proposed Project would likely result in further deterioration of this roadway, exacerbating the problems that currently occur. Additionally, similar deterioration of the roadway pavement would likely occur on Malibu Canyon Road and potentially Webb Way.

Therefore, Project construction impacts related to short-term operation and safety would be significant, but subject to feasible mitigation.

Mitigation Measures

MM TT-1a The Applicant shall prepare a Construction Management Plan to mitigate site access and safety impacts along Civic Center Way for review and approval by City staff and Caltrans prior to the issuance of grading permits or Caltrans hauling permit.

Plan Requirement and Timing: In order to reduce traffic impacts during construction, the Applicant shall develop and implement an approved Construction Management Plan, which shall include a designated haul route(s), truck staging area(s), and traffic control procedures to mitigate to the maximum extent feasible the short-term traffic impacts generated during construction. Applicable construction mitigation measures outlined in the Construction Management Plan, at a minimum, shall include the following requirements:

- A detailed construction staging and traffic control plan that sets forth measures to control site access, truck routing, and queuing;
- All delivery trucks shall be loaded and unloaded within the perimeter fence of the construction site and no detours around the construction site shall be permitted;
• A flagger team shall be used to enforce the right turn in and out only for ingress and egress of trucks and heavy equipment on Malibu Canyon Road;

• Signs indicating the presence of school children shall be posted along Civic Center Way and at its intersection with Malibu Canyon Road. The signs shall require drivers to slow their speed and proceed with caution on Civic Center Way;

• A flagger team shall be posted at the intersection of Civic Center Way with Winter Canyon Road during morning and afternoon drop off and pick up times for the schools in order to provide added safety precautions in the vicinity of the schools;

• The Plan shall be developed for use during the entire construction period and shall incorporate standard safety measures to reduce the risk to pedestrian, bicyclist, and vehicular traffic near the work area. The Plan shall identify all traffic control measures, signs, delineators, and work instructions to be implemented by the construction contractor through the duration of construction activity;

• Construction equipment and construction worker cars shall be parked onsite. If all construction equipment and cars cannot be accommodated onsite, the Plan shall identify alternative parking locations for construction workers and a method to transport them to and from the Project site. Approval for these alternative parking locations shall be submitted to the City Planning Department for approval prior to the issuance of a building permit; and

• In order to further address traffic control issues, the Applicant shall provide a Community Liaison to address traffic concerns at the site. The name and contact information for the Community Liaison shall be posted by the Applicant in a public location at the perimeter of the Project site.

Monitoring: The Construction Management Plan shall be implemented with oversight from a City building inspector and Planning Department staff, which will be required as a condition of Project approval. The
mitigation monitor shall be required to make monthly reports to the City regarding the Applicant’s compliance with the provisions of the plan.

MM TT-1b The Applicant shall fund the repaving of damaged sections of Civic Center Way, Malibu Canyon Road and Webb Way to repair any damage that result from heavy truck traffic.

Monitoring: Prior to commencement of grading, the Applicant shall submit a Roadway Pre-construction Conditions Report to the City. This report shall contain photo-documentation of pavement conditions along the length of Civic Center Way and affected portions of Malibu Canyon Road and Webb Way in order to record road conditions along the proposed haul route(s). Prior to Planning Department final site inspection, the City shall take identical photographs to document the damage associated with construction traffic. Prior to occupancy, the City staff shall insure that the Applicant has provided funds to repair any damage incurred. Further, the City shall not expend Measure R funds allocated to the widening of Civic Center Way prior to receiving funds from the Applicant for damage incurred to Civic Center Way during construction activities.

Impact Description

TT-2 Under the Existing Year (2012) Plus Project Conditions, the proposed Project would result in adverse, but less than significant impacts to levels of service (LOS) at each of the study intersections (Class III).

As previously described and shown in Table 3.11-6, during the Existing Year (2012) all of the study intersections operate at an acceptable LOS. The traffic estimates show that the proposed Project would generate 2,058 weekday vehicle trips with 106 AM peak hour trips and 156 PM peak hour trips. In addition, the proposed Project would generate an estimate 3,167 weekend trips with 222 weekend peak hours trips.

The Existing Year (2012) Plus Project Conditions analysis by OTC found that all of the 10 study intersections analyzed using HCM methodology would be expected to operate at an acceptable LOS. The only intersections that would experience changes in LOS during any of the peak hours would be:

- Cross Creek Road & PCH (Weekend Midday, LOS C to LOS D); and,

Rancho Malibu Hotel Project
Public Draft EIR
- Las Flores Canyon Road & PCH (Weekend PM, LOS B to LOS C).

Table 3.11-6. Existing Year (2012) and Existing Year (2012) Plus Project Peak Hour Levels of Service

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Peak Hour</th>
<th>Existing Year (2012)</th>
<th>Existing Year (2012) Plus Project</th>
<th>V/C or Delay Increase</th>
<th>Significant Impact?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>V/C or Delay*</td>
<td>LOS</td>
<td>V/C or Delay*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Kanan Dume Road & PCH</td>
<td>AM</td>
<td>0.394</td>
<td>A</td>
<td>0.396</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>0.633</td>
<td>B</td>
<td>0.637</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>WKND</td>
<td>0.715</td>
<td>C</td>
<td>0.718</td>
<td>C</td>
</tr>
<tr>
<td>2. Malibu Canyon Road & PCH</td>
<td>AM</td>
<td>0.674</td>
<td>B</td>
<td>0.674</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>0.669</td>
<td>B</td>
<td>0.682</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>WKND</td>
<td>0.777</td>
<td>C</td>
<td>0.795</td>
<td>C</td>
</tr>
<tr>
<td>3. Malibu Canyon Road & Main Entrance</td>
<td>AM</td>
<td>-</td>
<td>-</td>
<td>9.2 seconds</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>-</td>
<td>-</td>
<td>10.6 seconds</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>WKND</td>
<td>-</td>
<td>-</td>
<td>10.0 seconds</td>
<td>B</td>
</tr>
<tr>
<td>4. Malibu Canyon Road & Civic Center Way</td>
<td>AM</td>
<td>0.503</td>
<td>A</td>
<td>0.508</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>0.472</td>
<td>A</td>
<td>0.479</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>WKND</td>
<td>0.0347</td>
<td>A</td>
<td>0.355</td>
<td>A</td>
</tr>
<tr>
<td>5. Webb Way & Civic Center Way</td>
<td>AM</td>
<td>10.14 seconds</td>
<td>B</td>
<td>10.19 seconds</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>22.15 seconds</td>
<td>C</td>
<td>23.34 seconds</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>WKND</td>
<td>9.73 seconds</td>
<td>A</td>
<td>9.99 seconds</td>
<td>A</td>
</tr>
<tr>
<td>6. Webb Way & PCH</td>
<td>AM</td>
<td>0.526</td>
<td>A</td>
<td>0.532</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>0.661</td>
<td>B</td>
<td>0.685</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>WKND</td>
<td>0.703</td>
<td>C</td>
<td>0.738</td>
<td>C</td>
</tr>
<tr>
<td>7. Cross Creek Road & PCH</td>
<td>AM</td>
<td>0.594</td>
<td>A</td>
<td>0.600</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>0.781</td>
<td>C</td>
<td>0.792</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>WKND</td>
<td>0.800</td>
<td>C</td>
<td>0.816</td>
<td>D</td>
</tr>
<tr>
<td>8. Malibu Pier Signal & PCH</td>
<td>AM</td>
<td>0.576</td>
<td>A</td>
<td>0.580</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>0.655</td>
<td>B</td>
<td>0.666</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>WKND</td>
<td>0.638</td>
<td>B</td>
<td>0.652</td>
<td>B</td>
</tr>
<tr>
<td>9. Carbon Canyon Road & PCH</td>
<td>AM</td>
<td>0.538</td>
<td>A</td>
<td>0.543</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>0.644</td>
<td>B</td>
<td>0.654</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>WKND</td>
<td>0.648</td>
<td>B</td>
<td>0.663</td>
<td>B</td>
</tr>
<tr>
<td>10. Las Flores Canyon Road & PCH</td>
<td>AM</td>
<td>0.581</td>
<td>A</td>
<td>0.586</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>0.691</td>
<td>B</td>
<td>0.703</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>WKND</td>
<td>0.678</td>
<td>B</td>
<td>0.695</td>
<td>B</td>
</tr>
</tbody>
</table>

Note: *LOS criteria for unsignalized intersections employ average control delay instead of V/C ratio.
Source: OTC 2013.
Under the Existing Year (2012) Plus Project scenario each of the 10 study intersections would experience an increase in V/C or delay during at least one of the peak hours. However, these increases would not be considered to be significant under the City’s thresholds for determining transportation and traffic impacts. Consequently, the proposed Project’s impacts to transportation and traffic during the Existing Year (2012) would be less than significant.

Mitigation Measures

No mitigation measures required.

Impact Description

TT-3 The proposed Project would result in a less than significant impact on parking capacity and associated demand (Class III).

Per M.M.C. Chapter 17.48 and LIP Section 3.12, *Parking*, code-required parking is calculated based on the sum of the peak parking demands for individual uses and assumes the components of the hotel are generating peak parking demand at the same time during the day. Using M.M.C. Section 17.48.030 and LIP Section 3.12.3, *Specific Parking Requirements*, a total parking requirement of 1,068 spaces would be required for the proposed Project (OTC 2013).

While the M.M.C. and LIP recognize that separate land uses generate different parking demands, their requirements do not reflect that the combined peak parking demand for Project components can be substantially less than the sum of the individual demands based on the variations in their peak demands (OTC 2013). Simply adding the peak parking demand for each individual use onsite produces an overall parking requirement that is typically too high for hotel projects (OTC 2013). Therefore, OTC computed the proposed Project’s parking requirements using the ULI’s shared parking demand model. The concept for shared parking is that a single parking space can be used to serve two or more individual uses without conflict. In other words, hourly parking demand differs between uses so that one space may provide parking for several uses during different times of the day. The shared parking demand model accounts for variations in parking demand to more accurately estimate the peak parking demand (OTC 2013). The parking profiles for the proposed Project show a peak parking demand of 487 parking spaces at 6:00 p.m. on the weekday and 513 parking spaces at 6:00 p.m. during the weekend.
As designed, the proposed Project would provide 543 parking spaces including a 489-space subsurface parking structure and a 40-space employee parking lot. The number of spaces proposed onsite would meet the maximum demand as set forth in the ULI shared parking model.

Additionally, a valet concept involving stacking vehicles end to end in the aisle of the subsurface parking structure, could accommodate parking for approximately an additional 238 vehicles, for a total parking capacity of 727 parking spaces in the subsurface parking structure (see Appendix F). Therefore, 781 onsite parking spaces could potentially be provided by the proposed Project, exceeding the ULI shared parking model demand. Consequently, the proposed Project’s impact on parking capacity and associated demand would be *less than significant*.

Mitigation Measures

No mitigation measures required.

Impact Description

TT-4 Increases in long-term operational traffic generated by the proposed Project along Civic Center Way would result in a potentially significant impact to public safety of pedestrians using this road (Class II).

The proposed Project would result in the addition of approximately 2,058 weekday vehicle trips and approximately 3,167 weekend vehicle trips to the surrounding road network. Of these trips, approximately 75% of outbound trips would be expected to utilize Civic Center Way to access PCH and area destinations, adding approximately 935 ADT to this roadway, which would increase existing traffic volumes by approximately 10%. The majority of these trips would be associated with traffic leaving the site due to the right turn out requirements (enforced by signage and the proposed Malibu Canyon Road center median). Thus, most of these trips would enter Civic Center Way off of the free right turn from Malibu Canyon Road and accelerate down the relatively steep grade along the upper portion of this road. Due to design constraints present along this roadway, including the narrow paved width and steep grades in places, the lack of developed sidewalks, and relatively high speeds, this increase in traffic would be considered substantial in relation to the existing traffic load and capacity of the street system with regard to pedestrian safety. This 10% increase in traffic would increase risks to pedestrians, who currently rely on narrow informal road shoulder trails, which also
requires, in certain segments, walking on the road itself. The 10% increase also would be particularly hazardous for schoolchildren who walk to or from the two schools along the eastern side of Civic Center Way. Therefore, impacts to pedestrian safety from this increased traffic are considered potentially significant, but subject to feasible mitigation.

Mitigation Measures

MM TT-4a The Applicant shall install frontage improvements along Civic Center Way between Malibu Canyon Road and the existing sidewalk segment at the south end of the Project site frontage along Civic Center Way opposite the Civic Center Way/Winter Canyon road intersection. These improvements shall include frontage improvements consistent with City standards, including a minimum five foot-wide appropriately surfaced trail, as well as low-level lighting and a curb as deemed appropriate by the City, consistent with the City’s adopted Parkland and Trails System Map. Alternately, as determined appropriate by the City, the Applicant shall fund such improvements along the eastside of Civic Center Way, where the majority of the uses (e.g., schools) are located.

MM T-4b The Applicant shall contribute a pro rata fair share of funds sufficient to assist with development of the remainder of the proposed Winter Canyon Trail along Civic Center Way.

Timing: Prior to the issuance of building permits, the City shall verify that the Applicant has included appropriate frontage improvements in the final Project design. All frontage improvements shall be completed prior to the issuance of the Temporary Certificate of Occupancy or Certificate of Occupancy.

Monitoring: The City shall verify that the Applicant has contributed fair share pro rata funds for frontage improvements along offsite areas of Civic Center Way.

Impact Description

TT-5 Project generated increases in pedestrian traffic would result in potentially significant impacts to pedestrian safety associated with pedestrians moving along or across the high speed segment of Malibu Canyon Road (Class II).
The proposed Project would generate increased pedestrian traffic on the surrounding road network, which generally lacks existing frontage improvements. The hotel complex would include pedestrian trip attractors for surrounding uses including the spa, restaurants and lounge. Hotel guests and employees would also generate additional pedestrian trips to surrounding uses. The FHWA Pedestrian Planning Procedures Manual indicates that hotels generate from 6.5 to 20.5 pedestrian trips per occupied room or an average of 13 trips per thousand square feet (FHWA 1978). Based on these numbers, at full occupancy during the weekdays, the proposed Project could generate between 949 and 2,993 new pedestrian trips per day. These numbers should be considered as an estimate accurate to their order of magnitude, as they may not fully account for ancillary uses onsite (e.g., restaurants) and also may overstate pedestrian volumes due both to the relative isolation of the Project site from surrounding uses and its design as a self-contained resort. For instance, some pedestrians generated by the hotel would walk directly to the parking structure via internal connections to the site and, therefore, would not use adjacent roadways. Therefore, it is assumed that only 50% of the potential pedestrian trips generated by the Project would be distributed to the roadways within the Project area only, resulting in an increase of between 475 and 1,497 new daily pedestrian trips leaving or entering the Project site.

The Project would provide the nearest available hotel to Pepperdine (other than the 50 designated guest rooms at the University’s Villa Graziadio Executive Center), as well as the nearest available off-campus restaurant and bar. As such, the Project would provide the most convenient location for overnight accommodations for those attending Pepperdine associated events, such as commencement ceremonies, athletic competitions and conferences. In addition, visiting families, emeritus or visiting professors, and conference attendees may also utilize the facilities at the Project site. Consequently, the proposed Project would potentially generate a considerable amount of pedestrian traffic between the proposed hotel and nearby Pepperdine. In addition, hotel patrons would also generate pedestrian trips to other nearby attractions, particularly Malibu Bluffs Park and the associated trail system. Additionally, hotel employees may utilize either of the two MTA bus stops along Malibu Canyon Road to access the site.

Potential external pedestrian trips were assigned to the surrounding sidewalks based on existing pedestrian traffic patterns and consideration of the surrounding uses. The most direct access to Pepperdine would be for pedestrians to unlawfully cross the higher speed segment of Malibu Canyon Road at the main entrance to access the sidewalk system on the west side of this road. Alternately, pedestrians accessing Pepperdine could also...
proceed north along Malibu Canyon Road to Seaver Drive. Pedestrians accessing Malibu Bluffs Park would proceed along the Project frontage to the south toward PCH.

The proposed Project would install frontage improvements along Malibu Canyon Road between the Project’s northern driveway and PCH, which would lead to existing crosswalks at that intersection. These improvements would accommodate pedestrian access to Malibu Bluffs Park and one MTA bus stop; however, no direct route to Pepperdine or an additional bus stop is proposed to serve pedestrians proceeding north along Malibu Canyon Road to Seaver Way. The lack of frontage and access improvements along this segment of the Project site would force pedestrians to utilize the road shoulder or unlawfully cross Malibu Canyon Road. Given the high volumes and speed of traffic along this roadway, the lack of proposed frontage improvements would result in a potentially significant safety hazards for pedestrians walking from the Project site to Pepperdine and to employees utilizing the bus stop at Malibu Canyon Road and Civic Center Way. The lack of adequate pedestrian facilities would also be inconsistent with General Plan C Element Policies 1.2.1, 1.2.2, and 1.2.4, which require the City to promote a balanced and integrated transportation system, reduce dependence on the automobile, encourage the use of alternative modes of transportation and develop bikeways, pedestrian walkways, and equestrian paths in areas that can safely accommodate them.

Mitigation Measure

MM TT-5a The Applicant shall install frontage improvements along Malibu Canyon Road between the Project’s northern driveway and the intersection of Seaver Drive/Civic Center Way. These improvements shall include frontage improvements consistent with City standards, including a minimum five foot-wide appropriately surfaced trail as well as low-level lighting and curbs as deemed appropriate by the City and consistent with the City’s adopted Parkland and Trails System Map.

Timing: Prior to the issuance of building permits, the City shall verify that the Applicant has included appropriate frontage improvements in the final Project design. All frontage improvements shall be completed prior to the issuance of the Temporary Certificate of Occupancy or Certificate of Occupancy.
Monitoring: Prior to the issuance of building permits, the City shall verify that the Applicant has included appropriate frontage improvements in the final Project design.

3.11.3.5 Cumulative Impacts

Impact Description

TT-6 Construction of the proposed Project would contribute considerably to significant short-term cumulative construction impacts due to activities such as lane closures and potential obstruction of turn lanes by large trucks and construction vehicles (Class I).

During the 24-month construction horizon for the proposed Project, extending from 2014-2016, up to 35 projects would also be under construction throughout the City, including approximately 815,000 square feet of residential, commercial, and institutional development within the Civic Center Area, approximately one-half mile to the west. In particular, if construction timing coincides with construction of the City’s Civic Center Wastewater Treatment Facility (CCWTF), Civic Center Way may be subject to added construction activities, including CCWTF construction and installation of sewer lines along this key haul route.

These cumulative projects would result in significant short-term alterations to traffic and circulation patterns primarily on PCH and the surrounding road network. Construction activities within the Civic Center area would include demolition, new facility construction, utility relocation, and street improvements, all of which would require the use of heavy equipment, additional construction workers, and potential road closures and detours. In addition to direct road closures and detours, these projects are likely to substantially increase construction-related traffic from heavy haul trips and construction worker vehicles. Consequently, implementation of MM TT-1a would require coordination between the various agencies overseeing the development of the aforementioned projects. However, given the volume of construction traffic and the potential for road closures and detours cumulative construction impacts would remain significant and unavoidable.
Mitigation Measure

MM TT-6a The Construction Management Plan (refer to MM T-1a) shall be developed and implemented in coordination with Caltrans, the City, and the MTA. The final Construction Management Plan for the proposed Project shall ensure that transportation mitigation measures set forth therein do not conflict with the implementation of transportation mitigation measures associated with the projects in the Civic Center Area.

Plan Requirements and Timing. A Construction Management Plan shall be submitted for review and approval by the City prior to the initiation of construction. The plan shall be designed to consistency in construction management between projects in the vicinity during all phases of development of the site. The plan shall be submitted for review and approval by the City following the approval of construction plans but prior to the commencement of any construction-related activities, including site preparation.

Monitoring. The City Public Works Department shall ensure compliance with the Construction Management Plan.

Impact Description

TT-7 Under the cumulative Future Year (2016) Plus Project conditions the proposed Project would result in potentially significant impacts to operations and levels of service (LOS) at three of the study intersections (Class II).

During the Future Year (2016) Project generated traffic would incrementally contribute to increases in congestion at most study area intersections, with five of the 10 study area intersections operating at unacceptable LOS during at least one of the peak hours. The following intersections are projected to operate at LOS D or worse during one or more of the peak hours:

- Kanan Dume Road & PCH (Weekend Peak Hour, LOS D);
- Malibu Canyon Road & PCH (Weekend Peak Hour, LOS E);
- Webb Way & Civic Center Way (PM Peak Hour, LOS E);
- Webb Way & PCH (Weekend Peak Hour, LOS D);
3.11 TRANSPORTATION AND TRAFFIC

- Cross Creek Road & PCH (PM Peak Hour, LOS E; Weekend Peak Hour, LOS F); and

- Las Flores Canyon Road & PCH (PM Peak Hour, LOS D; Weekend Peak Hour, LOS D).

The cumulative Future Year (2016) Plus Project conditions analysis by OTC found that three of the 10 study intersections analyzed using HCM methodology would be significantly impacted by the implementation of the proposed Project including, the intersections of Malibu Canyon Road, Webb Way, and Cross Creek Road with PCH (see Figure 3.11-2). Each of these intersections would experience a significant increase in V/C during the weekend peak hour with Cross Creek Road & PCH experiencing an additional significant increase in V/C during the PM peak hour. However, it should be noted that the approved La Paz Project is required to fund improvements to the intersections of PCH with both Webb Way and Cross Creek Road. As discussed below, completion of these improvements would mitigate impacts posed by the proposed Project to LOS to less than significant. Additionally, the City is preparing a study of PCH safety and requirement improvements and the PCH Traffic Safety Evaluation recommends additional measures for each of these significantly impacted intersections, including installation of improved lighting, use of smart signal technology, and improved sidewalks.

Malibu Canyon Road & PCH

The intersection of Malibu Canyon Road with PCH has the highest existing traffic volumes in the City (City of Malibu 2011). This intersection also experiences a high rate of traffic accidents, including 23 recorded collisions between 2007 and 2010, 34% of which resulted in substantial injuries (LASD 2011). Under the cumulative Future Year (2016) Plus Project scenario the proposed Project would add 27 trips to the PCH westbound through-lane and 51 trips to the PCH westbound right turn lane during the weekend peak hour. Additionally, the proposed Project would add 26 trips to the PCH eastbound left turn lane. These additional trips would result in a significant increase of 0.017 in the V/C ratio at this intersection, which would cause the intersection to operate at LOS E in the Future Year (2016) Plus Project scenario (OTC 2013).
Table 3.11-7. Future Year (2016) and Future Year (2016) Plus Project Peak Hour Levels of Service

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Peak Hour</th>
<th>Future Year (2016)</th>
<th>Existing Year (2012)</th>
<th>V/C or Delay Increase</th>
<th>Significant Impact?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Kanan Dume Road & PCH</td>
<td>AM</td>
<td>0.481</td>
<td>A</td>
<td>0.002</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>0.772</td>
<td>C</td>
<td>0.004</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>WKND</td>
<td>0.846</td>
<td>D</td>
<td>0.003</td>
<td>No</td>
</tr>
<tr>
<td>2. Malibu Canyon Road & PCH</td>
<td>AM</td>
<td>0.773</td>
<td>C</td>
<td>0.000</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>0.659</td>
<td>B</td>
<td>0.000</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>WKND</td>
<td>0.981</td>
<td>E</td>
<td>0.017</td>
<td>Yes</td>
</tr>
<tr>
<td>3. Malibu Canyon Road & Main Entrance</td>
<td>AM</td>
<td>0.524</td>
<td>A</td>
<td>0.005</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>0.356</td>
<td>A</td>
<td>0.007</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>WKND</td>
<td>0.359</td>
<td>A</td>
<td>0.009</td>
<td>No</td>
</tr>
<tr>
<td>4. Malibu Canyon Road & Civic Center Way</td>
<td>AM</td>
<td>0.576</td>
<td>A</td>
<td>0.006</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>0.688</td>
<td>B</td>
<td>0.013</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>WKND</td>
<td>0.872</td>
<td>D</td>
<td>0.034</td>
<td>Yes</td>
</tr>
<tr>
<td>5. Webb Way & Civic Center Way</td>
<td>AM</td>
<td>0.668</td>
<td>B</td>
<td>0.005</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>0.980</td>
<td>E</td>
<td>0.011</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>WKND</td>
<td>1.021</td>
<td>F</td>
<td>0.016</td>
<td>Yes</td>
</tr>
<tr>
<td>6. Webb Way & PCH</td>
<td>AM</td>
<td>0.639</td>
<td>B</td>
<td>0.005</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>0.764</td>
<td>C</td>
<td>0.011</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>WKND</td>
<td>0.764</td>
<td>C</td>
<td>0.016</td>
<td>No</td>
</tr>
<tr>
<td>7. Cross Creek Road & PCH</td>
<td>AM</td>
<td>0.606</td>
<td>B</td>
<td>0.005</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>0.757</td>
<td>C</td>
<td>0.010</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>WKND</td>
<td>0.779</td>
<td>C</td>
<td>0.016</td>
<td>No</td>
</tr>
<tr>
<td>8. Malibu Pier Signal & PCH</td>
<td>AM</td>
<td>0.646</td>
<td>B</td>
<td>0.007</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>0.801</td>
<td>D</td>
<td>0.012</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>WKND</td>
<td>0.802</td>
<td>D</td>
<td>0.016</td>
<td>No</td>
</tr>
<tr>
<td>9. Carbon Canyon Road & PCH</td>
<td>AM</td>
<td>0.606</td>
<td>B</td>
<td>0.005</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>0.757</td>
<td>C</td>
<td>0.010</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>WKND</td>
<td>0.779</td>
<td>C</td>
<td>0.016</td>
<td>No</td>
</tr>
<tr>
<td>10. Las Flores Canyon Road & PCH</td>
<td>AM</td>
<td>0.646</td>
<td>B</td>
<td>0.007</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>0.801</td>
<td>D</td>
<td>0.012</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>WKND</td>
<td>0.802</td>
<td>D</td>
<td>0.016</td>
<td>No</td>
</tr>
</tbody>
</table>

Note: *LOS criteria for unsignalized intersections employ average control delay instead of V/C ratio.
Source: OTC 2013.
Future Year (2016) Impacts to Study Intersections in the Proposed Project Area

LEGEND
- City of Malibu
- Los Angeles County
- Study Intersection and Number (see legend below right for LOS definition)

Future Intersection Level of Service (LOS)
- Excellent/Good (A-C)
- Fair (D)
- Poor/Failure (E-F)

Project Intersections Impacts – Future Year (2016)
- Less than Significant
- Significant

Weekend Worst Case Scenario
- No Project Trips + (Project Trips) = Total Volume
- Trip increases shown in red

Weekend Worst Case Scenario
- No Project Trips + (Project Trips) = Total Volume
- Trip increases shown in red
This page left intentionally blank for 11X17” figure
Webb Way & PCH

Webb Way provides access to Malibu Canyon Road and the major shopping area within the City. The intersection of Webb Way & PCH is a four-way intersection with a high accident rate, including 18 recorded collisions between 2007 and 2010, 33% of which resulted in substantial injuries (LASD 2011). Under the Future Year (2016) Plus Project scenario the proposed Project would add 50 trips to the PCH westbound through-lane and 19 trips to the PCH eastbound through-lane. Further, 50 trips would be added to the Webb Way southbound left turn lane and one trip would be added to the Webb Way southbound through-lane. One trip would also be added to the Webb Way northbound left turn lane. These additional trips would result in a significant increase of 0.034 in the V/C ratio at this intersection, which would cause the intersection to operate at LOS E in the Future Year (2016) Plus Project scenario (OTC 2013).

Cross Creek Road & PCH

Similar to Webb Way, Cross Creek Road provides access to a major retail area in the Civic Center and may be used as a short cut around PCH to Malibu Canyon Road. The intersection of Cross Creek Road & PCH is a four-way intersection with a high accident rate, including 14 recorded collisions between 2007 and 2010, 21% of which resulted in substantial injuries (LASD 2011). Under the Future Year (2016) Plus Project scenario the proposed Project would add 50 trips to the PCH westbound through-lane and 50 trips to the PCH eastbound through-lane, resulting in a significant increase of 0.016 in the V/C ratio, resulting in a cumulatively considerable contribution to this intersection operating at an unacceptable LOS F during the weekend peak hour during the Future Year (2016) Plus Project scenario.

Further, the proposed Project would also result in a significant impact to the intersection of Cross Creek Road & PCH during the PM peak hour. During this time the proposed Project would add 33 trips to the PCH westbound through-lane and 37 trips to the PCH eastbound through-lane. These additional trips would result in a significant increase of 0.011 in the V/C ratio at this intersection, would cause the intersection to operate at LOS E during the PM peak hour in the Future Year (2016) Plus Project scenario (OTC 2013).

Consequently, implementation of MM TT-7a through -7e would require coordination between the City and Caltrans. However, given the volume of cumulative traffic and the potential to affect intersections, impacts would remain significant and unavoidable.
Non-Standard Width Restriping at Cross Creek Road and PCH and Webb Way and PCH

Red Type indicates new lane proposed as mitigation.

FIGURE 3.11-3
Mitigation Measures

MM TT-7a The Applicant shall submit a restriping and/or widening plan for impacted intersections to the City and Caltrans for review and approval prior to the issuance of a building permit. Concurrently, the Applicant shall apply for a design exception and encroachment permit from Caltrans for restriping non-standard width lanes on PCH at the intersections of Cross Creek Road and Webb Way with PCH.

MM TT-7b Prior to the issuance of a building permit, the Applicant shall provide sufficient funds to Caltrans to restripe the south leg of the Malibu Canyon Road & PCH intersection to include a left turn lane, one through-lane, and one right turn lane.

MM TT-7c Prior to the issuance of a building permit, the Applicant shall provide sufficient funds to Caltrans to install a northbound right turn overlap phase to run concurrently with the westbound left turn phase at the Malibu Canyon Road & PCH intersection.

MM TT-7d Following the approval of a design exception and encroachment permit by Caltrans, but prior to the issuance of a building permit, the Applicant shall provide sufficient funds to Caltrans to install non-standard width eastbound dual left turn lanes at the intersection of Webb Way and PCH. Alternatively, should the design exception not be approved, the Applicant shall provide sufficient funds to Caltrans to widen the southern side of PCH at this intersection.

MM TT-7e Following the approval of a design exception and encroachment permit by Caltrans, but prior to the issuance of a building permit, the Applicant shall provide sufficient funds to Caltrans to restripe PCH at the Cross Creek Road & PCH intersection, to include a non-standard width right turn lane. Alternatively, should the encroachment permit not be approved, the Applicant shall provide sufficient funds to Caltrans to widen the southern side of PCH at this intersection and install a new right turn lane.

MM TT-7f Prior to the issuance of a building permit, the Applicant shall contribute pro rata fair share funding for the implementation of the improvements recommended in the PCH Traffic Safety Evaluation, including lighting,
improved signal timing, and sidewalk frontages at the intersections of Malibu Canyon Road & PCH, Webb Way & PCH, and Cross Creek Road & PCH, as well as widening of the PCH approach at Webb Way and improving the crosswalk at Cross Creek Road & PCH. Pro rata funds shall be contributed for each significantly impacted intersection.

Timing and Monitoring: Prior to the issuance of building permits, the City shall verify that all pro rata funds have been received for recommended improvements at the intersections of Malibu Canyon Road & PCH, Webb Way & PCH, and Cross Creek Road & PCH. Prior to the issuance of building permits, the City shall verify that the necessary approvals from Caltrans have been obtained as applicable. Additionally, the City shall verify that restriping has occurred prior to final Planning Department inspection.

Impact Description

TT-8 Under the Congestion Management Program (CMP) Future Year (2030) Plus Project Conditions the proposed Project would result in a potentially significant contribution to cumulative impacts to levels of service (LOS) at CMP intersections (Class II).

A CMP traffic impact analysis was required for the proposed Project, as it would add 50 or more peak hour trips to Los Angeles County CMP monitoring intersections. CMP intersections potentially affected by the proposed Project include the following (OTC 2013):

1. Kanan Dume Road & PCH
2. Malibu Canyon Road & PCH
10. Las Flores Canyon Road & PCH

The CMP Future Year (2030) Plus Project Conditions analysis by OTC found that three of the 10 study intersections analyzed using HCM methodology would be significantly impacted by the implementation of the proposed Project including, the intersections of Malibu Canyon Road, Webb Way, and Cross Creek Road with PCH. Each of these intersections would experience a significant increase in V/C during the weekend peak hour, with Cross Creek Road & PCH experiencing an additional significant increase in V/C during the PM peak hour.
Table 3.11-8. CMP Future Year (2030) and CMP Future Year (2030) Plus Project Peak Hour Levels of Service

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Peak Hour</th>
<th>Future Year (2030)</th>
<th>Existing Year (2030)</th>
<th>V/C or Delay Increase</th>
<th>Significant Impact?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>V/C or Delay*</td>
<td>LOS</td>
<td>V/C or Delay*</td>
<td></td>
</tr>
<tr>
<td>1. Kanan Dume Road & PCH</td>
<td>AM</td>
<td>0.491 A</td>
<td>0.493 A</td>
<td>0.002</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>0.789 C</td>
<td>0.793 C</td>
<td>0.004</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>WKND</td>
<td>0.865 D</td>
<td>0.868 D</td>
<td>0.003</td>
<td>No</td>
</tr>
<tr>
<td>2. Malibu Canyon Road & PCH</td>
<td>AM</td>
<td>0.790 C</td>
<td>0.790 C</td>
<td>0.000</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>0.674 B</td>
<td>0.684 B</td>
<td>0.000</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>WKND</td>
<td>1.004 F</td>
<td>1.021 F</td>
<td>0.017</td>
<td>Yes</td>
</tr>
<tr>
<td>3. Malibu Canyon Road & Main Entrance</td>
<td>AM</td>
<td>-</td>
<td>9.2 seconds</td>
<td>9.2 seconds</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>-</td>
<td>10.8 seconds</td>
<td>10.8 seconds</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>WKND</td>
<td>-</td>
<td>10.25 seconds</td>
<td>10.2 seconds</td>
<td>No</td>
</tr>
<tr>
<td>4. Malibu Canyon Road & Civic Center Way</td>
<td>AM</td>
<td>0.537 A</td>
<td>0.542 A</td>
<td>0.005</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>0.366 A</td>
<td>0.372 A</td>
<td>0.006</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>WKND</td>
<td>0.367 A</td>
<td>0.376 A</td>
<td>0.009</td>
<td>No</td>
</tr>
<tr>
<td>5. Webb Way & Civic Center Way</td>
<td>AM</td>
<td>11.85 seconds B</td>
<td>11.98 seconds B</td>
<td>0.13 seconds</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>54.57 seconds F</td>
<td>57.26 seconds F</td>
<td>2.69 seconds</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>WKND</td>
<td>14.10 seconds B</td>
<td>14.64 seconds B</td>
<td>0.54 seconds</td>
<td>No</td>
</tr>
<tr>
<td>6. Webb Way & PCH</td>
<td>AM</td>
<td>0.588 A</td>
<td>0.595 A</td>
<td>0.007</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>0.704 C</td>
<td>0.717 C</td>
<td>0.013</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>WKND</td>
<td>0.924 D</td>
<td>0.942 E</td>
<td>0.017</td>
<td>Yes</td>
</tr>
<tr>
<td>7. Cross Creek Road & PCH</td>
<td>AM</td>
<td>0.682 B</td>
<td>0.688 B</td>
<td>0.006</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>1.000 E</td>
<td>1.010 F</td>
<td>0.010</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>WKND</td>
<td>1.043 F</td>
<td>1.059 F</td>
<td>0.016</td>
<td>Yes</td>
</tr>
<tr>
<td>8. Malibu Pier Signal & PCH</td>
<td>AM</td>
<td>0.653 B</td>
<td>0.660 B</td>
<td>0.007</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>0.786 C</td>
<td>0.796 C</td>
<td>0.010</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>WKND</td>
<td>0.782 C</td>
<td>0.797 C</td>
<td>0.015</td>
<td>No</td>
</tr>
<tr>
<td>9. Carbon Canyon Road & PCH</td>
<td>AM</td>
<td>0.619 B</td>
<td>0.625 B</td>
<td>0.006</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>0.773 C</td>
<td>0.784 C</td>
<td>0.011</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>WKND</td>
<td>0.796 C</td>
<td>0.812 D</td>
<td>0.016</td>
<td>No</td>
</tr>
<tr>
<td>10. Las Flores Canyon Road & PCH</td>
<td>AM</td>
<td>0.661 B</td>
<td>0.667 B</td>
<td>0.006</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>0.820 D</td>
<td>0.832 D</td>
<td>0.012</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>WKND</td>
<td>0.819 D</td>
<td>0.835 D</td>
<td>0.016</td>
<td>No</td>
</tr>
</tbody>
</table>

Note: *LOS criteria for unsignalized intersections employ average control delay instead of V/C ratio.

Source: OTC 2013.
The potential impacts of Project traffic on the arterial streets serving the Project site were also analyzed in the CMP analysis (OTC 2013). The street segments analyzed included: PCH east of Cross Creek Road; PCH west of Malibu Canyon Road; and Malibu Canyon Road north of Civic Center Way. However, as described by OTC in the TIA, the traffic generated by the proposed Project would not exceed the significance thresholds for signalized intersections at any of the CMP intersections (OTC 2013).

Further, the CMP analysis included a study of the proposed Project’s impact to public transit. The proposed Projects would add five AM, eight PM, and 11 weekend peak hour transit trips during the CMP Future Year (2030). As previously discussed, MTA service is currently provided by three eastbound and seven westbound buses during the morning peak hours, five eastbound and three westbound buses during the afternoon peak hours, with three buses in each direction during the weekend peak hours. Consequently, given the low number of Project generated transit trips per bus, the impacts to transit services in the CMP Future Year (2030) as a result of the proposed Project are expected to be less than significant with implementation of mitigation measures.

Mitigation Measures

Using criteria adopted by the City, OTC (2013) determined that the change in traffic flow generated by the proposed Project would significantly impact the three intersections described above. However, MM TT-7a, MM TT-7b, MM TT-7c, MM TT-7d, MM TT-7e and MM TT-7f, the OTC-recommended traffic mitigation measures, would mitigate the impact at these intersections during the CMP Future Year (2030) as well. As discussed previously, if Caltrans does not approve of the non-standard narrower lane widths along PCH, then roadway widening along the approach and departure legs of PCH would be necessary at its intersections with Cross Creek Road and Webb Way to allow for mitigation with standard lane width.
CMP Future Year (2030) Hotel Project Significant Impacts to Study Intersections

LEGEND
- City of Malibu
- Los Angeles County
- Study Intersection and Number (see legend below right for LOS definition)

3.11-4

FIGURE

CMP Future Year (2030) Hotel Project Significant Impacts to Study Intersections
Impact Description

TT-9 The proposed Project would result in a considerable, but mitigable, contribution to significant cumulative impacts at the unsignalized intersection at Webb Way & Civic Center Way (Class II).

The City requires a traffic signal warrant analysis when the LOS of an unsignalized intersection exceeds the City’s acceptable limits. OTC has determined that during the PM peak hour in the Future Year (2016), the intersection of Webb Way and Civic Center Way would operate at LOS E without implementation of the Project and LOS F with the implementation of the Project. Therefore, a traffic signal warrant analysis was prepared pursuant to the guidelines established in the MUTCD Handbook to evaluate the need for a new traffic signal.

As shown in the Figure 3.11-5, the peak hour traffic volume at this intersection during the Future Year (2016), including that generated by the proposed Project, exceeds the thresholds for an unsignalized intersection. Consequently, the proposed Project contributes to the need for the installation of a traffic signal at Webb Way & Civic Center Way.
Mitigation Measure

MM TT-9a Prior to the issuance of building permits, the Applicant shall implement a mitigation funding mechanism with the City through a fair share process to mitigate the cumulative traffic impacts created by a group of development projects by enabling the installation of a traffic signal at Webb Way & Civic Center Way.

Timing and Monitoring: Prior to the issuance of a building permit, the City shall verify that the necessary funds have been contributed by the Applicant. Further, prior to issuance of a Temporary Certificate of Occupancy or a Certificate of Occupancy, the City shall verify that the traffic signal at Webb Way & Civic Center Way has been installed.

3.11.3.6 Residual Impacts

The Project TIA recommends traffic mitigation measures to reduce potential impacts to affected intersections to less than significant. While these measures are physically feasible, many lie under the permitting authority of Caltrans and may have secondary impacts to the surrounding vicinity.

Since PCH is a modified urban arterial, roadway modifications would require design exceptions from the Caltrans highway/freeway design standards (Caltrans 2012). The proposed lane widths for mitigation at the PCH intersections are typical for urban arterial streets, but non-standard for highways/freeways. Consequently, the proposed intersection improvements along PCH would require a design exception from Caltrans subject to mandated Local Development / Intergovernmental Review. Additionally, these improvements would require an encroachment permit from Caltrans, the permitting agency.

Further, as previously described, bike route improvements west of Busch Drive, including the installation of approximately two miles of bike lane near Zuma Beach, have been partially funded through a $14 million grant by MTA and through the Federal Highway Safety Improvement Program (City of Malibu 2013). Additionally, these improvements would require an encroachment permit from Caltrans, the permitting agency.

If Caltrans does not approve the non-standard narrower lane widths or the City finds it to be inconsistent with recommendations for bike lane improvements along PCH, then
roadway widening on the southern side of PCH would be necessary to allow for standard lane width. While there is 15 feet of available right-of-way on the eastbound side of PCH at its intersection with Cross Creek Road, widening of the Cross Creek Road intersection is constrained by multiple factors including the width of the bridge over Malibu Creek, as well as state park lands and the presence of a large sycamore tree to the south, which may be protected under LIP Chapter 5, Native Tree Protection. Road widening at Webb Way & PCH would be feasible as undeveloped area occurs along the northern side of PCH; however, widening may also require the acquisition of right-of-way along the southern side of PCH, which is currently occupied by a parking lot.

Successful implementation of the proposed mitigations, including restriping at the intersections of Malibu Canyon Road, Webb Way, and Cross Creek Road with PCH, would reduce the impacts during the Future Year (2016) and CMP Future Year (2030) to less than significant. Additionally, the implementation of MM TT-9a would mitigate the proposed Project’s contribution to traffic impacts by providing fair share funding for the installation of a traffic signal at the intersection of Webb Way & Civic Center Way.

However, if roadway widening were required along PCH as a part of MM TT-7a, MM TT-7b, MM TT-7c, MM TT-7d, MM TT-7e and MM TT-7f, secondary impacts would result.
3.12 NOISE

This section addresses the noise impacts associated with construction and operation of the proposed Project. Noise is generally defined as unwanted sound that is heard by people or wildlife and that interferes with normal activities or otherwise diminishes the quality of the environment. The most common approach to describe varying noise levels is to define the Equivalent Noise Level (Leq) for a specified period of time. The Leq level is a single value that represents the total sound energy of a time-varying noise. Noise level (or volume) is generally measured in decibels (dB) using the A-weighted sound pressure level (dBA).

Noise issues in communities are often evaluated in terms of the Community Noise Equivalent Level (CNEL) metric. CNEL is the energy-averaged sound level measured over a 24-hour period, with a 10-dBA penalty assigned to noise events occurring during typical sleeping hours of between 10:00 P.M. and 7:00 A.M., and an additional 5-dB penalty for noise during the evening (7:00 P.M. to 10:00 P.M.). CNEL is often used due to its utility in identifying noise related sleep disturbance effects, often a key community concern for increases in noise levels. A similar scale is the Day-Night Average Noise Level (Ldn), which includes a penalty of 10-dBA for the nighttime period only. Most California noise laws specify levels using the CNEL metric and most federal laws use the Leq metric. The City of Malibu (City) thresholds utilize the Leq metric.

Decibels are based on the logarithmic scale. The logarithmic scale compresses the wide range in sound pressure levels to a more useable range of numbers in a manner similar to the way that the Richter scale is used to measure earthquakes. In terms of human response to noise, studies have indicated that a noise level increase of 3-dBA is barely perceptible to most people, a 5-dBA increase is readily noticeable, and a difference of 10-dBA would be perceived as a doubling of loudness. Everyday sounds normally range from 30-dBA (very quiet) to 100-dBA (very loud). Examples of various sound levels in different environments are shown in Table 3.12-1.
3.12 NOISE

Table 3.12-1. Representative Noise Levels

<table>
<thead>
<tr>
<th>Common Outdoor Activities</th>
<th>Noise Level (dBA)</th>
<th>Common Indoor Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power saw</td>
<td>—110—</td>
<td>Rock band</td>
</tr>
<tr>
<td>Jet fly-over at 100 feet</td>
<td>—100—</td>
<td>Crying baby</td>
</tr>
<tr>
<td>Subway</td>
<td>—90—</td>
<td></td>
</tr>
<tr>
<td>Gas lawnmower at 3 feet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jack hammer</td>
<td>—80—</td>
<td>Food blender at 3 feet</td>
</tr>
<tr>
<td>Noisy urban area during daytime</td>
<td>—70—</td>
<td>Garbage disposal at 3 feet</td>
</tr>
<tr>
<td>Gas lawnmower at 100 feet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heavy traffic at 300 feet</td>
<td>—60—</td>
<td>Vacuum cleaner at 10 feet</td>
</tr>
<tr>
<td>Air conditioner</td>
<td>—50—</td>
<td>Sewing machine</td>
</tr>
<tr>
<td>Quiet urban area during daytime</td>
<td>—40—</td>
<td>Large business office</td>
</tr>
<tr>
<td>Quiet urban area during nighttime</td>
<td>—30—</td>
<td>Dishwasher in next room</td>
</tr>
<tr>
<td>Quiet suburban area during nighttime</td>
<td></td>
<td>Refrigerator</td>
</tr>
<tr>
<td>Quiet rural area during nighttime</td>
<td>—20—</td>
<td>Theater, large conference room (background)</td>
</tr>
<tr>
<td>Lowest threshold of human hearing</td>
<td>—10—</td>
<td>Broadcast/recording studio</td>
</tr>
</tbody>
</table>

3.12.1 Existing Conditions

The Project site is located along two major roadway corridors in an otherwise relatively quiet area dominated by residential and institutional uses. According to the City of Malibu General Plan Noise Element (1995), the major exterior noise source in the vicinity of the proposed Project site is vehicular traffic. Based on 1995 traffic volumes, the Noise Element identified the southern portion of the Project site as being affected by CNEL noise levels of 60-dBA that extend approximately 375 feet from the centerline of Pacific Coast Highway (PCH) into the Project site, with higher noise levels of 65-dBA extending 184 feet from the centerline of PCH. Malibu Canyon Road, between PCH and Civic Center Way, generates noise contours of up to 65 CNEL that extend approximately 51 feet from the roadway centerline (City of Malibu 1995).
As discussed in Section 2.0 *Project Description*, the approximately 27.8-acre Project site consists of a level mesa area of approximately 16 acres surrounding by steep slopes on the north, east and south. Thus, much of the site’s level mesa top, which rises up to 80 feet above PCH, is somewhat removed from high noise levels generated by that roadway. The level areas fronting Malibu Canyon Road are more directly exposed to roadway noise; however, noise levels generated by Malibu Canyon Road are lower than those generated by traffic on PCH. Based on this information, the southern 50 to 100 feet of the site’s level mesa and the western 25 to 200 feet of the areas along Malibu Canyon Road experience relatively high noise levels (Figure 3.12-1).

Recent noise monitoring was undertaken to ascertain noise levels associated with traffic along both PCH and Malibu Canyon Road (Rincon Consulting Inc. 2012). These field measurements confirmed that the southern and western ends of the Project site are subject to relatively high levels of roadway noise generally consistent with earlier noise measurements (refer to Table 3.12-2). However, as these measurements indicate that roadway noise levels have incrementally increased since 1995, due to increases in traffic volumes, noise levels across the Project site may have also increased.

Table 3.12-2. Adjacent Roadway Existing Noise Levels

<table>
<thead>
<tr>
<th>Measurement Location</th>
<th>Primary Noise Source</th>
<th>Sample Time</th>
<th>Leq (dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>North side of PCH, approximately 750 feet east of Malibu Canyon Road, and 40 feet from roadway centerline</td>
<td>Traffic on Malibu Canyon Road</td>
<td>Weekday afternoon peak hour</td>
<td>76.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Weekday evening (off-peak)</td>
<td>70.8</td>
</tr>
<tr>
<td>East side of Malibu Canyon Road, approximately 200 feet north of PCH, and 100 feet from roadway centerline</td>
<td>Traffic on PCH</td>
<td>Weekday afternoon peak hour</td>
<td>66.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Weekday evening (off-peak)</td>
<td>56.0</td>
</tr>
</tbody>
</table>

Note: Off-peak hours generally occur between 9:30 a.m. and 3:30 p.m. and after 8:00 p.m. to 7:00 a.m.
Source: Field visit using ANSI Type II Integrating sound level meter
See Appendix E for noise monitoring data sheets.

3.12.1.1 Sensitive Receptors

Noise sensitive uses are generally defined by the General Plan as single- and multi-family residences, schools, libraries, medical facilities, retirement/rest homes, and places of religious worship (City of Malibu 1995). Such uses can be sensitive to increases in both short-term and long-term noise due to issues such as sleep disturbance and
LEGEND
- Rancho Malibu Hotel Proposed Project Site
- Noise Monitoring Location
- Topographic Contour Line (contour interval equals 25 feet)
- Approximate CNEL Noise Contour
- Pacific Coast Highway =
- Malibu Canyon Road =

Sensitive Receptors
1. Webster Elementary School
2. Our Lady of Malibu Catholic Church
3. Malibu Knolls Neighborhood
4. Vista Pacifica and De Ville Way Neighborhoods
5. Crummer Property
6. Pepperdine University

(1) Source: City of Malibu General Plan Noise Element 1995.
Aerial Source: Google 2011.

CNEL Noise Contours in the Project Vicinity

FIGURE 3.12-1
disruption of conversation, lectures or sermons, or decreased attractiveness of exterior use areas, such as patios, backyards or parks. Of particular concern is exposure of sensitive receptors to long-term elevated interior noise levels and sleep disturbance, which can be associated with health concerns. Additional concerns may include disruption of classroom or worship activities at schools and churches or disturbance to elderly residents.

Noise-sensitive uses within 1,000 feet of the Project site include the Vista Pacifica and De Ville Way residential neighborhoods, Our Lady of Malibu School and Church and Webster Elementary School located north/northeast of the Project site, and the Pendleton Computer Center and Payson Library at Pepperdine University (Pepperdine) located northwest of the Project site (refer to Table 3.12-3; see Figure 3.12-1). All of these uses have both sensitive exterior living areas such as patios, backyards, park or lawn area and playgrounds, and interior spaces such as the interior of homes, dormitories, classrooms and meeting halls. As discussed further in Section 3.12.2, Regulatory Setting below, each of these uses have different sensitivities to increased noise exposure.

Table 3.12-3. Sensitive Receptors in the Vicinity of the Project Site

<table>
<thead>
<tr>
<th>Receptor</th>
<th>Distance (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our Lady of Malibu Church and School</td>
<td>600</td>
</tr>
<tr>
<td>Vista Pacifica and De Ville Way Condominiums</td>
<td>650</td>
</tr>
<tr>
<td>Webster Elementary School</td>
<td>750</td>
</tr>
<tr>
<td>Pepperdine Pendleton Computer Center and Payson Library</td>
<td>950</td>
</tr>
</tbody>
</table>

1. These numbers generally represent the distance of these sensitive receptors from primary Project construction areas (e.g., secondary hotel buildings on the level mesa) not from outlying construction zones (e.g., wastewater dispersal areas).
Sensitive receptors in the Project vicinity are exposed to a range of noise levels primarily generated by traffic along PCH, Malibu Canyon Road and Civic Center Way. In order to determine existing noise level exposure for nearby sensitive receptors, noise measurements were recorded at four locations on or adjacent to existing sensitive receptors. Specific noise measurement locations included Alumni Park at Pepperdine, Webster Elementary and Our Lady of Malibu School and Church, the Vista Pacifica and De Ville Way condominiums, and the Crummer property (24120 PCH) (Rincon Consultants Inc. 2012; refer to Figure 3.12-1). Noise measurement locations were removed from existing roadway corridors by 20 to 40 feet. These measurements indicate that daytime one-hour average noise levels during the afternoon commute hour at surrounding sensitive receptors currently ranges from 57- to 61-dBA using the Leq standard (refer to Table 3.12-4). While these measurements provide useful snapshots of existing noise levels, they do not directly account for noise levels during critical evening and sleep periods addressed in the CNEL standard.

Table 3.12-4. Sensitive Receptor Existing Noise Levels

<table>
<thead>
<tr>
<th>Measurement Location</th>
<th>Primary Noise Source</th>
<th>Sample Time</th>
<th>Leq (dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pepperdine</td>
<td>Traffic on Malibu Canyon Road</td>
<td>Weekday afternoon peak hour</td>
<td>57.6</td>
</tr>
<tr>
<td>Webster Elementary/ Our Lady of Malibu</td>
<td>Traffic on Civic Center Way</td>
<td>Weekday afternoon peak hour</td>
<td>59.1</td>
</tr>
<tr>
<td>De Ville Way Condominiums</td>
<td>Traffic on Civic Center Way</td>
<td>Weekday afternoon peak hour</td>
<td>58.6</td>
</tr>
<tr>
<td>Crummer Site</td>
<td>Traffic on PCH</td>
<td>Weekday afternoon peak hour</td>
<td>61.2</td>
</tr>
</tbody>
</table>

Source: Field visit using ANSI Type II Integrating sound level meter (Rincon Consultants Inc. 2012)
See Appendix E for noise monitoring data sheets.

3.12.2 Regulatory Setting

3.12.2.1 Federal Regulations

Federal Transit Administration (FTA) Noise and Vibration Criteria. The FTA provides criteria for allowable noise exposure increases based on baseline noise levels. For example, areas with lower baseline noise levels have a higher allowable noise exposure increase. Thus, an increase of 7-dBA in an area with an existing Leq of 45- to 50-dBA may not be considered significant under this standard, but an increase of 1-dBA in an area with an Leq of 65- to 74-dBA would be significant.
3.12.2.2 State Regulations

State of California’s Guidelines for the Preparation and Content of Noise Element of the General Plan (1987). Section 65302(f) of the California Government Code and the Guidelines developed by the California Department of Health Services, Office of Noise Control provide land use compatibility standards for community noise environments. Exterior noise levels up to 65 L_{dn} or CNEL are normally acceptable for multi-family residential land uses, while exterior noise levels up to 70 dB CNEL are normally acceptable for professional offices or business commercial uses. However, a detailed analysis of noise reduction requirements is recommended when new office or commercial development is proposed in areas where existing sound levels approach 70 dB CNEL. These guidelines are utilized in the development of each municipality’s General Plan Noise Element to determine acceptable noise levels within its community. The City’s implementation of these standards is provided in Section 3.12.2.3.

State of California Interior and Exterior Noise Standards. These standards are part of the California Building Code and California Noise Insulation Standards (Title 24 and 25, California Code of Regulations) and are the noise standards required for new construction in California. These noise standards are categorized as either “normally acceptable,” “conditionally acceptable,” “normally unacceptable” or “clearly unacceptable”. These standards are implemented through the City’s General Plan Noise Element, and apply to sound levels experienced at newly constructed improvements, such as the proposed Project.

3.12.2.3 Local Regulations

Malibu Municipal Code (M.M.C.), Title 8, Chapter 8.24 (Noise). M.M.C. Section 8.24.050 (Prohibited Acts), which limits construction noise by placing restriction on the hours of construction operations, also regulates noise from construction activities. Construction activities are not permitted outside the hours of 7:00 a.m. and 7:00 p.m. Monday through Friday or 8:00 a.m. and 5:00 p.m. on Saturday. No construction activities would be permitted to take place at any time on Sundays or City-designated holidays, except for emergency work permitted by the City (M.M.C. Sections 8.24.050(G) and 8.24.060(D)).
City of Malibu, General Plan Noise Element (1995). The General Plan Noise (N) Element applies the state’s Community Noise and Land Use Compatibility standards and sets conditionally acceptable standards for land uses for interior noise levels. For example, the maximum allowable noise level for outdoor activity areas of new hotel uses (transient housing) exposed to transportation noise sources is 60-dBA \(L_{dn} \). A maximum noise exposure to transportation noise sources for indoor spaces for such transient housing is not to exceed 45-dBA \(L_{dn} \). The Noise Element also establishes maximum noise exposure limit (Lmax) standards for noise-sensitive land uses for both non-transportation and transportation-related noise sources presented in Tables 3.12-5 and 3.12-6.

Table 3.12-5. Maximum Exterior Noise Limits from Non-Transportation Sources

<table>
<thead>
<tr>
<th>Receiving Land Use Category</th>
<th>General Plan Land Use Districts</th>
<th>Time Period</th>
<th>Noise Level (dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>7:00 A.M. – 7:00 P.M.</td>
<td>Leq</td>
</tr>
<tr>
<td>Rural</td>
<td>All RR Zones and PRF, CR, MH, OS</td>
<td>55</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7:00 P.M. – 10:00 P.M.</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10:00 P.M. – 7:00 A.M.</td>
<td>40</td>
</tr>
<tr>
<td>Other Residential</td>
<td>All SFR, MFR and MFBF Zones</td>
<td>7:00 A.M. – 7:00 P.M.</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7:00 P.M. – 10:00 P.M.</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10:00 P.M. – 7:00 A.M.</td>
<td>45</td>
</tr>
<tr>
<td>Commercial, Institutional</td>
<td>CN, CC, CV, CG and I Zones</td>
<td>7:00 A.M. – 7:00 P.M.</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7:00 P.M. – 7:00 P.M.</td>
<td>60</td>
</tr>
</tbody>
</table>

Source: City of Malibu 1995; note that schools are considered sensitive receptors, but their institutional zoning designations allow for higher levels of noise exposure than for other sensitive receptors such as residential uses.

City standards indicate that outdoor activity area sound levels should not exceed 50 dB CNEL at the property line for residential uses; however, a maximum noise exposure for most sensitive receptors from transportation sources is not to exceed 60 dB CNEL, as provided in Table 3.12-6 (City of Malibu 1995).
Table 3.12-6. Maximum Allowable Noise Exposure Due To Transportation Noise Sources

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Outdoor Activity Areas ¹</th>
<th>Indoor Spaces</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L_{dn}/CNEl, dB</td>
<td>L_{dn}/CNEl, dB</td>
</tr>
<tr>
<td>Residential</td>
<td>50¹</td>
<td>45</td>
</tr>
<tr>
<td>Transient housing (i.e., hotels)</td>
<td>60¹</td>
<td>45</td>
</tr>
<tr>
<td>Churches and meeting halls</td>
<td>60¹</td>
<td>-</td>
</tr>
<tr>
<td>Office buildings</td>
<td>60¹</td>
<td>-</td>
</tr>
<tr>
<td>Schools, libraries and museums, and child care</td>
<td>60¹</td>
<td>-</td>
</tr>
<tr>
<td>Playgrounds and neighborhood parks</td>
<td>70</td>
<td>-</td>
</tr>
</tbody>
</table>

¹ Where the location of outdoor activity areas is unknown, the exterior noise level standard shall be applied to the property line of the receiving land use.
² As determined for a typical worst-case hour during periods of use.
³ Where it is not possible to reduce noise in outdoor activity areas to 50 dB L_{dn}/CNEl or less using practical application of the best-available noise reduction measures, an exterior noise level of up to 65 dB L_{dn}/CNEl may be allowed provided that available exterior noise level reduction measures have been implemented and interior noise levels are in compliance with this table.
Source: City of Malibu 1995.

In addition to standards, the N Element also contains policies applicable to the Project, which are outlined below.

N Goal 1: Acceptable Noise Levels

• **N Policy 1.1.1**: The City shall protect residences, parks and recreational areas from excessive noise to permit the enjoyment of activities.

• **N Policy 1.1.2**: The City shall protect noise-sensitive land uses from negative impacts of proximity to generating uses.

• **N Policy 1.1.3**: The City shall reduce noise along Pacific Coast Highway.

3.12.3 Environmental Impacts

3.12.3.1 Thresholds for Determining Significance

Sound levels for the proposed Project must comply with relevant noise policies, standards, and ordinances. If Project-generated sound levels exceed land use compatibility guidelines summarized earlier, they would comprise a significant impact.
3.12 NOISE

3.12.3.2 Impact Assessment Methodology

Anticipated construction sound levels were estimated and analyzed based on projected construction vehicle requirements, distance between sensitive receptors and construction activities, and proposed daytime operational levels (Rincon Consultants Inc. 2012). Standard noise generation levels for typical construction equipment were used to estimate construction sound levels.

Long-term impacts were analyzed for the existing and future noise environment and appropriate noise-control mitigation measures are recommended below.

3.12.3.3 1986 and 1998 Project Environmental Review Findings

Developers have been attempting to permit and construct a hotel at the Project site for many years, and efforts to date have included obtaining CCC approval for a 300-room hotel in 1986, completion of a certified EIR in 1997 and approval of a previous 146-room hotel design by the Malibu City Council in 1998. Applicable findings of environmental review performed for these projects are described below.

California Coastal Commission 1986 Approval of a 300-Room Hotel

In January 1986, the California Coastal Commission (CCC) approved the following project (Permit No. 5-85-418) for the subject property: 300 room hotel (222,200 square feet), 32,800 square foot community center, offices, restaurant, information kiosk and art center, and 1,039 parking spaces. The CCC’s approval has been kept valid over the years and the most recent permit extension (the 26th extension) was issued by the CCC setting the new expiration date as January 7, 2014. The EIR completed for this project did not assess potential noise impacts.

Findings of the 1998 Project EIR

The 1998 EIR determined that the Project would have an insignificant effect on noise. Noise generated from vehicular movement and recreational features (i.e., pool and tennis courts) were identified as less than significant because there were no parcels adjacent to these elements of the Project site, which could be affected by noise generated from the
3.12 NOISE

proposed Project. The EIR generally found existing noise levels would not increase because the majority of activities would be conducted within hotel buildings and detailed specific analysis of the use of outdoor amplified music was not included. The exposure of individuals to severe noise levels was determined to have no impact because the surrounding area contains no sources of severe noise levels, such as industrial plants or airports.

3.12.3.4 Project Impacts, Mitigation Measures, and Residual Impacts

Project implementation would create both short-term construction related and long-term operational impacts to surrounding sensitive receptors based on noise thresholds identified in the City’s General Plan Noise Element, as discussed in Impacts NO-1 through NO-4 below. The Project site is not located in the vicinity of a public airport or a private airstrip or within the jurisdiction of an Airport Land Use Plan. The nearest public airport is Santa Monica Airport, located approximately 15 miles east of the Project site. As such, there would be no impacts associated with the airport related thresholds; and therefore, they will not be addressed in the following analysis.

Impact Description

NO-1 Project construction would create potentially significant short-term impacts to nearby sensitive receptors over the approximately two-year construction period (Class I).

Onsite Construction Activities

Noise-sensitive receptors located nearest to the Project site include Our Lady of Malibu Church and School, Webster Elementary School, Malibu Knolls and De Ville Way Neighborhoods, and Pepperdine. These sensitive receptors would be exposed to construction-related noise over a two year-long construction horizon, with initial grading and site preparation requiring three to four months followed by an additional 20 months of Project construction activities. Peak sound levels associated with heavy equipment typically range between 75- and 90-dBA at 50 feet from the source (United States Environmental Protection Agency [U.S. EPA] 1971). Peak sound levels associated with construction equipment would occur sporadically throughout the nine-hour workday.
The grading and site preparation phase of the Project would likely generate the highest construction sound levels experienced by these sensitive receptors associated with the operation of construction equipment. In particular, heavy equipment (e.g., bulldozers, excavators, scrappers) would be used to remove the top five feet of soil from the site’s mesa top for offsite transport via heavy haul trucks. Excavators, pile drivers and a range of heavy equipment would be used in excavation and site preparation activities for the parking garage and larger hotel buildings. Much of this heavy grading activity would occur in the western portion of the site, over 1,000 feet from most sensitive receptors, and while audible, is not anticipated to create significant noise impacts. Construction noise levels generated on the level portion of the property closer to sensitive receptors were extrapolated using the line of sight method of sound attenuation assuming an attenuation of 6-dBA decrease for every doubling of distance to nearby sensitive receptors (Table 3.12-7).

Table 3.12-7. Construction Noise from Primary Construction Site at Sensitive Receptors

<table>
<thead>
<tr>
<th>Receptor</th>
<th>Distance from Construction</th>
<th>Maximum Estimated Noise Level at Receptor</th>
<th>Maximum Exterior Noise Limit between 7 a.m. - 7 p.m.</th>
<th>Threshold Exceeded?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our Lady of Malibu Church and School (Institutional)</td>
<td>600 feet</td>
<td>66.4-dBA</td>
<td>85-dBA</td>
<td>No</td>
</tr>
<tr>
<td>Residences Across Civic Center Way (Multi-Family Residential)</td>
<td>650 feet</td>
<td>65.7-dBA</td>
<td>75-dBA</td>
<td>No</td>
</tr>
<tr>
<td>Webster Elementary School (Institutional)</td>
<td>750 feet</td>
<td>64.5-dBA</td>
<td>85-dBA</td>
<td>No</td>
</tr>
<tr>
<td>Pepperdine (Institutional)</td>
<td>950 feet</td>
<td>62.4-dBA</td>
<td>85-dBA</td>
<td>No</td>
</tr>
</tbody>
</table>

Noise thresholds based on Table 3.12-5

1 These noise measurements reflect noise generated by grading for and construction of primary Project facilities at selected points on top of central mesa. Vegetation removal, trenching and grading for an onsite wastewater treatment system (OWTS), drainage improvements and vegetation modification would occur at distances of 425 to 600 feet from sensitive receptors.

2 The Our Lady of Malibu Church and School, Webster Elementary School, and Pepperdine are zoned institutional and therefore have higher noise thresholds than other uses (i.e., residential); however, these uses are also considered sensitive receptors and therefore may experience adverse disturbance at lower noise thresholds than those identified.

Note: Loudest piece of equipment (88-dBA) was used to calculate noise level at receptor site.

However, heavy equipment would also be used to grade and create cut and fill slopes on north and east facing hillsides on the Project site within 500 to 700 feet of sensitive receptors, in closer proximity to these sensitive receptors than depicted in Table 3.12-6.
In addition, subsequent to construction of these cut and fill slopes, heavy equipment would be employed in the construction of approximately 380 feet of caisson supported retaining walls approximately 600 to 800 feet across Winter Canyon from the Vista Pacifica and De Ville Way condominiums, Webster Elementary School, and Our Lady of Malibu Church and School. Finally, use of heavy equipment for vegetation clearing, grubbing and trenching for installation of wastewater effluent disposal fields and drainage improvements in Winter Canyon would occur as close as 425 to 550 feet from Webster Elementary play fields, Our Lady of Malibu classrooms and a number of homes along Vista Pacifica and De Ville Way. Our Lady of Malibu, Webster Elementary School and Pepperdine are zoned institutional and therefore have higher noise thresholds than other uses (i.e., residential); however, these uses are also considered sensitive receptors and therefore may experience adverse disturbance at lower noise thresholds than those identified in Table 3.12-7. Sensitive receptors in Winter Canyon located at a distance of 425 to 550 feet from Project construction activities, would experience construction-related sound levels of approximately 55- to 75-dBA for trucks, backhoes and excavators, given attenuation of sound between this construction activity and nearby sensitive receptors.1

Given that these noise-sensitive receptors are located at a distance less than 500 feet from proposed OWTS construction activities, sound levels at these locations associated with construction activity would potentially exceed maximum sound level criteria. While these construction activities would not be of the duration or intensity of the primary construction site on the mesa top, estimated sound levels would potentially exceed the City’s threshold for noise exposure during construction and, therefore, onsite short-term noise impacts would be potentially significant.

Offsite Construction Vehicle Traffic

Increased construction vehicle activity on roads surrounding the Project site would increase noise levels along these roads during the 24-month Project construction period, particularly during the use of an estimated 9,400 heavy haul trucks for soil export. It is anticipated that haul trucks would require 136 trips per day (tpd) over a 10-week period

1 Sound attenuates at rough 6 dBA for every doubling of distance from the source. Therefore, sound levels at these sensitive receptors would be roughly 20 dBA less than the estimated noise levels of the construction equipment operating at 75 to 95 dBA within 425 to 550 feet of these receptors.
or approximately nine trucks per hour exiting the site over the proposed nine hour work day (Overland Traffic Consultants 2012). Construction worker commutes are anticipated to add up to 150 trips per day (tpd) for the duration of the 24-month construction period. Both types of trips would incrementally contribute to noise levels that may already exceed acceptable levels.

Impacts from large hauling trucks are anticipated to have greater impacts than those from commuting workers or material delivery vehicles. The specific hauling route has not yet been determined, but is anticipated to access the site via Malibu Canyon Road. Although a site access and construction management plan has not yet been prepared, daily access of numerous of heavy construction vehicles to the site is expected to raise potential concerns related to safety and disruption of peak hour traffic flows along busy Malibu Canyon Road. If access to the site is limited to right turn-in and -out movements for all construction vehicles entering / exiting onto Malibu Canyon Road, it is anticipated that haul trucks would utilize Civic Center Way to access PCH. This roadway passes in close proximity to residential neighborhoods and two schools and would result in a substantial increase in noise levels associated with trucks passing these noise sensitive land-uses. Under a reasonable worst-case scenario with all outbound heavy trucks utilizing Civic Center Way, a substantial short-term increase in heavy truck traffic would occur within 80 feet of some residences along De Ville Way, and within 300 feet of Our Lady of Malibu and Webster Elementary schools (refer to Table 3.12-8).

<table>
<thead>
<tr>
<th>Receptor</th>
<th>Minimum Distance from Travel Lane</th>
<th>Maximum Noise Level at Receptor</th>
<th>Maximum Exterior Noise Limit</th>
<th>Threshold Exceeded?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our Lady of Malibu Church and School</td>
<td>300 feet</td>
<td>69-dBA</td>
<td>60-dBA</td>
<td>Yes</td>
</tr>
<tr>
<td>Residences Across Civic Center Way</td>
<td>80 feet</td>
<td>80-dBA</td>
<td>50-dBA</td>
<td>Yes</td>
</tr>
<tr>
<td>Webster Elementary School</td>
<td>300 feet</td>
<td>69-dBA</td>
<td>60-dBA</td>
<td>Yes</td>
</tr>
<tr>
<td>Pepperdine</td>
<td>880 feet</td>
<td>56-dBA</td>
<td>60-dBA</td>
<td>No</td>
</tr>
</tbody>
</table>

Noise thresholds based on Table 3.12-6.
Note: The noise level for one large truck is estimated to be approximately 84-dBA at a distance of 50 feet away and would attenuate by 6-dBA for each doubling of distance (Federal Transit Authority (FTA) 2006).

2 The City Public Works Department has indicated that operational Project access will be restricted to right turn-in and -out only; no determination has been made for construction traffic.
Potential haul and construction vehicle routes along Civic Center Way could expose noise sensitive land-uses located near this roadway with minimal setbacks to increased noise levels throughout construction, but particularly during the 10 to 12 week-long or greater period of soil export. The potential increase in traffic-related noise during construction would exceed City standards at residences, schools and a church, creating short-term significant impacts that cannot be fully addressed by available feasible mitigation measures. Therefore, the impacts to sensitive receptors from increased on- and offsite construction noise generation would be considered *unavoidable and significant*, particularly over the 10 to 12 week site preparation and grading period.

Standard Regulatory Condition

MM NO-1a
No operation of tools or equipment used in construction, drilling, repair, alteration, or demolition work shall occur on Monday through Friday between the hours of 7:00 P.M. and 7:00 A.M., Saturday before 8:00 A.M. or after 5:00 P.M., or any time on Sundays or City-designated holidays, such that the sound creates a noise disturbance across a residential or commercial property line (M.M.C. Section 8.24.050(G)).

Mitigation Measures

MM NO-1b
The Applicant shall prepare and submit a Construction Noise Management Plan that addresses noise issues related to construction timing, traffic routing, construction in Winter Canyon and methods to reduce construction noise. Noise attenuation techniques shall be employed as needed to ensure that noise levels are maintained within levels allowed by the City's General Plan and Municipal Code Chapter 8.24 (Noise). For construction-related noise issues, the plan shall include:

- Acceptable construction timing schedule in accordance with M.M.C. Section 8.24.050(G) (i.e., no operation of tools or equipment used in construction, drilling, repair, alteration, or demolition work shall occur on Monday through Friday between the hours of 7:00 p.m. and 7:00 a.m., Saturday before 8:00 a.m. or after 5:00 p.m., or any time on Sundays or City-designated holidays);
• Designation of acceptable construction traffic routes, including a prohibition of heavy haul trucks using Civic Center Way;
• Requirement that sound blankets are placed on noise-generating equipment;
• All diesel equipment should be operated with closed engine doors and shall be equipped with factory-recommended mufflers; and
• Hauling schedules, the use of large trucks and movement of construction-related vehicles, with the exception of passenger vehicles, along roadways adjacent to sensitive receptors shall be limited to the hours between 7:00 A.M. and 7:00 P.M., Monday through Saturday. No movement of heavy equipment shall occur on Sundays or City-designated holidays (e.g., Thanksgiving, Labor Day).

Plan Requirements and Timing. The Applicant shall prepare a submit a Construction Noise Management Plan that outlines best management practices (BMPs) for noise attenuation and method of implementation during construction for the City’s review and approval. City sign-off on the Plan shall occur prior to the issuance of grading permits.

Monitoring. The proposed Construction Noise Management Plan shall be subject to review, modification and approval by City staff. City staff would also inspect the Project site during construction activities to ensure compliance.

Impact Description

NO-2 Long-term Project-generated traffic would contribute to elevated noise levels on PCH, Malibu Canyon Road, and Civic Center Way, and would create adverse, but not significant impacts to adjacent sensitive receptors (Class III).

Sound levels associated with existing and projected traffic conditions were determined using the Federal Highway Administration (FHWA) Traffic Noise Model 2.5 Look-Up.
Tables (refer to Appendix E). This model requires various parameters, including traffic volumes, vehicle mix, vehicle speed, and road geometry to compute typical equivalent noise levels during daytime, evening, and nighttime hours. Operational traffic noise levels were projected based on existing and anticipated traffic volumes on PCH and Malibu Canyon Road utilizing: 1) hourly traffic volumes, 2) fleet mix (e.g., the type of vehicles operating on the described roadways), 3) speed limits, 4) type of surfaces (e.g., hard or soft), and 5) distance from the centerline of the roadway to the receptor. Noise level increases associated with Project traffic on vicinity roadways would range from 0.0-BA to 0.4-dBA under existing plus Project conditions (refer to Table 3.2-9). Therefore, this increase in roadway noise levels under existing plus Project conditions would not result in a noise increase greater than 1-dBA along PCH and Malibu Canyon Road roadway segments.

Table 3.12-9. Change in Noise Level Associated with Traffic on PCH and Malibu Canyon Road

<table>
<thead>
<tr>
<th>Roadway</th>
<th>Projected Noise Level (dBA Leq)</th>
<th>Change in Noise Level (dBA Leq)</th>
<th>Due to Project Traffic</th>
<th>Due to Project Traffic Under Future (2016) Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Existing</td>
<td>Existing + Project</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCH between Kanan Dume Road and Malibu Canyon Road</td>
<td>73.1</td>
<td>73.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>PCH between Malibu Canyon Road and Cross Creek Road</td>
<td>73.5</td>
<td>73.6</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Malibu Canyon Road between PCH and Future Project Access</td>
<td>69.4</td>
<td>69.8</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>Malibu Canyon Road Between Future Project Access and Civic Center Way</td>
<td>69.4</td>
<td>69.6</td>
<td>0.2</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Exceed FTA Threshold of 1 dBA increase? No No

Estimates of noise generated by traffic from roadway centerline at 50 feet. Refer to Appendix E for full noise model output. Noise levels presented do not account for attenuation provided by existing barriers or future barriers; therefore, actual noise levels at sensitive receptor locations influenced by study area roadways may in many cases be lower than presented herein.

In addition to increased traffic on PCH and Malibu Canyon Road, it is anticipated that increased traffic would occur on Civic Center Way, particularly if Project access is restricted to right turn-out only for vehicles existing the Project site.\(^3\) Traffic along Civic Center Way is anticipated to increase by approximately 800 average daily trips (ADT) due to Project-added traffic. This increase in traffic on Civic Center Way is anticipated to incrementally increase long-term noise levels by less than the City’s 1-dBA threshold. Therefore, no significant change in noise level in vicinity roadways would be anticipated to result from Project related increase in traffic related noise. Long-term traffic noise impacts would therefore be less than significant.

Mitigation Measures

No mitigation measures required.

Impact Description

Long-term operational noise impacts associated with the Project, particularly large outdoor events, would result in less than significant impacts to sensitive receptors with implementation of mitigation (Class II).

Long-term operational noise impacts associated with the proposed Project would include maintenance and pickup/delivery activities, noise-generating rooftop equipment such as heating, ventilation and air conditioning (HVAC) or kitchen ventilation systems, and outdoor events. Based on the proposed Project plans, the use of the outdoor function areas would be the largest source of noise associated with operation of the Project; however, the use of HVAC and pick-up and delivery activities would contribute to increased noise generation, as described below.

HVAC Equipment: Noise levels from commercial HVAC equipment can reach 100-dBA at a distance of three feet (U.S. EPA 1971); however, these units are typically fitted with noise shielding cabinets, placed on the roof or in mechanical equipment rooms to reduce

\(^3\) Right-turn out only is anticipated to result in vehicles exiting the Project site turning right onto Civic Center Way to access PCH via Webb Way.
noise levels. Therefore, with the application of these noise reduction techniques noise from these pieces of equipment does not exceed 55-dBA at 50 feet.

HVAC equipment for a secondary hotel buildings located in the eastern portion of the Project site would be located approximately 600 feet from the nearest existing sensitive receptor (Our Lady of Malibu Church and School). Based on an attenuation rate of 6 dB per doubling distance, this would result in an external noise level of 34-dBA. The Crummer Site subdivision and residential development (24120 PCH) would be a noise sensitive use once developed. Noise levels from HVAC equipment at the Crummer site would be 38-dBA. Therefore, HVAC equipment noise would not exceed the City’s maximum exterior noise limits and impacts would be less than significant.

Delivery Trucks: Onsite routine activities would include the use of delivery trucks and trash hauling. Delivery truck and trash hauling trucks would access the site from Malibu Canyon Road. Proposed parking areas and loading zones are located at least 600 feet from the nearest sensitive receptor (Our Lady of Malibu Church and School). Based on an attenuation rate of 6 dB per doubling distance the sound level at the nearest receptor from idling delivery truck would be approximately 50 dB Leq. The maximum sound level from delivery trucks (assuming heavy-duty trucks) would be approximately 60 dB Lmax. The Lmax provided in Table 3.12-8 for residential and institutional land would be the appropriate threshold for these noise sources since they would be sporadic sources of noise. Noise from delivery truck trips and idling trucks would not exceed the Lmax for residential or institutional land, thus, operational noise impacts from delivery trucks would be less than significant.

Outdoor Function Areas: It is anticipated that the majority of outdoor event noise would be primarily generated at the proposed pool deck and at the two event lawns. Noise associated with these areas is anticipated to include amplified music, guests socializing, and broadcast announcements. The outdoor pool would be located near the center of the Project site, partially surrounded by structures. One function lawn would be located on the western boundary of the Project site approximately 700 feet north of the intersection of Malibu Canyon Road and PCH and the other would be located in the southeastern portion of the Project site. The outdoor pool as well as the western event lawn would be located approximately 800 feet from the nearest sensitive receptor (Our Lady of Malibu Church and School).
3.12 NOISE

Church and School). The eastern event lawn would be located approximately 900 feet from the nearest sensitive receptor (De Ville Condominiums across Civic Center Way).

Noise levels generated by events that include amplified music and involving up to 350 guests socializing are anticipated to be a maximum of 110-dBA at 50 feet (CalTrans 2009). Further, the potential exists that acoustic music along with conversation from events with several hundred guests could also exceed City standards, at least after 7 p.m. The City has lower noise thresholds during evening hours, and it is anticipated that many of the events would occur in the evening between 7:00 p.m. and 12:00 a.m. (midnight).

Based on potential peak levels of noise, noise levels at sensitive receptors would exceed City standards, resulting in potentially significant impacts to nearby residences (refer to Table 3.12-10). Since Webster Elementary School and Our Lady of Malibu Church and School would not often be in use during these times, elevated noise levels are anticipated to result in less disruption at these sensitive receptors.

Table 3.12-10. Noise Levels at Sensitive Receptor Sites from Outdoor Events

<table>
<thead>
<tr>
<th>Source</th>
<th>Our Lady of Malibu</th>
<th>Residences across Civic Center Way</th>
<th>Webster Elementary School</th>
<th>Pepperdine University</th>
<th>Future Towing Site Residences</th>
<th>Future Crummer Site Residences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pool</td>
<td>84.4</td>
<td>83.2</td>
<td>83.2</td>
<td>79.4</td>
<td>83.0</td>
<td>86.2</td>
</tr>
<tr>
<td>East Event Lawn</td>
<td>84.1</td>
<td>85.0</td>
<td>83.5</td>
<td>78.1</td>
<td>85.9</td>
<td>90</td>
</tr>
<tr>
<td>West Event Lawn</td>
<td>83.6</td>
<td>79.7</td>
<td>80.9</td>
<td>83.2</td>
<td>79.4</td>
<td>82.1</td>
</tr>
</tbody>
</table>

Exterior Leq Noise Standards1

<table>
<thead>
<tr>
<th>Source</th>
<th>60</th>
<th>50</th>
<th>60</th>
<th>60</th>
<th>50</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exceed CNEL Standard?</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Exceed Lmax Noise Standards1</td>
<td>70</td>
<td>65</td>
<td>70</td>
<td>70</td>
<td>65</td>
<td>65</td>
</tr>
</tbody>
</table>

Exceed Lmax Noise Standards?

| Source | Yes| Yes| Yes| Yes| Yes| Yes|

1 Source: City of Malibu 1995; Table 3.12-6. Distances from source to receptor site can be found in Appendix E.
Elevated noise levels from outdoor events are anticipated to occur a minimum of 100 times per year and would exceed standards at all sensitive receptor sites. Disturbance from noise levels causing impacts to sensitive residential uses from outdoor special events and use of amplified music in the evening hours would be considered potentially significant but subject to feasible mitigation.

Mitigation Measures

MM NO-3a The Applicant shall prepare a Special Event Management Plan, which shall include, but is not limited to, establishment of procedures to limit noise generated by hotel operations, particularly for outdoor events. This Plan shall address notification requirements and coordination and noise incident response protocols with the City and Los Angeles County Sheriff’s Department (LASD). The Plan shall also detail the hours of event operation, event capacity, allowable noise levels, and appropriate staff response procedures for violation of noise restrictions. Limitations on outdoor events shall include prohibiting the use of amplification systems for outdoor events after 10:00 p.m. and review of the proposed sound system by a qualified acoustical consultant subsequent to Project construction to ensure that design would meet acceptable noise criteria.

The Plan shall be updated and submitted annually for City review. Annual Plan updates shall detail the total number of events during the previous year, noise complaints received, and any changes to event operations that resulted from noise non-performance issues. During annual review of the Plan, the City shall retain the ability to modify the conditions in the Plan to address any concerns or non-performance issues that may arise. This would potentially include, but not be limited to, a reduction in the number of events, restrictions on attendance at outdoor events, and a reduction in the time period allowed for outdoor amplified music.

Plan Requirements and Timing. The Applicant shall prepare and submit a Special Event Management Plan that includes detailed noise control procedures and standards to City staff for review and approval concurrent
with submittal of building permits. The Plan shall be updated and resubmitted annually for City review and approval.

Monitoring. Annual updates of the Special Event Management Plan, including reports of all noise complaints, shall be submitted to the City. The City shall modify event conditions as necessary to address non-performance issues.

MM NO-3b
Deliveries from heavy-duty trucks, including refrigerator trucks, trash and recycling pick-ups and parking lot sweeping, shall be restricted to daytime operating hours (7:00 a.m. to 10:00 p.m.); idling longer than 10 minutes in the same period shall be prohibited.

Plan Requirements and Timing. The Applicant shall prepare and submit a Special Event Management Plan that includes detailed noise control procedures and standards to City staff for review and approval concurrent with submittal of building permits.

Monitoring. The proposed noise management procedures shall be subject to review, modification and approval by City staff. The Applicant shall submit annual reports to the City that detail the number of special events, attendance, noise reduction measures in place and any noise complaints received. Signs shall be posted requiring delivery truck drivers to shut-off their engines if they would idle for greater than 10 minutes during daytime operating hours (7:00 a.m. to 10:00 p.m.).

Residual Impact

Even with implementation of the above-mentioned mitigation measures, Project construction activities would substantially increase ambient noise levels at sensitive receptors during the Project’s two year-long construction window, particularly during the estimated 10 to 12 weeks of site preparation and grading. Grading, vegetation clearing and construction for the OWTS, drainage improvements and constructed related traffic increases would generate the highest noise levels for adjacent sensitive receptors.
City noise standards for residential and school uses would be exceeded and available feasible mitigation measures identified in a Construction Noise Management Plan would further minimize, but not reduce impacts to less than significant under City standards. Measures such as requiring full site access (i.e., left turns) to avoid construction traffic using Civic Center Way through flaggers or other traffic control measures were considered but discarded due to potential for secondary short-term significant impacts to traffic safety and operation on Malibu Canyon Road. Therefore, potential short-term construction related noise impacts for residences and schools located along Civic Center Way would remain significant and unavoidable.

Long-term operational noise levels associated with outdoor events would result in a significant increase in noise levels at nearby sensitive receptors that would exceed City standards. Adoption of MM NO-3a would reduce, but not eliminate disturbances and impacts to nearby sensitive receptors. Additional measures, such as requiring high levels of hotel management and City staff to monitor and enforce noise restrictions at outdoor events, including use of decibel monitors, were rejected as infeasible due to difficulty of enforcement. Eliminating use of any outdoor amplification was also considered, but rejected as being inconsistent with basic Project design and objectives, which emphasize accommodating large special events, including use of the proposed Project’s ample outdoor event lawns and pool area for such events. With implementation of a Special Event Management Plan, which is subject to annual review, modification, and approval by the City, noise impacts from outdoor events would be reduced to less than significant.

3.12.3.5 Cumulative Impacts

The Project would result in two types of cumulative effects: 1) short-term increases in construction-related noise disturbance, particularly within the Civic Center area; and 2) long-term increases in noise due to increases in traffic along PCH, Malibu Canyon Road, and Civic Center Way.

Impact Description

NO-4 The proposed Project would result in a potentially significant increase in cumulative noise levels from short-term construction, as well as long-term operation and traffic (Class III).
3.12 NOISE

Short-Term

The proposed Project would potentially occur at the same time as several projects in the Civic Center area. Construction of the proposed Whole Foods in the Park, La Paz Project, and the Civic Center Wastewater Treatment Facility (CCWTF) would result in substantial levels of construction and construction equipment operating within the Civic Center area and on area roadways, which is anticipated to occur roughly between 2013 and 2016. In addition, construction of the CCWTF would potentially involve a substantial amount of trenching through roadways, requiring jack hammering and excavation activities, which tend to generate substantial noise levels. Potential construction of the CCWTF in Winter Canyon and installation of sewage mains along Civic Center Way would lead to substantial increases in short-term noise in the Project vicinity. The addition of construction worker traffic and, particularly, increased heavy truck traffic associated with grading and hauling from these combined projects would increase existing area ambient noise levels. The proposed Project’s contribution to these potential cumulative noise impacts would be considerable given the extended construction horizon, construction work in Winter Canyon and large number of heavy haul trucks potentially transiting Civic Center Way, Webb Way and PCH; however, the Project’s short-term cumulative increase in construction related noise would be less than significant.

Long-Term

Cumulative increases in noise exposure from increased traffic on area roadways would result from the proposed Project in combination with other proposed Civic Center area projects. Traffic increases would contribute to an increase in noise levels, particularly along PCH, that are already in excess of City exterior noise standards. The cumulative noise level increase would be from 0.6-dBA to 1.0-dBA, with the largest increase occurring on Malibu Canyon Road. However, the Project’s contribution to this cumulative increase would not exceed significance thresholds (refer to Table 3.12-11). Therefore, the Project’s cumulative increase in traffic related noise would be less than significant.
Table 3.12-11. Change in Noise Level Associated with Traffic on Surrounding Roadways

<table>
<thead>
<tr>
<th>Roadway</th>
<th>Change in Noise Level (dBA Leq)</th>
<th>Due to Project Traffic</th>
<th>Due to Project and Future Traffic</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCH between Kanan Dume Road and Malibu Canyon Road</td>
<td></td>
<td>0.0</td>
<td>0.6</td>
</tr>
<tr>
<td>PCH between Malibu Canyon Road and Cross Creek Road</td>
<td></td>
<td>0.1</td>
<td>0.6</td>
</tr>
<tr>
<td>Malibu Canyon Road between PCH and Future Project Access</td>
<td></td>
<td>0.4</td>
<td>1.0</td>
</tr>
<tr>
<td>Malibu Canyon Road Between Future Project Access and Civic Center Way</td>
<td></td>
<td>0.2</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Estimates of noise generated by traffic from roadway centerline at 50 feet. Refer to Appendix E for full noise model output. Noise levels presented do not account for attenuation provided by existing barriers or future barriers; therefore, actual noise levels at sensitive receptor locations influenced by study area roadways may in many cases be lower than presented herein. Source: Federal Highway Administration Traffic Noise Model Version 2.5 Look-Up Tables.

Operational impacts from the proposed Project, particularly from outdoor events are predicted to frequently exceed exterior noise standards at surrounding sensitive noise receptors; however, the types of uses from operation of proposed projects in the Civic Center area (i.e., supermarket, retail shopping) are not anticipated to result in substantial onsite noise generation. As such, Civic Center noise would incrementally increase but would not combine with the proposed Project to contribute to a cumulatively substantial operational increase in Civic Center area noise levels. Therefore, long-term cumulative impacts would be less than significant.

Mitigation Measures

No mitigation measures required.
This section provides a brief overview of the paleontology of the Malibu area and describes existing resources both in the vicinity of and within the Project site. This section also examines the potential impact of the proposed Project on paleontological resources and identifies mitigation measures to avoid or reduce potential adverse impacts. This section was developed using information from the City of Malibu’s (City) General Plan Conservation (CON) Element and Local Coastal Program (LCP), a Paleontological Resource Technical Study for the Project site prepared for this EIR, the Santa Monica Mountains National Recreation Area (SMMNRA) Paleontological Survey, and existing reports for surrounding properties.

3.13.1 Existing Setting

3.13.1.1 Regional Paleontological Resources

The Project site occurs within the Transverse Ranges Geomorphic Province, an east-west trending series of steep mountain ranges and valleys extending from Point Arguello on the west to the Pinto and Eagle Mountains in eastern California (California Geological Survey 2002). The Santa Monica Mountains are the south-central mountain chain in the Transverse Ranges of southern California. There has been periodic uplift in the area since the Oligocene collision of the Pacific Plate and the North American Plate. However, the mountain building of the Santa Monica Mountains occurred in the last few million years, due to north-south compression from plate movement.

The Project vicinity is rich in fossils from the Pleistocene Era (20,000 years before present), as depicted here. Nearby finds include camel (center), tapir (lower right) and horse (left).

Image: Mural by William Stout at the San Diego Museum of Natural History.
Regional uplift due to intense north-south plate movement compression forces has caused many sedimentary rocks of the Santa Monica Mountains to tilt and uplift, exposing formations with extensive fossilized remains. Rock formations found within the Santa Monica Mountains are primarily thick marine sedimentary sequences of sandstone, siltstone, and mudstone, as well as volcanic deposits that range in age from the Jurassic to the Quaternary. The Los Angeles County region is considered one of the richest areas in the world for both fossil marine vertebrates and land vertebrates from sediments deposited over the last 25 million years (City of Malibu 1995). There are at least 2,300 known fossil localities, representing over a dozen fossiliferous geologic formations within the Santa Monica Mountains National Recreation Area (SMMNRA), which include invertebrate, vertebrate, paleobotanical, protista, and trace fossils (SMMNRA 2004).

3.13.1.2 Project Site

The Project site is located on the Malibu Beach, CA 7.5’ United States Geological Survey (USGS) Quadrangle in Township 1 South, Range 17 west, within the un-sectioned Rancho Topanga Malibu Sequit land grant area. The surface of the Project site is mapped entirely as older Quaternary alluvium (Dibblee 1993). Outcrops of the Miocene Sespe Formation are situated just north of the Project area and may be encountered at depth (McLeod 2012).

Quaternary older alluvium is defined by the deposition of the older alluvium that occurred during the late Pleistocene (1.26 million – 11,700 years before present [B.P.]). Sediments range in color from gray to light brown and are composed of unconsolidated to weakly consolidated, dissected, pebble-gravel, sand, and silt (Dibblee 1993). The uppermost unit of the terrestrial Sespe Formation was deposited during the early Miocene (23.03 – 16.0 million years B.P.). It consists of thick-bedded red, pink, light gray to tan sandstone with thin interbeds of red to green claystone. These geologic formations are
known to contain substantial fossil deposits in the vicinity of the Project site (refer to Table 3.13-1).

Table 3.13-1. Stratigraphy of the Project Site and Associated Fossil Types

<table>
<thead>
<tr>
<th>Stratigraphy</th>
<th>Age</th>
<th>Lithology</th>
<th>Fossils Encountered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quaternary Older Alluvium</td>
<td>1.26 million – 11,700 years B.P.</td>
<td>Alluvial fill, gravels, and shallow marine sand.</td>
<td>Amphibians, reptiles, 20 species of birds, rodent, camel, bison, tapir, mammoth, mastodon, and giant ground sloth.</td>
</tr>
<tr>
<td>Sespe Formation</td>
<td>23.03 – 16.0 million years B.P.</td>
<td>Mostly non-marine redbed sequences of sandstone and claystone. Gray-white, tan-to-pink, medium to-coarse-grained conglomerate.</td>
<td>Paleobotanical material, amphibians, rodent, opossum, and even-toed ungulate</td>
</tr>
</tbody>
</table>

A paleontological research site is located in the vicinity of the Project site and has produced extensive late Pleistocene fossil fauna from the Quaternary alluvium formation. Fossils recovered include tapir, horse, deer, mice, mole, gopher, and bird specimens (McLeod 2012). Outcrops of the nearby Sespe Formation, which may underlie the older Quaternary alluvium of the Project site, have produced fossil specimens of frog, opossum, pica, deer mice, pocket-mice, and even-toed ungulate (McLeod 2012).

A paleontological records search performed by the Natural History Museum of Los Angeles County (LACM) determined that there are no vertebrate fossils known from within the proposed Project site. However, there are vertebrate fossils recorded from similar sediments nearby (McLeod 2012). On October 9, 2012, field reconnaissance was performed of the Project site consisting of an intensive pedestrian survey of sediment exposures. Ground visibility was documented as ranging from very poor (99% groundcover) on the eastern slope to good (30% groundcover) in the central portions of the site. While no fossils, whole or fragmentary, were observed within visible sediment exposures within the Project site, dense vegetation covers much of the site limiting access and visibility (Cogstone 2012).

3.13.2 Regulatory Setting

Several state preservation laws guide actions that concern paleontological resources. These include CEQA (Public Resources Code 21000 et seq.) and Public Resources Code Section 5097.5. At the local level, the City requires protection of paleontological
resources to the greatest extent feasible. All of the following regulations apply to the proposed Project.

3.13.2.1 Federal Policies and Regulations

There is no federal legislation designed specifically for the management and protection of paleontological resources on non-federal lands.

3.13.2.2 State Policies and Regulations

California Environmental Quality Act (CEQA). Fossil remains are considered to be limited, nonrenewable, and sensitive scientific resources in the State of California. CEQA Guidelines Section 15064.5(a)(3) provides protection for historical (or paleontological) resources by requiring that they be identified and mitigated as historical resources under CEQA. The CEQA Guidelines define historical resources broadly to include any object, site, area, or place that a lead agency determines to be historically significant (CEQA Guidelines, § 15064.5(a)(3)).

In addition, CEQA states that: “[I]t is the policy of the state that public agencies should not approve projects as proposed if there are feasible alternatives or feasible mitigation measures available which would substantially lessen the significant environmental effects of such projects, and that the procedures required … are intended to assist public agencies in systematically identifying both the significant effects of proposed projects and the feasible alternatives or feasible mitigation measures which will avoid or substantially lessen such significant effects.” (Pub. Res. Code § 21002). As such, if paleontological resources are identified during the initial project scoping studies as being within the proposed project area, the sponsoring agency must consider those resources when evaluating project effects.

Section 5097.5 of the California Public Resources Code. Public Resources Code section 5097.5 prohibits excavation or removal of any “vertebrate paleontological site or historical feature situated on public lands, except with the express permission of the public agency having jurisdiction over such lands.” Public Records Code section 30244 requires reasonable mitigation of adverse impacts on paleontological resources from development on public land. Penal Code Section 623 spells out regulations for the protection of caves, including their natural, cultural, and paleontological contents. It specifies that no “material” (including all or any part of any paleontological item) be removed from any natural geologically formed cavity or cave.
3.13 PALEONTOLOGICAL RESOURCES

Significant paleontological resources are defined as fossils or assemblages of fossils that are unique, unusual, rare, uncommon, or important in defining a particular time frame or geologic strata or adding to an existing body of knowledge in specific areas, either locally or regionally. Paleontological remains are accepted as nonrenewable resources significant to our culture and, as such, are protected under provisions of the Antiquities Act of 1906 and subsequent related legislation, policies, and enacting responsibilities.

3.13.2.3 Local Policies and Regulations

City of Malibu Local Coastal Program (LCP). The purpose of the LCP is to protect coastal resources while accommodating appropriate land use development within the Coastal Zone, including providing a range of policies to ensure adequate avoidance of historic, prehistoric, archaeological, and other classes of cultural sites.

LCP Land Use Plan (LUP)

The policies pertaining to paleontological resources identified in the LUP and relevant to the proposed Project are listed below:

- **LUP Policy 5.60**: New development shall protect and preserve archaeological, historical and paleontological resources from destruction, and shall avoid and minimize impacts to such resources.

- **LUP Policy 5.61**: Where development would adversely impact archaeological or paleontological resources as identified by the State Historic Preservation Officer, reasonable mitigation measures shall be required.

- **LUP Policy 5.65**: The establishment of a museum/visitor center to display local archaeological and or paleontological artifacts and to provide public educational information on the cultural and historic value of these resources shall be encouraged.

LCP Local Implementation Plan (LIP)

Chapter 11, Archaeological/Cultural Resources, of the Local Implementation Plan (LIP) contains provisions to avoid damage to or destruction of important cultural resources, including paleontological resources, within the City. LIP Section 11.3 provides various steps and stages for evaluation of the cultural resources, provisions to evaluate the resources, and provisions for mitigation programs to reduce impacts on resources. The chapter provides a detailed procedure for dealing with resources encountered during development activities.
3.13 PALEONTOLOGICAL RESOURCES

City of Malibu General Plan. The City’s General Plan was adopted in 1996 and last revised in 2004 (City of Malibu 1996). The General Plan is primarily a policy document that sets goals concerning the community and provides direction for growth and development.

General Plan Conservation Element (CON). The Conservation (CON) Element of the General Plan serves as a guide for the conservation, protection, restoration, management, development, and appropriate and responsible utilization of the City’s existing natural resources, including paleontological resources. The CON Element has the following goals and policies as well as implementation measures pertaining to historic, cultural, paleontological, and/or archeological resources:

- **CON Goal 2.** Cultural resources preserved and protected.
- **CON Policy 2.1.1.** The City shall identify, designate, protect, and preserve areas, sites, or structures of historic, cultural, paleontological, and/or archeological significance.
- **CON Policy 2.1.2.** The City shall avoid the destruction or alteration of cultural resources.
- **CON Implementation Measure 77.** Maintain archives and a database of completed research and studies.
- **CON Implementation Measure 78.** Review all applications for development to determine whether the development may have an adverse impact on cultural resources.
- **CON Implementation Measure 79.** Require site surveys to be performed by qualified technical personnel for projects located in areas identified as archaeologically/paleontologically sensitive. Data derived from such surveys shall be used to formulate mitigation measures for the project, and all such feasible mitigation measures shall be applied to the project.
- **CON Implementation Measure 82.** Encourage proper curation and prohibit casual collection of significant artifacts.
- **CON Implementation Measure 83.** Support the establishment of a museum/study center in the study area to display archeological/paleontological artifacts and to present continuing programs to acquaint the public with the cultural and historic value of these resources.
3.13.3 Environmental Impacts

3.13.3.1 Thresholds for Determining Significance

Paleontologically sensitive sedimentary units are those units with a high potential for containing significant paleontological resources (i.e., rock units within which vertebrate fossils or significant invertebrate fossils have been determined by previous studies to be present or likely to be present). These units include, but are not limited to, sedimentary formations that contain significant paleontological resources anywhere within their geographical extent, as well as sedimentary rock units temporally or lithologically suitable for the preservation of fossils.

Only qualified, trained paleontologists with specific expertise in the type of fossils being evaluated can determine the scientific significance of paleontological resources. Fossils are considered to be significant if one or more of the following criteria apply:

1. The fossils provide information on the evolutionary relationships and developmental trends among organisms, living or extinct;
2. The fossils provide data useful in determining the age(s) of the rock unit or sedimentary stratum, including data important in determining the depositional history of the region and the timing of geologic events therein;
3. The fossils provide data regarding the development of biological communities or interaction between paleobotanical and paleozoological biotas;
4. The fossils demonstrate unusual or spectacular circumstances in the history of life; or
5. The fossils are in short supply and/or in danger of being depleted or destroyed by the elements, vandalism, or commercial exploitation, and are not found in other geographic locations.

According to CEQA, if a project may cause a substantial adverse change in the significance of an historical (or paleontological) resource, either through physical demolition, destruction, relocation, or alteration of the resource, then the project is judged to have a significant effect on the environment (CEQA Guidelines §15064.5(b)). For the purposes of this EIR and in accordance with Appendix G of the CEQA Guidelines, the proposed Project would have a potentially significant effect on the environment if it were to destroy, directly or indirectly, a significant paleontological resource or site.
3.13.3.2 Impact Assessment Methodology

For paleontological resources, impact assessment is based on a comparison of known resource locations with the placement of ground disturbing Project activities that have the potential to remove, relocate, damage, or destroy paleontological resources. Unidentifiable fossils will generally not meet significance criteria and would not be collected unless the amount and preservation is sufficient for dating purposes. For identifiable fossils, significance would need to be assessed subsequent to recovery. However, generally, single fossils are isolated finds that would not meet significance criteria unless they represent previously unknown species in the area or they provide a useful radiocarbon date that assists with local sedimentary sequencing. Associations of whole or partial skeletons of different animals, such as those occurring from the older Quaternary sediments just west of the Project site, are likely to meet multiple significance criteria.

3.13.3.3 1986 and 1998 Project Environmental Review Findings

Developers have been attempting to permit and construct a hotel at the Project site for many years, and efforts to date have included obtaining CCC approval for a 300-room hotel in 1986, completion of a certified EIR in 1997 and approval of a previous 146-room hotel design by the Malibu City Council in 1998. Applicable findings of environmental review performed for these projects are described below.

California Coastal Commission 1986 Approval of a 300-Room Hotel

Paleontological Resources were not analyzed in the 1986 EIR.

Finding of the 1998 Project EIR

Paleontological Resources were not analyzed in the 1998 EIR.

3.13.3.4 Project Impacts and Mitigation Measures

Impact Description

PR-1 Project development could result in potentially significant impacts to paleontological resources (Class II).

The older Quaternary alluvium at the surface of the Project site and the Sespe Formation, which may be encountered at depth, are both considered sensitive for paleontological resources, including significant vertebrate and invertebrate fossils (refer to Table 3.14-1).
Excavations and grading activities throughout the Project site have a good chance of uncovering, disturbing or destroying significant vertebrate fossil remains of a range of extinct species. Disturbance or destruction of significant paleontological resources would be considered a potentially significant impact under CEQA and would also be in conflict with adopted General Plan and LCP policies. Implementation of mitigation measure MM PR-1 would require a City-qualified paleontologist to be present during all excavation and grading within the Project site. With incorporation of MM PR-1a, impacts to paleontological resources would be significant, but subject to feasible mitigation.

Mitigation Measure

MM PR-1a
All excavations and grading activities into the older Quaternary alluvium and/or Sespe Formation, or below a depth of five feet, shall be monitored by a qualified paleontologist. The onsite monitor shall be equipped and permitted to salvage fossils and samples of sediments as they are unearthed. If unearthed paleontological resources determined to be significant by the onsite paleontologist are discovered during Project construction activities, all work should halt within 50 feet of the find until it can be fully evaluated and excavated by a qualified paleontologist.

Recovered specimens shall be prepared to a point of identification and permanent preservation, including washing of sediments to recover small invertebrates and vertebrates. Specimens shall be curated into a professional, accredited museum repository with permanent retrievable storage, unless the City deems it appropriate for excavated resources to be curated and displayed within a designated area of the proposed hotel.

A report of findings, with an appended itemized inventory of specimens, shall be prepared and submitted to the City. The report and inventory, when submitted to the City, will signify completion of the program to mitigate impacts on paleontological resources.

Plan Requirements and Timing. The conditions for monitoring and treatment of discoveries shall be printed on all grading plans. Prior to issuance of grading permits, the applicant shall submit a contract or Letter of Commitment with the qualified paleontologist monitor. The contract must include a project description and scope of work, and shall be prepared, executed, and submitted to the City for review and approval.
Monitoring. The City Planning Department shall confirm monitoring by
the paleontologist and grading inspectors shall spot check fieldwork.

3.13.3.5 Cumulative Impacts

For cultural resources, the geographic extent of cumulative impacts encompasses a
relatively broad area because the importance of any individual resource can only be
judged in terms of its regional context and relationship to other resources. Thus, the
significance of impacts on any given resource or group of resources must be examined in
light of the integrity of the regional resource base. Because the number of paleontological
resources is finite, limited, and non-renewable, any assessment of cumulative impacts
must take into consideration the impacts of the proposed Project on resources within the
Project area, the extent to which those impacts degrade the integrity of the regional
resource base, and affects other projects may have on the regional resource base. If these
effects, taken together, result in a collective degradation of the resource base, then those
impacts are considered cumulatively considerable.

According to the City’s Cumulative Project List (refer to Section 5.0, Cumulative
Projects), 35 projects are currently pending or under construction within the City. Within
the immediate Project site vicinity, there is approximately 274,000 square feet of
commercial development located on 60 acres that is either approved for development or
currently undergoing planning review. Related developments include an additional nine
single-family homes on the Crummer (24120 Pacific Coast Highway) and Towing Site
(23915 Malibu Road) properties. In addition to these pending private development
projects, the City is considering construction of a public Civic Center Wastewater
Treatment Facility (CCWWTF).

Impact Description

PR-2 Construction of the proposed Project would result in cumulatively
considerable potentially significant impacts to paleontological
resources (Class II).

The pending, planned, and approved development within the Civic Center and throughout
the City has the potential to result in further degradation of regional coastal
dpaleontological resources, particularly given the extent of ground disturbance that would
occur in previously undeveloped areas. Regionally, substantial areas within the
SMMNRA contain rock formations similar to those found on the Project site and which
are protected for scientific use. Further, the potential exists for similar high quality
paleontological resources located within the Civic Center to be substantially degraded by pending cumulative development, adversely impacting paleontological understanding and the regional resource base if not properly mitigated.

General Plan CON Implementation Measure 83 and LUP Policy 5.65 encourage the establishment of a museum/visitor center to display local paleontological resources and to provide public educational information. Therefore, if significant paleontological resources are discovered within the Project site, MM-PR-2a would potentially provide public overviews and interpretation of regional paleontological resources. The Project’s contribution to cumulative degradation of the regional paleontological resource base would be considered potentially significant; however, with implementation of mitigation measures cumulative effects on paleontological resources would be significant but subject to feasible mitigation.

Mitigation Measure

MM PR-2a If regionally significant specimens are discovered within the Project site, excavated resources shall be curated and displayed within a designated area of the proposed hotel, if deemed appropriate by a City-approved paleontologist and City staff. The display shall include artifact curation and educational material about the paleontology and prehistoric fauna of the Project vicinity. The display shall be designed and installed by a professional with expertise in historical interpretation and museum display.

Plan Requirements and Timing. The final design of the paleontological displays shall be approved by the City and City-approved archeologist, including identification of a City approved professional to implement and install the museum displays prior to the issuance of the temporary Certificate of Occupancy or the Certificate of Occupancy.

Monitoring. The City Planning Department shall monitor compliance with this requirement and ensure its results are incorporated into the final cultural resource report prepared for the Project site.

3.13.3.6 Residual Impacts

With the incorporation of specified mitigation measures, paleontological resource impacts will be reduced to less than significant levels. If previously unknown sites are
discovered during construction, however, MM PR-1a may not reduce impacts to less than significant levels if the impacts are extensive and/or if the types of discovered sites are unique, unusual, or uncommon in the region.
4.0 OTHER CEQA SECTIONS

4.1 IRREVERSIBLE ENVIRONMENTAL IMPACTS

California Environmental Quality Act (CEQA) Guidelines Section 15126.2(c) requires that an Environmental Impact Report (EIR) evaluate irretrievable commitments of resources to assure that such consumption is justified. This includes use of nonrenewable resources, the commitment of future generations to similar uses, and irreversible damage that can result from environmental accidents associated with the Project.

Construction of new buildings and paved surfaces would involve consumption of building materials and energy, some of which are nonrenewable or locally limited natural resources (e.g., fossil fuels and wood). Nonrenewable resources utilized for the proposed Project could no longer be utilized for other purposes. Consumption of building materials and energy is associated with any development in the region, and these commitments of resources are not unique or unusual to the proposed Project. The proposed Project would represent an incremental commitment to long-term use of nonrenewable resources, such as fuels, electricity, and natural gas. In addition, as discussed in Section 3.2, Air Quality, use of each of these forms of non-renewable energy would contribute to the generation of greenhouse gases (GHGs) with an incremental contribution to global climate change. Thus, while Project’s energy demand and use of non-renewable sources itself would not be significant, resultant secondary impacts to other resources, such as air quality, would be incrementally adversely affected, as more fully discussed in Section 3.2, Air Quality, of this EIR.

Implementation of the proposed Project would irreversibly commit approximately 16.5 acres of potential agricultural soils to commercial development. Although no evidence of past cultivation has been found, the site appears to have been historically used for grazing and accommodated a nursery in the 1970s through the mid 1980s. The proposed Project would commit future generations to similar commercial uses. As described in more detail in Section 4.3.1., the irretrievable commitment of this site to developed uses is considered justified despite the designation of site soils as having low to moderate suitable for agriculture. The site’s agricultural soil capability is identified as class 3e-1, prime when irrigated; however, these soils have limitations, particularly associated with erosion (Natural Resource Conservation Service [NRCS] 2006). The NRCS Soil Survey of the Santa Monica Mountains National Recreation Area indicates that these soils have
agricultural limitations that reduce the choice of plants or require special conservation practices, or both (refer to Section 3.5, *Geology and Soils*). Further, the site does not appear to have been previously used for cultivated agriculture and is zoned for visitor-serving commercial development, which is intended to provide visitor-serving uses in accordance with the City of Malibu’s (City) Local Coastal Program (LCP).

The proposed Project would not be expected to result in environmental accidents that have the potential to cause irreversible damage to the natural or human environment.

4.2 Growth-Inducing Impacts

Section 15126.2(d) of the CEQA Guidelines requires a discussion of how the proposed Project could foster or induce economic or population growth, or the construction of additional housing, either directly or indirectly, in the surrounding environment. Induced growth is distinguished from the direct economic, population, or housing growth of a Project. Induced growth is any growth that results from new development that would not have taken place in the absence of the Project and that exceeds planned growth. CEQA Guidelines also state that growth in any area should not be assumed to be necessarily beneficial, detrimental, or of little significance to the environment. Growth-inducing impacts are caused by those characteristics of a project that tend to foster or encourage population, either directly or indirectly.

Direct growth-inducing impacts. Direct growth-inducing impacts are caused by those characteristics of a project that tend to foster or encourage population and/or economic growth. Inducements to direct growth include the generation of construction and permanent employment opportunities in the support sectors of the economy.

The proposed Project has the potential to result in three types of direct growth-inducing impacts: 1) the creation of short- and long-term employment opportunities, which draw newcomers to the region, 2) the associated increase in housing demand, and 3) the generation of new commercial and tourist attractions to entice people to the area.

The Project would be a visitor-serving commercial use that is intended to provide accommodations and services primarily to tourists visiting the City. As discussed in Section 4.3.3, the proposed Project would provide long-term employment opportunities. Project development would increase the number of jobs available in the City by up to an
estimated 296 part and full times positions, or an increase of approximately 0.04% in the City’s employment base (refer to Section 4.3.3). It is anticipated that these positions would be filled primarily by current City residents, Pepperdine University (Pepperdine) students, and individuals who would commute from nearby communities, and it is anticipated that few of the new employees would relocate to the City. Given the projected wages of the majority of the workers, if relocation were to occur, the demand would be mostly for affordable rental housing units, which are limited in the City. Secondary impacts would likely result from increased commuter traffic, including increased traffic congestion on Pacific Coast Highway (PCH) and associated air quality impacts, particularly generation of GHGs. Residual air quality and GHG effects are discussed in Section 3.2, Air Quality. Taken together, the Project’s direct growth-inducing impacts would appear to be minimal given the part time nature and low and moderate pay scales of the jobs created and the availability of existing in-city (e.g., Pepperdine) and regional workforce to fill those jobs. Indirect impacts would include an incremental increase in commuting from a portion of the Project workforce residing outside of the community; with commensurate increased demand for housing and public services in affected communities, with demand for housing and services distributed throughout the region.

Indirect growth-inducing impacts. Indirect growth-inducement can occur associated with the establishment of new infrastructure or other conditions at the Project site that would potentially lead to growth in surrounding areas.

The proposed Project would include construction of an onsite wastewater treatment system (OWTS) to treat and dispose of project generated wastewater, as well as extension of water lines along Malibu Canyon Road to Civic Center Way and into Pepperdine. The Project’s proposed OWTS would be designed and sized solely for disposal of wastewater generated onsite. Site systems, such as a membrane bioreactor and storage tanks would be sized to serve and treat Project wastewater flows only. While expanding these utility systems to serve additional users would be theoretically feasible, such expansion would require remodel or alteration of hotel facilities as well as major system changes. Further, the Project site does not have the disposal field or soil capacity to dispose of added wastewater flows from offsite sources. With regards to extension of water mains, the proposed Malibu Canyon Road water main would not border any undeveloped parcels except for the project site and the supply would be limited by agreement with Pepperdine to serve the proposed Project. Therefore, construction of the OWTS would not be considered an increase in utilities that would be potentially growth
inducing. Therefore, the proposed Project would not result in indirect growth-inducement.

4.3 Effects Found Not To Be Significant

CEQA Guidelines state that the EIR shall contain a statement briefly indicating the reasons that various potentially significant effects of a project were determined not to be significant and were therefore not discussed in detail in the EIR (Section 15128). After standard regulatory conditions are applied, Agriculture and Forestry Resources, Mineral Resources, and Population and Housing were found not to be significant and were therefore not discussed in detail in this EIR, but are briefly discussed below.

4.3.1 Agriculture and Forestry Resources

The soils on the Project site can be generally classified as Danville-Urban Land Complex (0-9 percent slopes) on the western half of the Project site and Calcic Argixerolls (30-75 percent slopes) on the eastern half of the Project site. The Danville-Urban Land Complex is designated as having an agricultural capability class of “3e-1,” which is a prime soil when irrigated, but includes agricultural limitations that reduce the choice of plants or require special conservation practices, or both (NRCS 2006). Therefore, while the soil is described as prime farmland when irrigated by the NRCS (2006), it has restrictions when used for cultivated crops (NRCS 2012). Additionally, the California Department of Conservation Farmland Mapping classifies the Project site as “Other” and does not consider the site to be prime farmland (California Department of Conservation 2009).

Agricultural land is limited within the City and due to the climate, and habitats present within and adjacent to the City, no forestry resources occur. Agricultural limitation is primarily due to the patchy distribution of soils that have high capability for agricultural uses, and that these soils typically occur along the low relief slopes adjacent to the coast. Prior use of the Project site includes an ornamental plant nursery, although the site has been vacant since the 1990s. Historically, the site was used for cattle grazing. Areas capable for agricultural use are typically the same areas that have the highest capability for urban development and many have already been developed.

As discussed in Section 3.10, Land Use, the Project site is zoned as Commercial Visitor Serving 2 (CV-2). The CV-2 zoning district is intended to provide for visitor-serving
uses, including hotels. The Project site is not zoned as “Agriculture-Horticulture,” another land use classification in the City’s General Plan (Land Use Element Section 1.3.2).

There are no forestry resources onsite (as defined in Public Resources Code section 12220(g)), timberland (as defined by Public Resources Code section 4526), or timberland zoned Timberland Production (as defined by Government Code section 51104(g)). The Project site does not support or appear to have historically supported 10% native tree cover of any species that would allow for management of one or more forest resources, including timber, aesthetics, fish and wildlife, biodiversity, water quality, recreation, and other public benefits. The site is and appears to have been historically dominated by coastal sage scrub vegetation, which may have supported limited numbers of coast live oaks and California black walnut, not approaching 10% cover of the site. Very few native trees currently exists onsite and none are of specimen size. The site does not appear suitable to support crops of commercial species used to produce lumber and other forest products. While soils onsite may be able to support production of Christmas trees, site soils and climate do not make it highly suitable for such production. Given soil limitations and the intended use of the parcel for commercial development, no impacts to agricultural or forestry resources would occur.

4.3.2 Mineral Resources

Sand and gravel resources are the only mineral resources that have been mapped in western Los Angeles County. However, to date the State Division of Mines and Geology has not mapped these resources or other mineral resources in the Malibu area. No known mineral resources are associated with the Project site; therefore, no impacts to mineral resources are anticipated from the proposed Project.

4.3.3 Population and Housing

The proposed Project would consist of a visitor-serving commercial hotel development. Although the Project proposes to sell partial-ownership of hotel rooms as commercial condominiums, these condominiums could not be owner-occupied for more than 30 consecutive days and no more than 180 days per year, as is the maximum time frame proposed by the Applicant. Since owners would not be allowed to stay for more than 180 days (i.e., less than 50% of the year), the condominiums would not be considered primary
residence and therefore owners would not be considered residents of the City of Malibu based on condominium ownership. As discussed in more detail in Section 2.0, *Project Description*, when the owner is not staying at the hotel, the unit would be placed into the normal pool of hotel rooms to be rented to the general public. The proposed Project is not anticipated to provide employee housing.

Population

The Los Angeles metropolitan area had an estimated population of 12,849,383 residents in 2010 with an estimated 9,830,420 residents within Los Angeles County. The City is among the County’s smallest cities with 12,645 residents, according to the 2010 U.S. Census, and comprises 0.13 percent of the County’s population. Between 2000 and 2010, the City’s population grew by 70 persons — a growth rate of less than one percent annually (U.S. Census Bureau 2010).

<table>
<thead>
<tr>
<th>Table 4-1. Regional and Statewide Population Growth, 1992 – 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
</tr>
<tr>
<td>City of Malibu</td>
</tr>
<tr>
<td>County of Los Angeles</td>
</tr>
<tr>
<td>State of California</td>
</tr>
</tbody>
</table>

Employment and Income

The labor force in Los Angeles County was estimated at 4,845,100, while actual employment was 4,268,900 (Economic Development Department 2012). The largest job sectors are Education-Health (22.9%), Professional-Management (15.2%), Leisure-Hospitality (10.2%), Retail (10.2%) and Manufacturing (9.3%) (Southern California Association of Governments [SCAG] 2011). The unemployment rate in Los Angeles County is currently 11.9 % (Employment Development Department [EDD] 2012).

The City currently has a labor force of 7,200 people and an unemployment rate of 4.1 percent, which is substantially lower than the County rate as well as the unemployment rates of neighboring cities (Employment Development Department 2012).
The Applicant anticipates that the proposed hotel, spa and restaurant would employ approximately 120 full-time, part-time, seasonal, and permanent employees at any given time (Project Delivery Analysts 2012); however, a Project employment estimate based on SCAG’s Employment Density Study criteria identify the potential for the operational Project to employ as many as 296 full-time and part-time employees, as shown in Table 4-3.

Table 4-3. Total Employment Expected from Completion of Proposed Project

<table>
<thead>
<tr>
<th>Development Type</th>
<th>Workers per sf</th>
<th>Proposed Project</th>
<th>Number of Workers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retail/Service</td>
<td>1 worker per 730 sf</td>
<td>87,336 sf(^1)</td>
<td>120</td>
</tr>
<tr>
<td>Hotel/Motel</td>
<td>1 worker per 1,179 sf</td>
<td>207,392 sf</td>
<td>176</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>296</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) Includes 17,029 sf of retail on the Lower Basement Level; 64,337 sf of spa, sauna and fitness center; and 5,970 sf of restaurant and dining terrace.

Under either employment estimate, Project development would increase the number of jobs available in the City. It is anticipated that these positions would be filled primarily by current City residents, Pepperdine University (Pepperdine) students, and individuals who would commute from nearby communities.

The median household income for Los Angeles County is $64,800, while the median household income for the City is $125,202. Jobs created under the proposed Project would be comprised mainly of hotel operation and maintenance positions, retail sales
positions, and food preparation and serving positions. Mean hourly and annual wages for such positions in Los Angeles County are shown in Table 4-4.

Table 4-4. Wages for Selected Occupations, Los Angeles County (2012)

<table>
<thead>
<tr>
<th>Occupational Title</th>
<th>Mean Hourly Wage</th>
<th>Mean Annual Wage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retail Salespersons</td>
<td>$12.66</td>
<td>$26,335</td>
</tr>
<tr>
<td>Hotel, Motel, and Resort Desk Clerks</td>
<td>$11.41</td>
<td>$23,728</td>
</tr>
<tr>
<td>Grounds Maintenance Workers, All Others</td>
<td>$14.74</td>
<td>$30,660</td>
</tr>
<tr>
<td>Maids and Housekeeping Cleaners</td>
<td>$11.05</td>
<td>$22,985</td>
</tr>
<tr>
<td>Food Preparation and Serving Related Worker, All Others</td>
<td>$9.44</td>
<td>$19,633</td>
</tr>
</tbody>
</table>

Source: EDD 2012.

Given the currently high regional unemployment rates, the proposed Project would provide an economic benefit to the local economy through the provision of new jobs; however, it is anticipated that these positions would be filled by current residents, Pepperdine students, or people commuting from neighboring areas with more affordable housing.

Housing and Housing Affordability

In 2012, Los Angeles County had approximately 3,454,092 housing units (California Department of Finance 2012). The median home sales price in Los Angeles County was estimated at $364,200 (Zillow 2012), although housing prices vary substantially by city or region. The City contains approximately 6,868 housing units (California Department of Finance 2012). The median home sales price for a two-bedroom home in the City was estimated at $752,300 in July 2012, while a four-bedroom home was estimated at $1.53 million (Zillow 2012).

The state determines housing affordability within a community by categorizing income levels based upon percentage of County median household income. Maximum affordable housing cost for a four-person household is calculated as 30 percent of annual household income. Jobs created under the proposed Project would be comprised of very-low income positions (less than $42,150 annual income), as shown in Table 4-4. The maximum monthly housing cost that is considered affordable for each income category in Los Angeles County is shown in Table 4-5.
Table 4-5. Maximum Affordable Monthly Housing Costs per Income Category, Los Angeles County

<table>
<thead>
<tr>
<th>Income Category</th>
<th>Percentage of County Median Household Income</th>
<th>Annual Income¹</th>
<th>Maximum Affordable Monthly Housing Payment²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Low</td>
<td>≤ 50%</td>
<td>≤ $42,150</td>
<td>$1,054</td>
</tr>
<tr>
<td>Low</td>
<td>51 - 80%</td>
<td>$42,151 – $67,450</td>
<td>$1,686</td>
</tr>
<tr>
<td>Moderate</td>
<td>81 - 120%</td>
<td>$67,451 - $77,750</td>
<td>$1,944</td>
</tr>
<tr>
<td>Above Moderate</td>
<td>> 120%</td>
<td>≥ $77,751</td>
<td>> $1,944</td>
</tr>
<tr>
<td>Median Household Income</td>
<td></td>
<td>$64,800</td>
<td></td>
</tr>
</tbody>
</table>

¹ Based on the California Department of Housing and Community Development income limits for a four-person household, Los Angeles County, February 2012.
² Calculated as 30 percent of income divided by 12 months.
Source: Los Angeles County 2012.

Based on types of positions and projected wages resulting from the proposed Project, it is anticipated that many of the new jobs would be filled by Pepperdine students and the existing unemployed or under-employed labor force in communities surrounding the Malibu area, where housing costs are typically lower. Given the median home prices, lack of affordable housing units in the City, and the greater availability of affordable housing in neighboring communities, it is anticipated that few of the new employees associated with the proposed Project would relocate to the City. Most employees are expected to continue to live at their current places of residence and commute to the Project site for work. As such, the proposed Project would not induce substantial population growth either in the City or the region, and would not substantially alter needs for additional housing. Therefore, impacts to population and housing would be insignificant.

4.4 UNAVOIDABLE SIGNIFICANT ENVIRONMENTAL EFFECTS

CEQA Guidelines Section 15126.2(b) requires an EIR to include a description of any significant impacts resulting from implementation of a project, including impacts that cannot be mitigated to below a level of significance. The proposed Project was evaluated with respect to specific resource areas to determine whether implementation would result in significant adverse impacts. A detailed discussion of each of the impacts can be found in Section 3.0, Environmental Impact Analysis and Mitigation Measures.

- Specific significance thresholds were defined for each potential impact associated with each resource area. Based on the environmental impact assessment presented...
in Section 3.0, *Environmental Impact Analysis and Mitigation Measures*, of this EIR, the proposed Project’s impacts to aesthetics and visual resources, air quality, biological cultural resources, fire protection and hazardous materials, transportation, noise, and hydrology and water quality would be potentially significant. Mitigation measures were developed that would reduce the majority of impacts to less than significance levels. However, the following impacts cannot be mitigated below a level of significance:

- **Air Quality.** The proposed Project would contribute to a cumulative unavoidable and significant impact to air quality, due to the non-attainment status of the Los Angeles Air Basin for several criteria pollutants. These impacts would be associated with long-term operations emissions anticipated to occur with the implementation of the proposed Project and pending, approved, and proposed development in the vicinity.

- **Fire Protection and Hazardous Materials.** The proposed Project would result in cumulative unavoidable and significant impacts from increased population in a Very High Fire Hazard Severity Zone, when combined with past and pending projects in the Civic Center and the greater Malibu area. This population increase would contribute to additional evacuation congestion and associated hazards to public safety during significant wildfire evacuations.

- **Transportation and Traffic.** The proposed Project would contribute considerably to significant short-term cumulative construction impacts due to activities such as lane closures and potential obstruction of turn lanes by large trucks and construction vehicles. These impacts would be associated with substantial short-term increases in vehicle traffic from Project site grading and construction combined with construction traffic associated with pending, planned, and approved projects in the vicinity of the Project site.

- **Noise.** The proposed Project would result in significant short-term impacts to nearby sensitive receptors over the approximately two-year construction period. These impacts would be associated with substantial short-term increases in vehicle traffic and use of heavy equipment (i.e., backhoes, bulldozers, etc.) during site construction in proximity to schools and residential areas.

Under CEQA Guidelines Section 15065, when an EIR demonstrates that implementation of a proposed project will cause significant inmitigable impacts, the agency must issue a Statement of Overriding Considerations before approving the project. A Statement of Overriding Considerations is a report of the lead agency’s findings regarding the merits of approving a proposed Project despite its environmental impacts, and reflects the balancing of competing public objectives. Therefore, the City will be required to adopt a Statement of Overriding Considerations to address the inmitigable impacts listed above. In this instance, the City may review guiding documents, such the California Coastal Act,
and the City’s Local Coastal Plan, General Plan and Municipal Code, when deciding if implementation of the proposed Project is an appropriate measure to meet the needs of the City and the public despite possible adverse affects that could be caused by implementation of the proposed Project. To facilitate consideration of these issues, this EIR discloses potential impacts and provides a range of Project alternatives, which could more fully alleviate environmental concerns. In addition, Section 3.10, Land Use, provides an overview of the City’s policy context, which provides information on how the Project meets a number of important City policy objectives and where it may raise concerns over consistency with other City policies. All of this information should be reviewed when considering this Project.
5.0 CUMULATIVE PROJECTS

5.1 INTRODUCTION

The California Environmental Quality Act (CEQA) Guidelines define cumulative impacts as “two or more individual effects that, when considered together, are considerable or which compound or increase other environmental impacts” (Section 15355). The Guidelines further state that the individual effects can be various changes related to a single project or a number of separate projects, and that the “cumulative impact from several projects is the change in the environment which results from the incremental impact of the project when added to other closely related past, present, and reasonably foreseeable future projects” (Section 15355(a), (b)). The Guidelines allow for the use of two different methods to determine the scope of projects for the cumulative impact analysis, including a list and general plan projection methods. This EIR examined cumulative effects using the List Method, which list past, present, and probable future projects producing related or cumulative impacts, including, if necessary, those projects outside the control of the City of Malibu (City) (Section 15130(b)(1)(A)).

5.2 AFFECTED ENVIRONMENT

City of Malibu and Adjacent Areas

The cumulative projects list consists of pending and approved projects within and immediately adjacent to the City to determine the extent of the affected environment (refer to Table 5-1 and Figure 5-1). This cumulative list is primarily utilized for the assessment of cumulative impacts that extend beyond the immediate vicinity of the Project site, such as regional traffic congestion. As a first step in cumulative analysis, this Environmental Impact Report (EIR) considers the sensitivity of potentially affected resources, the likely geographic extent of Project impacts and the relationship of various Project impacts to each potentially affected resource and those associated with pending projects. This approach results in a varied geographic boundary for different issue areas as summarized below.

The scope of this cumulative analysis is tailored by issue area, depending on the likely scope of affected resources, pending projects and their impacts to such resources in relation to the proposed Project. For example, cumulative analysis of some impacts, such as noise, was relatively restricted to areas generally surrounding the Project site and vicinity ridgelines. Cumulative transportation impacts encompassed a larger potential
Table 5-1. Pending and Approved Projects Within and Immediately Adjacent to the City

<table>
<thead>
<tr>
<th>Map Key</th>
<th>Project Name / Address</th>
<th>Description</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Trancas Town – 6155 Trancas Canyon Road</td>
<td>Rezone and construction 32 townhomes</td>
<td>Pending CDP submittal; zone change UPR</td>
</tr>
<tr>
<td>2</td>
<td>Trancas Country Market – 30745 PCH</td>
<td>Remodel and expansion of existing retail</td>
<td>Under construction</td>
</tr>
<tr>
<td>3</td>
<td>Lechuza Beach Public Access Improvements – 31720.5 PCH</td>
<td>Stairways and other improvements to beach access</td>
<td>UPR</td>
</tr>
<tr>
<td>4</td>
<td>Sea Star Estates – 6270 Sea Star Drive</td>
<td>5 new single-family residences</td>
<td>UPR</td>
</tr>
<tr>
<td>5</td>
<td>Malibu High and Middle School Campus Improvements – 30215 Morning View Drive</td>
<td>New administration building, remodel of existing buildings, new parking lot and site improvements</td>
<td>UPR</td>
</tr>
<tr>
<td>6</td>
<td>Broad Beach Restoration Project – Broad Beach Road</td>
<td>Beachwide rock revetment, off-shore sand dredging, sand nourishment, and dune restoration</td>
<td>UPR</td>
</tr>
<tr>
<td>7</td>
<td>Malibu High School Athletic Field Lighting Project – 30215 Morning View Drive</td>
<td>4, 70-foot tall lights for school sports field lighting</td>
<td>UPR</td>
</tr>
<tr>
<td>8</td>
<td>29255 Heathercliff</td>
<td>3 condominium units</td>
<td>UPR</td>
</tr>
<tr>
<td>9</td>
<td>28811 PCH Subdivision</td>
<td>3 lot residential subdivision</td>
<td>UPR</td>
</tr>
<tr>
<td>10</td>
<td>Portshed – 6551 Portshed Drive</td>
<td>New office building</td>
<td>Project Approval expired; pending new CDP submittal</td>
</tr>
<tr>
<td>11</td>
<td>LA County Fire Station #71 – 28722 PCH</td>
<td>Fire station reconstruction</td>
<td>UPR</td>
</tr>
<tr>
<td>12</td>
<td>Solstice Creek Fish Ladder – 26038.5 PCH</td>
<td>New fish ladder at mouth of Solstice Creek across portion of Dan Blocker Beach</td>
<td>In Building Plan Check</td>
</tr>
<tr>
<td>13</td>
<td>Galahad Subdivision – 6061 Galahad Road</td>
<td>5 lot residential subdivision; 4 buildable lots and 1 open space lot</td>
<td>UPR</td>
</tr>
<tr>
<td>14</td>
<td>Zuma Mesa – 6271 Zuma Mesa Drive</td>
<td>Lot line adjustment and two new single-family residences</td>
<td>Project Approved; In Building Plan Check</td>
</tr>
<tr>
<td>15</td>
<td>Trancas Highlands Water Assessment District – 31537 Anacapa View Drive</td>
<td>New 500,000 gallon water tank/lines, buster pump station and 1 new single-family residence</td>
<td>Project Approved; assessment district formation process underway</td>
</tr>
<tr>
<td>16</td>
<td>Sea Level – 31864 Sea Level Drive</td>
<td>2 new single-family residences and road widening project</td>
<td>UPR</td>
</tr>
<tr>
<td>17</td>
<td>5905 / 5909 Latigo Canyon Road</td>
<td>Lot line adjustment and construction of 2 new single-family residences</td>
<td>UPR</td>
</tr>
<tr>
<td>18</td>
<td>Puercod Canyon Road Extension – 3500 Puercod Canyon Road</td>
<td>Construction of a 3,500 linear feet road extension to provide access to 7 residentially zoned lots</td>
<td>UPR</td>
</tr>
</tbody>
</table>
Table 5-1. Pending and Approved Projects Within and Immediately Adjacent to the City (Continued)

<table>
<thead>
<tr>
<th>Map Key</th>
<th>Project Name / Address</th>
<th>Description</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Crummer – 24120 PCH</td>
<td>• 7 lot residential subdivision for construction of 5 single-family homes and expanded parking for Bluffs Park</td>
<td>UPR</td>
</tr>
<tr>
<td>20</td>
<td>Towing Subdivision – 23915 Malibu Road</td>
<td>• 7 lot subdivision for construction of 4 single family homes</td>
<td>Project Approved; In Building Plan Check</td>
</tr>
<tr>
<td>21</td>
<td>SMMC Beach Public Access Improvements – 24038 Malibu Road</td>
<td>• Beach access</td>
<td>Project Approved</td>
</tr>
<tr>
<td>22</td>
<td>La Paz Shopping Center – 23465 Civic Center Way</td>
<td>• Construction of 112,058 sf of retail and office; 20,000 sf of institutional; and 543 parking spaces</td>
<td>Project Approved; In Building Plan Check</td>
</tr>
<tr>
<td>23</td>
<td>Whole Foods Shopping Center – 23401 Civic Center Way</td>
<td>• Construction of 25,000 sf grocery store; 14,839 sf retail/commercial; 220 parking spaces</td>
<td>UPR</td>
</tr>
<tr>
<td>24</td>
<td>Santa Monica College – 23555 Civic Center Way</td>
<td>• Demolish existing structure and construct +/-27,500 sf institutional building</td>
<td>Pending CDP Submittal</td>
</tr>
<tr>
<td>25</td>
<td>Malibu Sycamore Village – 23575 Civic Center Way</td>
<td>• Construction of 60,000 sf of office/retail; outdoor exhibition space; 300 parking spaces</td>
<td>UPR</td>
</tr>
<tr>
<td>26</td>
<td>Pepperdine Campus Life Project – 24255 PCH</td>
<td>• Construction and redevelopment throughout the 365-acre Pepperdine University Campus over 12 years</td>
<td>Project Approved; Pending Approval of an Amendment at the CCC</td>
</tr>
<tr>
<td>27</td>
<td>Pierview – 22716 PCH</td>
<td>• Construction of new restaurant</td>
<td>Project Complete</td>
</tr>
<tr>
<td>28</td>
<td>Windsail – 22706 PCH</td>
<td>• Construction of new restaurant</td>
<td>Project Complete</td>
</tr>
<tr>
<td>29</td>
<td>Hajian – 24903 PCH</td>
<td>• Construction of 9,685 sf of office space</td>
<td>Project Approved; Under Construction</td>
</tr>
<tr>
<td>30</td>
<td>22959 PCH</td>
<td>• New office and retail complex</td>
<td>UPR</td>
</tr>
<tr>
<td>31</td>
<td>22729 PCH</td>
<td>• New office building</td>
<td>Project Approved; In Building Plan Check</td>
</tr>
<tr>
<td>32</td>
<td>Tuna Canyon Residences - 18805 PCH</td>
<td>• Lot line adjustment and 3 new single-family residences</td>
<td>Project Approved; In Building Plan Check</td>
</tr>
<tr>
<td>33</td>
<td>22301 PCH</td>
<td>• Construction of 4 new single-family residences</td>
<td>Project Approved; In Building Plan Check</td>
</tr>
<tr>
<td>34</td>
<td>Serra Retreat – 3314 Serra Road</td>
<td>• 3 lot residential subdivision</td>
<td>Project Approval expired; pending new CDP submittal</td>
</tr>
<tr>
<td>35</td>
<td>20624 PCH</td>
<td>• Construction of 2 new single-family residences</td>
<td>UPR</td>
</tr>
</tbody>
</table>

TOTAL: 35 PROJECTS

- **Residential:** 14 Projects
- **Commercial:** 10 Projects
- **Institutional:** 5 Projects
- **Recreational:** 3 Projects
- **Utility:** 3 Projects

PCH: Pacific Coast Highway
CDP: Coastal Development Permit
UPR: Under Planning Review
CCC: California Coastal Commission
Source: City of Malibu 2012.
Cumulative Projects

Legend:
- Cumulative Project Location
- City of Malibu
- Other Incorporated Area
- Los Angeles County
- Santa Monica Mountains National Recreation Area Boundary

Notes:
- Cumulative Project Numbers correspond to those presented in Table 5-1.
- Project 24 location undetermined at this time.

*The southern boundary of SMMNRA is theoretically the mean high tide line. However, private holdings, state parks, and lands not under the jurisdiction of the National Park Service exist throughout SMMNRA.
impact area along roadway corridors extended out several miles from the site that would receive the majority of Project traffic, such as Pacific Coast Highway (PCH). Because of the City’s steep topography and diverse neighborhoods, cumulative aesthetic impact analysis focuses on the Civic Center area and key public viewing areas such as PCH. Similarly, cumulative biological resource analysis addresses similar habitats and wildlife corridors within the greater Civic Center area, surrounding mountain slopes and open spaces such as Malibu Bluffs Park. The widest scope of cumulative impact analysis was focused on basin wide air quality and the Project’s incremental contribution to potential cumulative impacts.

The geographic extent Cumulative analysis in each resource area was also affected by the linear nature of the City along the central PCH corridor utilized by City residents and visitors, as well as to encompass adjacent areas outside of the City boundaries in the vicinity of the Project (see Figure 5-1). Due to the undevelopable nature of much of the Santa Monica Mountains National Recreation Area (SMMNRA), natural areas not proposed for development within the SMMNRA were not included within this cumulative projects analysis. Although this EIR assumes that these projects will be constructed as described in Table 5-1, it should be noted that each project is processed independently from the Project, and, as such, the projects may not be approved or constructed. In addition, environmental impacts associated with each of the related projects would be subject to project-specific analysis and mitigation that would further reduce potential cumulative impacts.

Cumulative impacts associated with the potential development of the proposed Project in addition to the pending or approved projects are discussed in Sections 3.1 through 3.13 of this EIR, within the affected area for each resource. The geographic scope of the affected environmental area was determined to be primarily limited to the PCH corridor several miles to the east and west, the Project vicinity including the Civic Center and surrounding foothills, the coastal bluffs to the south, Pepperdine University to the west and the foothills of the Santa Monica Mountains and the SMMNRA to the north. Given the resources likely to be affected by the proposed Project and pending development, this area was determined to be subject to the greatest environmental effects, particularly with regard to effects that would likely not extend to other areas beyond this immediate vicinity (e.g., noise, visual).
5.0 Cumulative Projects

Civic Center Area

The City’s Civic Center area encompasses a total of approximately 161 acres of land designated for commercial uses, primarily within the low lying areas east of Malibu Creek and north of PCH, and also includes the Project site (City of Malibu 1996; 2002). Approximately 274,000 square feet located within the 60-acre Civic Center area (approximately 40% of total Civic Center area) is either approved for commercial development or currently undergoing planning review for commercial development. This acreage total of 60 acres does not include Legacy Park. In addition, related developments include a total of nine additional single-family homes on the Crummer property (24120 Pacific Coast Highway) and Towing property (23915 Malibu Road) (refer to Table 5-2 and Figure 5-2).

In addition to these pending private development projects, the City is considering construction of a public Civic Center Wastewater Treatment Facility (CCWTF). No public wastewater disposal service currently exists within the Civic Center area of the City. The Regional Water Quality Control Board (RWQCB) and the State Water Resources Control Board (SWRCB) have enacted a Prohibition Area to impose wastewater discharge compliance requirements within and surrounding the Civic Center area, which have a regulatory impact on new development. In response, the City is moving forward with studies and preliminary designs for the proposed CCWTF to address potential water quality concerns raised by community organizations, the RWQCB and SWRCB (refer to Table 5-2 and Figure 5-2). Completion of the proposed CCWTF would entail construction of a new wastewater treatment facility, currently proposed to be located in Winter Canyon along Civic Center Way, and the installation of force and gravity sewer mains, as well as collector lines and recycled waterlines, throughout the area (see Figure 5-2).

As noted above, although this EIR assumes that these projects will be constructed as described in Table 5-2, it should be noted that each project is processed independently from the Project, and, as such, the projects may not be approved or constructed. In addition, environmental impacts associated with each of the related projects would be subject to project-specific analysis and mitigation that would further reduce potential cumulative impacts. The cumulative impacts associated with the potential development of the proposed Project are discussed in Sections 3.1 through 3.13 of this EIR, within the affected area for each resource.
Table 5-2. Major Civic Center Vicinity Pending and Approved Projects

<table>
<thead>
<tr>
<th>Map Key</th>
<th>Project Name / Components</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Crummer Subdivision</td>
<td>Develop the approximately 24-acre site with 5 single-family residences (each ~11,100 sf) and various accessory structures, a private gated street, a gatehouse, an onsite wastewater treatment system (OWTS), landscaping and open space. Approximately 1.7 acres would be dedicated to the City for recreational use, including 35 parking spaces along Winter Mesa Drive to serve patrons of Malibu Bluffs Park.</td>
</tr>
<tr>
<td>B</td>
<td>Towing Subdivision</td>
<td>All existing structures on the site would be demolished. New total proposed development onsite consists of approximately 30,457 sf within two-story, single-family residences and accessory structures. The 5.45-acre property would be divided into 7 parcels; 4 of which would be developed and the others would be preserved for open space, street, wastewater dispersal area, a gatehouse and OWTS.</td>
</tr>
<tr>
<td>C</td>
<td>La Paz Shopping Center</td>
<td>Development of 3 vacant parcels for a total of 132,058 sf of commercial floor area, including commercial office and retail space and a parcel to be reserved for a municipal use, as determined by the City. The project proposes 266,641 sf of landscaping.</td>
</tr>
<tr>
<td>D</td>
<td>Whole Foods in the Park</td>
<td>Development of 2 vacant parcels totaling 5.88 acres to include a Whole Foods Market and 4 small commercial buildings, for a total of 5 buildings. The total commercial development associated with the project is anticipated to be 38,425 sf in 5 structures with a F.A.R. of 0.15.</td>
</tr>
<tr>
<td>E</td>
<td>Santa Monica College</td>
<td>Demolition of the existing Los Angeles County Sheriff’s Station building, and the construction of a new 2-story ~27,500 sf educational facility including ~5,700 sf Community Sheriff’s Substation and Emergency Operations and Planning Center. The proposed project would yield a net increase of 3,618 sf onsite.</td>
</tr>
<tr>
<td>F</td>
<td>Malibu Sycamore Village</td>
<td>Development of the vacant parcel consists of a combination of 76,000 sf of office and retail space and restaurants, including a 5,000 sf urgent care facility – a public benefit that would permit a 0.20 F.A.R. Open space along Civic Center Way would feature a pond, trees, gardens and bridges.</td>
</tr>
<tr>
<td>-</td>
<td>Pepperdine Campus Life Project*</td>
<td>Development consists of new and replacement development of up to 455,440 sf, including student housing, sports and recreation facilities including a new athletics/events center, and a parking structure. Phased development is planned over approximately 12 years.</td>
</tr>
</tbody>
</table>

*Pepperdine Campus Life Project includes additional projects not listed in the table.
5.0 Cumulative Projects

Table 5-2. Major Civic Center Vicinity Pending and Approved Projects (Continued)

<table>
<thead>
<tr>
<th>Map Key</th>
<th>Project Name / Components</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>Civic Center Wastewater Treatment Facility</td>
<td>Preliminary design identifies a potential treatment facility in Winter Canyon capable of treating 269,000 gallons per day of effluent. Collection and disposal lines and two pump stations would be constructed throughout the Civic Center area and would serve primarily new and existing commercial development, with planned extension into residential areas in Phases 2 and 3.</td>
</tr>
</tbody>
</table>

DEVELOPMENT TOTALS

<table>
<thead>
<tr>
<th></th>
<th>Development Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>86,013 sf</td>
</tr>
<tr>
<td>Commercial</td>
<td>221,483 sf</td>
</tr>
<tr>
<td>Institutional</td>
<td>507,900 sf (52,500 sf excluding Pepperdine)</td>
</tr>
</tbody>
</table>

*Pepperdine is located outside of City limits.

Source: City of Malibu 2012.
The proposed Civic Center Wastewater Treatment System layout is subject to change. This figure represents the most recent plans submitted by the City of Malibu to the RWQCB in accordance with R4-2009-007 and additions (City of Malibu 2010; 2011).

LEGEND
- Civic Center Wastewater Treatment System (Testing and Preliminary Design)
- Force Main, Gravity Flow, and Recycled Water Lines
- Tertiary Wastewater Treatment Plant
- Pump Station

Notes: Letter designations correspond to those presented in Table 5.1-1 (except WWTP). CDP = Coastal Development Permit.

The proposed Civic Center Wastewater Treatment System layout is subject to change. This figure represents the most recent plans submitted by the City of Malibu to the RWQCB in accordance with R4-2009-007 and additions (City of Malibu 2010; 2011).
This page left intentionally blank for 11X17” figure
6.0 ALTERNATIVES

6.1 INTRODUCTION

The California Environmental Quality Act (CEQA) Guidelines state that an “Environmental Impact Report (EIR) shall describe a range of reasonable alternatives to the project, or to the location of the project, which would feasibly attain most of the basic objectives of the project but would avoid or substantially lessen any of the significant effects of the project, and evaluate the comparative merits of the alternatives” (Section 15126.6(a)).

The CEQA Guidelines also state that “[t]he range of alternatives required in an EIR is governed by a ‘rule of reason’ that requires the EIR to set forth only those alternatives necessary to permit a reasoned choice. The alternatives shall be limited to ones that would avoid or substantially lessen any of the significant effects of the project. Of those alternatives, the EIR need examine in detail only the ones that the lead agency determines could feasibly attain most of the basic objectives of the project” (Section 15126.6(f)).

In defining the feasibility of alternatives, the CEQA Guidelines state that “[a]mong the factors that may be taken into account when addressing the feasibility of alternatives are site suitability, economic viability, availability of infrastructure, general plan consistency, other plans or regulatory limitations, jurisdictional boundaries, and whether the proponent can reasonably acquire, control or otherwise have access to the alternative site” (Section 15126.6(f)(1)).

The alternatives selected for review must adequately represent the spectrum of environmental concerns in order to permit a reasonable choice of alternatives. The EIR must also provide the rationale for selecting or defining the alternatives evaluated throughout the document, including the identification of any alternatives that were considered by the lead agency but rejected as infeasible during the scoping process. An EIR need not consider every conceivable alternative to a project and need not consider alternatives that are infeasible (Section 15126.6(a)).

These alternatives have been prepared at a sufficient level of detail to permit their consideration for adoption by the City of Malibu (City). When considered with the information contained in the body of this EIR, the analysis contained in these alternatives
adequately characterizes the potential associated impacts. However, depending upon the
degree of design changes associated with any given alternative, an additional
administrative level of environmental review may be required to refine mitigation
measures and assess detailed changes in the project description associated with the
adoption of one of these alternatives.

The alternatives analysis for this EIR is presented in four major parts. The first section
describes the objectives of the proposed Project. The second section summarizes the
potentially significant unavoidable short- and long-term impacts of the Project based on
the information presented in Section 3.0. The third section discusses the potential impacts
under the project alternatives. The final section concludes with the selection of an
environmentally superior alternative, based on the project configuration that meets the
maximum number of project objectives with the fewest significant impacts.

6.2 Project Objectives

The primary objectives of the proposed Project are discussed in Section 1.2 of Chapter 1,
Introduction, and are summarized as follows:

1. Provide a high-quality hotel and supporting facilities consistent with allowable
 uses within the Commercial Visitor Serving-2 (CV-2) district land use designation;
2. Ensure that all new development is sited and designed in a manner that respects the
 site’s rural character and natural environmental setting;
3. Increase the City's supply of full-service hotel rooms, with supporting spa,
 restaurant, banquet room, meeting and special event facilities available for both
 hotel guests and community members (e.g., weddings, holiday parties, non-profit
 fundraisers, business functions, etc.);
4. Enhance the City’s Civic Center commercial core, developing its only full service
 hotel with supporting high quality facilities;
5. Improve the City’s tax revenue base through generation of substantial transient
 occupancy and sales taxes; and
6. Comply with Los Angeles Regional Water Quality Control Board (RWQCB)
 requirements for wastewater treatment and reuse onsite.
6.3 SUMMARY OF POTENTIALLY SIGNIFICANT UNAVOIDABLE PROJECT IMPACTS

It is anticipated that the proposed Project would result in both project-specific (one) and a considerable contribution to cumulative impacts (one) that would be unavoidable and significant.

Transportation and Traffic: During the 24-month construction horizon for the proposed Project, planned between 2014 and 2016, up to 35 projects could also be under construction throughout the City, including approximately 815,000 square feet of residential, commercial, and institutional development within the Civic Center Area, approximately 1/2 mile to the east of the Project site. In particular, if construction timing coincides with construction of the City’s Civic Center Wastewater Treatment Facility (CCWTF), Civic Center Way may be subject to added construction activities, including both CCWTF construction and installation of sewer lines along this key haul route for the proposed Project.

These cumulative projects would result in significant short-term alterations to traffic and circulation patterns primarily on Pacific Coast Highway (PCH) and the surrounding road network. Construction activities within the Civic Center area would include demolition, new facility construction, utility relocation, and street improvements, all of which would require the use of heavy equipment, additional construction workers, and potential road closures and detours. In addition to direct road closures and detours, these projects are likely to substantially increase construction-related traffic from heavy haul trips and construction worker vehicles. Consequently, implementation of MM TT-1a would require coordination between the various agencies overseeing the development of the aforementioned projects. However, given the volume of construction traffic and the potential for road closures and detours, cumulative construction impacts would be considered unavoidable and significant.

Noise: Sensitive receptors in Winter Canyon, located at a distance of 425 to 550 feet from Project construction activities, would experience construction-related sound levels of approximately 55- to 75-dBA for trucks, backhoes and excavators, given attenuation of sound between this construction activity and nearby sensitive receptors. Given that these noise-sensitive receptors are located at a distance less than 500 feet from proposed onsite wastewater treatment system (OWTS) construction activities, sound levels at these...
locations associated with construction activity would potentially exceed maximum sound level criteria.

In addition, potential haul and construction vehicle routes along Civic Center Way could expose noise sensitive land-uses located near this roadway with minimal setbacks to increased noise levels throughout construction, but particularly during the 10 to 12 week-long or greater period of soil export. The potential increase in traffic-related noise during construction would exceed City standards at residences, schools and a church, creating short-term significant impacts that cannot be fully addressed by available feasible mitigation measures. Therefore, the impacts to sensitive receptors from increased on- and offsite construction noise generation would be considered *unavoidable and significant*, particularly over the 10 to 12 week site preparation and grading phase of the Project.

6.4 Alternatives Analysis

This section discusses alternatives to the proposed Project, including alternatives that were considered and discarded, alternative sites, and alternative uses for the subject property. Each of these analyses considers the ability of a particular alternative to substantially reduce or eliminate the Project’s significant environmental impacts while continuing to meet the basic Project objectives. In particular, this EIR includes a Reduced Development/Garden Hotel Alternative, which may be capable of both meeting Project objectives and substantially reducing potentially significant effects (e.g., fire hazards, cultural resources, aesthetics, noise, and transportation) (refer to Section 6.4.2). The EIR also includes a Commercial Shopping Center Alternative (refer to Section 6.4.3), a No-Project/Approved Hotel Alternative based on a hotel project that was analyzed by the City in 1998 and subsequently approved (refer to Section 6.4.4.1), and a No Project/No Build Alternative (refer to Section 6.4.4.2).

6.4.1 Alternatives Considered but Discarded

As discussed above, CEQA Section 15126.6(c) requires that an EIR disclose alternatives that were considered and discarded as well as provide a brief explanation as to why such alternatives were not fully considered in the EIR. As required by the CEQA Guidelines, the selection of alternatives included a screening process to determine which of the alternatives could reduce significant effects but also feasibly meet Project objectives. Because of the Project’s potential for site-specific significant impacts related to
wastewater treatment and visual resources, wildfire hazard, and land use, this screening was particularly important for determining the feasibility of offsite alternatives.

The following alternatives were considered but eliminated from further analysis by the lead agency due to infeasibility or inconsistency with primary Project objectives.

Business Park/Office Complex Alternative

Development of the Project site as a business park/office complex rather than a hotel/visitor-serving use was considered as an alternative to the proposed Project; however, constructing a single-purpose business/office project would be contrary to central Project objectives to enhance the City’s Civic Center commercial core and expand the City's supply of full-service hotel rooms with supporting high quality visitor-serving facilities. In addition, the Project site is zoned CV-2, which provides for visitor-serving uses, such as hotels and restaurants. Other commercial uses may be permitted within the CV-2 district as long as at least 50% of the overall floor area of any individual project is devoted to visitor-serving uses. A site of purely commercial uses such as a business park/office would not meet this criterion and therefore would not comply with the site’s LCP, Malibu Municipal Code (M.M.C.) and General Plan land use and zoning designations.

This alternative would also potentially result in significant impacts, associated with the construction of substantial surface or subsurface parking as well as large commercial structures, which would result in major site alteration and grading, vegetation removal, erosion and sedimentation, and changes in community character as well as views from scenic roads. Further, business parks are high traffic generators and construction of this alternative could materially increase congestion at local intersections as well as create air quality impacts associated with increased traffic generation. Finally, the City has indicated that this use is not in current demand and available business/office space is presently offered elsewhere in the City. Since this alternative would not materially reduce (and may increase) Project-related potentially significant impacts and does not fulfill the intent of the City’s CV-2 zoning district; therefore, this alternative was discarded from further consideration.
6.0 ALTERNATIVES

Budget Hotel Alternative

Development of the Project site with a larger budget or mid-price range hotel (i.e., Best Western, Days Inn, etc.) was considered as an alternative to the proposed Project as it would meet most of the proposed Project objectives and would also reflect the goal of the LCP and the California Coastal Act (Section 30213) to provide lower-cost/cost-accessible visitor-serving hotel rooms within the City (LCP Land Use Plan [LUP] Section 2.35 and LCP Local Implementation Plan [LIP] Section 12.10). This alternative would potentially include 300 rooms, similar to previously considered designs on the site with an estimated maximum hotel occupancy of approximately 1,200 persons.¹ These hotel rooms would be located within larger two-story structures, with outdoor pools, a meeting room(s), and other supporting facilities such as smaller retail outlets and onsite restaurant(s). Due to the lower room rates of such hotels and associated potential reduction in revenue, it is assumed that parking would be provided via surface parking lots with 300 to 350 spaces, since the construction and maintenance expenses of subsurface and/or multi-story parking facilities are considerable higher than paved surface parking lots.

This alternative would result in similar or greater impacts to a variety of resources. In particular, development of one or several large two-story hotel buildings amid extensive surface parking lots has the potential to substantially increase adverse visual impacts. In addition, this alternative has the potential to result in increases peak hour traffic and fire protection concerns due to a substantial increase in hotel guest rooms and occupants. Increased wastewater demand could also occur, potentially exceeding the site’s reuse capabilities, with possible secondary impacts to ground and surface water resources. This alternative would not reduce (and may increase) Project-related environmental effects; therefore, this alternative was discarded from further consideration.

Campground Alternative

Development of the Project site with a large privately operated recreation vehicle (RV) and tent campground was considered. Such a campground would meet the goals of the LCP to provide lower cost visitor-serving facilities. Campgrounds along California’s

¹ Assumes maximum room occupancy of four persons per room. Restaurant(s), meeting rooms, banquet facilities and retail uses would continue to attract outside users.
6.0 ALTERNATIVES

Rancho Malibu Hotel Project
Public Draft EIR

coast are often at full capacity and the state’s budget challenges have threatened such campgrounds with closure, increasing the demand for such facilities. This alternative would involve the development of a full-service campground with approximately 200 RV sites as well as 80 tent camping sites, a campground store, low priced restaurant, a pool and playground complex, and an RV dump station.

Development of this alternative would require an increase in surface paving to provide internal access roads and RV circulation, potentially increasing visual resource degradation due to paving that is more extensive. Typical “Class A” RV spaces are designed as pull thorough, with large paved pads and added paving to facilitate turning. The presence of large, light-colored RVs parked throughout the site could also increase visual changes and impacts. Fire hazards may also increase due to an increased population on the site as well as a demand for up to 280 fire pits. However, while consistent with LCP objectives (LUP Section 2.35 and LIP Section 12.10), this alternative is not an allowed use within the CV-2 zone and would not meet most of the Applicant’s proposed Project objectives and may incrementally increase impacts to several resource areas. Development of a campground may also be inconsistent with nearby residential uses along De Ville Way and Vista Pacifica; therefore, this alternative was discarded from further consideration.

Alternative Location

As stated above, the CEQA Guidelines also require an EIR describe alternative locations for the Project that would feasibly attain most of the basic objectives of the proposed Project but would avoid or substantially lessen any of the significant effects of the proposed Project (Section 15126.6). Locations outside the Civic Center area were considered as alternatives for the proposed Project; however, constructing a hotel outside the Civic Center vicinity would meet neither the Project objectives nor the City’s goal of

Alternative locations for the placement of the proposed Project were analyzed, including a site along Civic Center Way. Due to parcel size, property ownership, zoning and potential environmental impacts, alternate sites were determined infeasible and therefore discarded.
promoting visitor-serving uses in the Civic Center area. In addition, according to Appendix 1, Table B of the LIP, hotels are only conditionally permitted within areas designated as CV-2. Per the LCP Land Use Map, the only two other sites designated CV-2 within the City are: 1) an approximately 0.8 acre parcel located adjacent to east of the Malibu Pier, which is currently occupied by the Malibu Beach Inn, and 2) the small Malibu Beach Colony-owned parcel immediately adjacent to the southeast.

Two potential locations that could potentially accommodate a larger hotel but are not zoned CV-2 were identified within the Civic Center and are not under the ownership of the Project Applicant. These locations are discussed in further detail below.

Crummer Property: This alternative would entail development of the proposed Project on the Crummer site (24120 PCH; APN 4458-018-019). The Crummer property is zoned Planned Development (PD), which requires the provision of a mix of residential and recreational development in order to encourage innovation in development concepts, land use mixes, and site design. The Crummer property, located east of the City-owned portion of Malibu Bluffs Park and south of PCH, has an active coastal development permit (CDP) in process at the City for development of five residential estates and dedication of a 1.74-acre parcel to the City for future public recreational uses. However, this 23.87-acre site is similar in size to the proposed Project site and is situated on a coastal bluff top with panoramic views of the Pacific Ocean and Civic Center Area. The site’s location would meet the objective of close proximity to the Civic Center area while also providing a visitor-serving use, consistent with general LCP objectives.

Since hotels are only conditionally permitted within areas designated CV-2, development of this alternative would require amendments to the LCP, M.M.C. and General Plan to complete the steps necessary to rezone the property to CV-2 (LIP Appendix 1, Table B). In addition, the site is not owned by, and therefore is not under control of the Project Applicant. Further, development of the Crummer site would result in similar or greater impacts compared to the proposed Project due to the need for substantial grading, construction of large hotel structures in a more visually prominent location, noise impacts on vicinity residential and recreational areas, and difficult access off PCH and through Malibu Bluffs Park. Therefore, due to the inconsistency with the LCP, the similar or greater environmental impacts relative to the proposed Project, and the lack of Applicant control of the Crummer property, this alternative was discarded.
6.0 ALTERNATIVES

Civic Center Way Site: This alternative would entail the development of a luxury hotel on approximately 7.3 acres of undeveloped land at the northwest corner of Civic Center Way and Stuart Ranch Road (APN 4458-021-175). This site is not currently proposed for development. Because of the relatively small size of this site, this alternative would require development of a hotel in two-story structures as well as use of subsurface parking. The size of the open space and landscape area would also need to be substantially reduced under this alternative, which would require variances from the commercial development standards set forth in LIP Chapter 3.8. Further, due to the area of proposed development and the small size of the site, wastewater disposal would likely depend upon the City’s planned CCWTF. Since hotels are only conditionally permitted within areas designated CV-2, development of this alternative would require amendments to the LCP, M.M.C. and General Plan to complete the steps necessary to rezone the property from Community Commercial (CC) to CV-2 (LIP Appendix 1, Table B).

This site is approximately 75% smaller than the proposed Project site and would require development of a substantially different hotel design. Further, the site is not owned by, and therefore is not under the control of the Project Applicant. Use of this site would be additionally constrained for a variety of reasons, including the availability of the site for purchase. It is anticipated that development of this parcel would result in reduced impacts to several resource areas including a reduction in the visual prominence of the developed site, less onsite grading due to the more level topography of the site, and avoidance of known cultural resources. However, development could lead to impacts to the adjacent wetland, depending upon setbacks and site design. Development of this site could also result in increased traffic impacts to the intersections of Stuart Ranch Road and Civic Center Way as well as Cross Creek Road and PCH. Due to all of the foregoing reasons, including the substantially smaller parcel size, this alternative was discarded.
6.4.2 Reduced Development/Garden Hotel Alternative

The Reduced Development/Garden Hotel Alternative is designed to meet the central objectives of the Project, namely, to enhance the City’s Civic Center commercial core and expand the City's supply of full-service hotel rooms and associated amenities. This alternative reflects issues raised in comments received during the Notice of Preparation and EIR Scoping process and has some common elements with the approved 1998 hotel development. This alternative is intended to reduce the potential Project impacts through a substantial reduction in the overall level of development, including the project building footprint as well as the size and scale of the proposed structures. This alternative would also reduce overall site alteration, including the volume of grading, while increasing the area of landscaped gardens and fire hazard protection as well as enhancing the onsite natural areas and open space. Implementation of this alternative would reduce, but not eliminate a number of the proposed Project’s potentially significant impacts to key resource areas such as fire hazard, aesthetics, cultural resources, noise, loss of habitat connectivity, and traffic congestion.

The LUP, states that the CV-2 district “provides for visitor-serving uses such as hotels and restaurants that are designed to be consistent with the rural character and natural environmental setting, as well as public open space and recreational uses.” (LUP Chapter 5, Section C.2) Additionally, LUP Policy 3.45 requires that “all new development shall be sited and designed so as to minimize grading, alteration of physical features, and vegetation clearance in order to prevent soil erosion, stream siltation, reduced water percolation, increased runoff, and adverse impacts on plant and animal life…” Therefore, this alternative would modify project elements to reduce site grading and structure footprints, while increasing the area of landscaping to result in a design more reflective
of the rural character and natural environmental setting of the City as envisioned in the City’s General Plan and LCP.

Similar to the proposed Project, the Reduced Development/Garden Hotel Alternative would include development of a full service hotel, spa, and supporting facilities on portions of the project site’s level mesa (see Figure 6-1). Approximately 14 acres of the 27.8-acre site would be developed as a garden hotel and resort while the remaining 14 acres would serve as an irrigated fire buffer and an enhanced habitat area which could also be used for reuse of treated wastewater. This design would consist of the development of a 146-room luxury garden hotel that would shift rooms from detached buildings containing hotel rooms (i.e., secondary hotel buildings) to the main hotel buildings, increase the number of rooms within each detached building, and reduce the room size in order to reduce the overall number of the detached buildings and structural square footage. In addition, this alternative would entail a reduction in the scale of other planned facilities (e.g., reduced spa). This centralized “clustered” site design and reduced development footprint would allow for a substantial increase in garden and landscape space, ponds, and increased setbacks from hillsides.

Summary Comparison to Proposed Project: Under this alternative, the amount of development would be substantially reduced while the area set aside for gardens and open space would be increased. Basic uses would remain the same as described for the proposed Project, including construction of a 146-room luxury resort hotel, with spa, banquet rooms, and other supporting facilities. Key changes in this alternative when compared to the proposed Project include:

- A 16% reduction in structural development from 274,775 square feet (sf) to approximately 231,000 sf, with a reduction in floor area ratio (F.A.R.) from 0.149 (14.9 %) to 0.138 (13.8 %);
- A decrease in the number of detached buildings containing hotel rooms from 21 to 12 and a 35% reduction of square footage for such buildings from 133,873 sf to approximately 87,000 sf;
- A 62% reduction in the size of the spa and gym from 57,600 sf to 22,000 sf;
- A 50% decrease in retail uses from 20,000 sf to 10,000 sf;
- An 29% increase in landscaped gardens from 4 acres to 5.6 acres;
- A 22% increase in natural hillside open space from 11 acres to 14 acres; and;
6.0 ALTERNATIVES

- Retention of the natural topography of most of the mesa-top but not cutting this area down by five feet;
- An 8% decrease in the number of parking spaces from 543 to 500 resulting from the elimination of one level of subterranean parking.

These changes and the details of the proposed Reduced Development/Garden Hotel Alternative are outlined below.

Clustered Site Design. This alternative would cluster development within 14 acres of the central and southeastern portions of the Project site’s level mesa-top, away from the perimeter slopes, coastal sage scrub habitat, and fire hazards associated with hillsides above Winter Canyon. The alternative would consist of two main hotel buildings supporting a total of 60 hotel rooms as well as a subterranean spa, a ballroom, and restaurant facilities. These two main buildings would be oriented around a central courtyard that would include the pool, garden areas, and open landscaped grounds. The remaining 86 hotel rooms would be clustered in 12 detached one- and two-story buildings primarily comprised of eight to 12 rooms each. A three-level subterranean parking structure, pond, and extensive gardens and landscaping areas would comprise much of the remaining developed area. Buildings would be located in well-landscaped gardens at a minimum of 40 feet from the edge of the surrounding slopes and would be accessible through a system of meandering pathways. Centralizing the site design away from perimeter slopes would increase open space, provide fire buffers, increase the area available for disposal of treated wastewater, improve protection of remaining habitats, reduce disturbance of cultural sites, and reduce the visibility the proposed Project from surrounding City-designated scenic roads.

Main Hotel Structures: This alternative would restructure the main hotel building into two separate structures: an approximately 112,000 sf main hotel and multi-use structure that would contain the majority of hotel amenities as well as 25 hotel rooms and suites; and an approximately 32,000 sf secondary structure that would provide approximately 35 hotel rooms and suites. These two main buildings would be located along the north side of the central courtyard and pool deck, with cabanas adjacent to the east and south.

Similar to the proposed Project, the main hotel building would consist of three levels rising to approximately 28 feet, including a ground floor level with central hotel uses, a second floor with guest rooms and rooftop gardens, and one subterranean level of support.
Rancho Malibu Hotel Reduced Development – Garden Hotel Alternative Conceptual Site Plan
This page reserved for back of 11 X 17” figure.
facilities. The first floor would contain the hotel lobby, bar, offices, a restaurant and a ballroom. The entrance driveway and motor court would remain in the eastern portion of the Project site along with the hotel lobby. However, under this Alternative the restaurant and ballroom would be located in the southwest portion of the building opening onto a relocated event patio (see Figure 6-1).

The second floor of the main hotel building would include approximately 20,000 sf with a total of 25 guest rooms. Second floor guest accommodations would include fifteen 600 sf rooms and ten 800 sf suites. The second story would also support areas of roof top gardens and would include an atrium overlooking the proposed spa. The subterranean basement level would provide hotel administration offices, guest services, and the gym, which would be located beneath the first floor hotel lobby. The southern wing of the basement level would feature the spa with an atrium adjacent to the pool and associated retail shops, as well as a café/bar, and cabanas. The spa would be reduced to approximately 10,000 sf and the gym would occupy approximately 12,000 sf.

Detached Buildings Containing Guest Rooms: This alternative would develop nine two-story and three single-story detached buildings that would contain guest rooms oriented among winding pathways, ponds, and garden areas. The detached buildings would be clustered in the central, southern, and eastern portions of the site, with taller buildings located in the middle of the site adjacent to the main hotel structure and lower profile buildings closer to the perimeter. Individual buildings would be a maximum of 6,000 sf. The majority of the buildings would contain between 10 and 12 guest rooms, with individual room sizes within the two-story buildings ranging from 500 to 800 sf, which is consistent with room sizes for similar resort hotel developments. The single-story buildings would be approximately 3,000 sf in size.

Landscaping: By reducing structural development by 43,775 sf, moving guest rooms to the main hotel buildings, and increasing the number of guest rooms per detached building, this alternative frees up more open space for landscaping, natural habitat, and fire buffers. By clustering development in the southern and west portions of the site, this alternative provides for a substantially increased fire buffer, improved building setbacks.

2 Guest rooms at the Ojai Valley Inn and Spa are approximately 450-550 sf for most rooms and 650-800 sf for most suites; guest rooms at the Saint Regis Monarch Beach are approximately 535 sf for most rooms and 700-900 sf for most suites; guest rooms at the Montage Laguna Beach are approximately 500 sf, and suites are typically 1,000 sf; rooms at the recently approved Miramar beachfront hotel in Santa Barbara average 800 sf.
to reduce visual impacts, and additional space for the reuse of treated wastewater for irrigation purposes and/or habitat-wildlife corridor enhancement. Concentrating development within fewer structures also permits a larger portion of the Project site to be retained in open space or landscaped with ornamental gardens, creating a natural aesthetic, more in keeping with the City’s semi-rural character.

Adjacent to the north of the main hotel building, a garden area that would include a 1/2-acre ornamental pond would provide visual relief and interest as well as onsite water storage for wastewater management and over 300,000 gallons of water to enhance onsite fire protection. Events with amplified music would be permitted on the pool deck and within a new event patio. Both of these areas within the Project site would be buffered to the north and east by structures, reducing the noise level that would be experienced by sensitive receptors. An additional event veranda is provided at the west end of the site, although amplified music would be prohibited at this location. Both the event veranda and patio would be surrounded by gardens and constructed of pavers or natural flagstones separated by pervious areas planted with drought tolerant vegetation such as thyme designed to soften the visual character of these areas. The northern and eastern slopes and lower portions of the southern slopes would be enhanced with selected more fire resistant native tree and shrub plantings, including species such as southern California black walnut (*Juglans californica*), coast live oak (*Quercus agrifolia*), bay laurel (*Laurus nobilis*), Fremont’s cottonwood (*Populus fremontii*), and sycamore (*Platanus racemosa*). Such plantings would create native woodland habitat, enhancing potential wildlife corridor uses, and creating a more natural aesthetic character as viewed from the east. An earthen or decomposed granite trail would be constructed around the perimeter of the development adjacent to these scenic hillside open spaces to permit guests to enjoy Pacific Ocean views. This perimeter pathway would connect to pathways and stairways that would provide pedestrian connectivity and safe access to the proposed Malibu Pacific Trail along Civic Center Way and the Malibu Creek Trail located on Malibu Canyon Road.

Circulation, Parking, and Wastewater: Site access and circulation under this alternative would be similar to the proposed Project and would include three access points off Malibu Canyon Road. This alternative would require right-turn-in and right turnout for all entrances and exits. This alternative would differ from the proposed Project with use of a smaller three level parking structure (two subterranean levels) and use of a somewhat
larger surface parking lot. Due to the reduced size of the spa, restaurant and retail uses, there would be an 8% reduction in the parking required for the proposed Project.

Similar to the proposed Project, this alternative would employ an onsite wastewater treatments system (OWTS) with a zero discharge rate located adjacent to the employee parking area. Treated wastewater reuse areas would be located along northern and eastern slopes onsite and utilized where appropriate to irrigate fire resistant native woodlands that would also provide habitat and serve to enhance wildlife passage. Highly treated wastewater could also potentially be utilized as a supply for the ornamental pond and fire reservoir.

Impact Analysis

Aesthetics and Visual Resources:
Similar to the proposed Project, under this alternative, a major resort hotel would be constructed across the mesa-top. However, overall structural square footage would be reduced by 16%, the number of detached buildings with hotel rooms would be reduced from 21 to 12, with a great proportion of hotel rooms concentrated in two primary hotel structures. In addition, structural development would be clustered, with increased structural setbacks of 40 to 153 feet from the top of the slopes along the northern and eastern site hillsides, along with reductions in the height of selected structures from two to one-story. Increased setbacks from existing steep slopes would substantially decrease required grading, use of manufactured slopes and retaining walls. This alternative would also include extensive planting of native trees along exposed hillsides to lessen the visual dominance of the Project.
Proposed changes would reduce overall visual impacts to a less than significant level. Impacts to views from Malibu Canyon Road and eastbound PCH would remain similar to those under the proposed Project and would be subject to feasible mitigation. Under this alternative, incrementally fewer impacts would occur to views of the Santa Monica Mountains due to increased building setbacks from slopes and decreases in overall Project size, bulk and scale. Setting buildings back from 40 to 153 feet from the southern and eastern edges of the Project site and reducing some structures from two- to one-story would reduce massing along the hillside as seen from westbound PCH. A reduction in use of manufactured slopes and retaining walls would also contribute to a reduction in impacts to views from westbound PCH.

Air Quality: Under this alternative, short-term construction related impacts to air quality would be reduced due to decreases in grading, export of fill, and overall structural development. Elimination of one floor of the parking structure, reductions in mesa-top grading and increased setback from and avoidance of grading on some of the site’s steepest slopes would reduce the duration of site grading activities and the number of heavy haul truck trips required for export of excess material. These changes would result in a substantial reduction in short-term emissions, which would otherwise remain less than significant. Implementation of standard conditions of approval in MM AQ-1a and MM AQ-2a would continue to apply to the Project.

Generation of long-term air pollutant emissions and associated potential air quality impacts would also be incrementally reduced due to a reduction in new trips associated with decreases in the size of the proposed spa and retail uses and potentially through reductions in room size. Long-term impacts to air quality under this alternative would remain less than significant. Generation of GHG emissions would also be less than significant and MM AQ-4a should still be considered to further reduce impacts.

Biological Resources: Under this alternative, impacts to biological resources would be similar to but incrementally reduced from those associated with the proposed Project. Greater clustering of proposed structures and increased setbacks of 40 to 153 feet from steeper hillsides on the site’s northern and eastern boundaries would incrementally reduce the amount of intact coastal sage scrub habitat removed, potential loss of sensitive plant species and disruption of wildlife corridors. However, most or all native vegetation would still be removed from the mesa-top either directly for construction of the proposed hotel or to meet fire clearance standards. Further, the majority of intact coastal sage scrub
habitat on hillsides overlooking Winter Canyon would continue to be removed or seriously modified under this alternative in order to accommodate disposal of wastewater effluent and fire setback requirements. Planting of native woodland, shrubs and understory on the site’s hillsides would also incrementally reduce Project impacts to biological resources; current Project landscape plans call for planting a mix of native and non-native species, limiting the value of proposed Project replacement plantings when compared to this alternative. Impacts under this alternative would remain potentially significant, but subject to feasible mitigation with application of MM BIO-2a, MM BIO-2b, MM BIO2c, MM BIO-3a, MM BIO-3b, MM BIO-3c, MM BIO-3d, MM BIO-4a, MM BIO-5a, MM BIO-5b and MM BIO-5c.

Cultural Resources: Impacts to cultural resources would be substantially reduced under this alternative when compared to the proposed Project. Under this alternative, impacts to the most sensitive archaeological resources onsite would be minimized by avoiding grading within archaeologically sensitive areas, capping these areas with sterile fill, and installation of passive landscaped areas overlying highly sensitive areas and parking lots overlying less significant cultural remains. The archaeological resources would not be excavated from the site or subject to data recovery, but would be preserved in place and protected from disturbance through capping and covering. This approach is similar to that taken for the approved 1998 hotel project and reflects direction in the City’s General Plan Conservation Element, specifically Goal 2 and Policies 2.1, 2.1.1 and 2.12, which require preservation and protection of such resources. However, this alternative would reduce, but not entirely avoid impacts to cultural resources and MM CR-1a, MM CR-1b, MM CR-1c, MM CR-1d and MM CR-2a would continue to apply to this alternative. With the application of these measures, impacts would be reduced to less than significant.

Fire Protection and Hazardous Materials: Under this alternative, fire and material hazard impacts would be similar to but somewhat less severe than under the proposed Project. Impacts related to potential soil or groundwater contamination from past nursery operations, possible spills of hazardous materials during construction and heightened risk of wildfire ignition from increased population would remain similar to the proposed Project. MM FPHN-1a, MM FPHN-2a, MM FPHN-2b, MM FPHN-3a, and MM FPHN-3b would continue to apply. Project impacts associated with construction of a major hotel in a very high fire hazard zone and those related to evacuation hazards would remain similar to those for the proposed Project, but would be incrementally reduced due to a slight reduction in proposed development; MM FPHN-4a, MM FPHN-4b, MM FPHN-
6.0 ALTERNATIVES

4c, MM FPHN-4d and MM FPHN-5a would continue to apply. Under this alternative, development of this site would continue to contribute to wildfire evacuation risks associated with guest and patrons fleeing the site and adding incrementally to evacuation congestion and hazards; however, application of MM-4a, MM FPHN-4b, MM FPHN-4c, MM FPHN-4d and MM FPHN-5a would reduce this impact to less than significant.

Geology and Soils: Under this alternative, geologic impacts would be similar to but somewhat less severe than under the proposed Project. Impacts related to seismic hazards, slope stability and landslides and soil liquefaction or expansion would remain the similar to those for the proposed Project and MM GEO-1a, MM GEO-2a and MM GEO-3a would continue to apply under this alternative. Impacts of potential erosion and slope collapse associated with hillside disposal of wastewater effluent would remain similar, but potentially be somewhat reduced under this alternative as development setbacks from the edge of steep slopes may reduce exposure to landslides. However, MM GEO-4a, MM GEO-4b, MM GEO-4c and MM GEO-4d would continue to apply. Impacts associated with site grading and alteration, and associated potential for erosion and downstream sedimentation, would be substantially reduced under this alternative as the majority of the mesa-top would not be graded down five feet. Additionally, increased setbacks from and less development on steep slopes would reduce hillside grading and would reduce potential for soil erosion and downstream sedimentation. However, impacts would remain potentially significant and MM GEO-5a and GEO-5b would continue to apply. Application of relevant mitigation measures would assure that impacts associated with Geology and Soils would remain less than significant.

Hydrology and Water Quality: Under this alternative, hydrologic impacts would be similar to but somewhat less severe than under the proposed Project. Impacts related to project construction and grading, erosion and downstream sedimentation would be incrementally reduced due to reductions in hillside alteration and overall site grading. However, most site vegetation would still be removed and substantial grading would be required. MM HYD-1a, MM HYD-1b, MM HYD-1c, and MM HYD-1d would still apply to this impact. Impacts to downstream water quality at Amarillo Beach from pesticides and fertilizers would be similar to the proposed Project and MM HYD-2a would continue to apply. Reductions in development proposed under this Alternative would incrementally reduce wastewater flows and resultant potential for effluent to percolate into the Winter Canyon Aquifer; however project specific impacts to groundwater quality would remain potentially significant and MM HYD-3a would
continue to apply. Under this alternative, the proposed Project’s potential contribution to groundwater effects would remain less than significant. The number of hotel rooms would remain unchanged and effluent generation, while reduced, would still have potential for contact with and raising of groundwater levels if the proposed zero emissions system fails to provide 100% landscape absorption and evapotranspiration of dispersed effluent.

Land Use: Under this alternative, land use impacts would remain less than significant.

Noise: Under this alternative, noise impacts would be similar to but somewhat less severe than the proposed Project. Impacts related to Project construction would be less severe as grading and the export of fill material via heavy haul trucks transiting Civic Center Way would be reduced. However, vegetation clearing and grading would continue along the site’s hillsides overlooking Civic Center Way, so construction noise impacts would remain potentially significant and MM NO-1a and MM NO-1b would continue to apply. Impacts of long-term rise in noise levels generated by increased project vehicular traffic along Civic Center Way would remain adverse, but not significant. Under this alternative, the proposed primary event lawn would be relocated to the southwest corner of the Project site with the main hotel building aligned to shield noise sensitive uses across Civic Center Way from special event-generated noise. In addition, the event veranda connected to the pool would be relocated to the southwest, increasing the distance from residential uses. These design measures would substantially reduce noise levels at sensitive receptors and thus lessen noise impacts under this alternative. However, the City’s low noise threshold combined with the limited efficacy of buildings for blocking noise and relative openness of the event veranda on the southeast side of the site would result in Noise impacts remaining unavoidable and significant under this alternative.

Paleontological Resources: Impacts to Paleontological Resources would be reduced under this alternative when compared to the proposed Project. By limiting grading of the mesa-top and not removing the top five feet of earth and rock, eliminating one floor of subterranean parking and reducing hillside grading, this alternative would incrementally reduce potential for damage to such resources. However, impacts would remain potentially significant and MM PR-1a would continue to apply.
Public Services: Under this alternative, impacts to Public Services would be similar but somewhat less severe than under the proposed Project. Impacts related to increased demand for police protection due to special events would be similar to the proposed Project and MM PS-1a and MM PS1b would continue to apply. Impacts to fire protection services would remain similar to the proposed Project and the standard regulatory requirements set forth in MM PS-2a would continue to apply. Impacts to public schools and landfill services would be less than significant, similar to the proposed Project, although standard solid waste regulatory conditions set forth in MM PS-4a and MM PS-4b would continue to apply.

Traffic and Transportation: Under this alternative, impacts to Traffic and Transportation would be similar to but somewhat less severe than under the proposed Project. Impacts related to Project construction would be less severe as grading and the export of fill material via heavy haul trucks transiting Civic Center Way would be reduced. However, construction-related transportation impacts would remain potentially significant and MM TT-1a and MM T-1b would continue to apply. In addition, Project-related contribution to existing traffic congestion at nearby intersections would continue to be less than significant. Parking demand would also be less than significant with application of tandem and stacked parking provision similar to the proposed Project. Impacts to pedestrian safety along Malibu Canyon Road and the Civic Center Way would be reduced under this alternative as pedestrian frontage improvements would be installed along Malibu Canyon Road between PCH and along the Project’s Civic Center Way frontage. In addition, pedestrian connections and paths would be installed to better link the project to surrounding roads and a pro-rata share of funding provided for the completion of the remainder of the Civic Center Trail. Cumulative construction and operational impacts would be similar to the proposed Project, potentially significant but subject to feasible mitigation through application of MM TT-6a, MM TT-7a, MM TT-7b, MM TT-7c, MM TT-7d, MM TT-7e and MM TT-7f.

Utilities: Under this alternative, impacts to Utilities would be similar to but somewhat less severe than under the proposed Project. Impacts related to onsite reuse of wastewater would be incrementally reduced due to reductions in development; however, impacts of onsite disposal of treated wastewater would be reduced to less than significant through the application of MM UT-1a and MM UT-1b. Alternatively, hooking into the City’s proposed CCWTF would provide adequate wastewater disposal service. Impacts to water supply and service would remain less than significant with the measures outline in
6.0 ALTERNATIVES

6.4.3 Commercial Use Alternative

The Commercial Use Alternative would provide an alternate use to enhance the City’s Civic Center commercial core. This alternative would partially meet Project objectives to enhance Civic Center economic activity and increase City tax revenue. This alternative would reduce, but not eliminate, a number of the proposed Project’s significant impacts to key resource areas such as fire hazards, cultural resources, noise, and habitat connectivity. However, it would likely result in substantially increased impacts to traffic congestion, visual resources, and land use compatibility issues with surrounding residential neighborhoods, as well as with adopted LCP policies. Although Malibu Canyon Road and portions of the vicinity are relatively well lit, extensive parking lot lighting typically associated with shopping centers and the site’s visible hilltop location, would substantially increase the light and glare experienced by the surrounding semi-rural community. Further, under this alternative, it may be challenging to meet the LCP goal of providing visitor-serving uses or the central Project objective of hotel development on the Project site, with no expansion of the City’s supply of full-service hotel rooms.

The CV-2 zoning district is intended to provide for visitor-serving uses, including hotels serving visitors and residents, that are designed to be consistent with the rural character and natural environmental setting, not to exceed an F.A.R. of 0.15 (15%). Uses permitted in the less dense commercial districts (i.e., CV-1, Commercial General (CG) and CC) are also permitted in the CV-2 zone, provided that at least 50% of the overall floor area of the individual project is devoted to visitor-serving uses.

Similar to the proposed Project, development of the Project site under the Commercial Use Alternative would include siting of development atop the level mesa portion of the 27.8-acre Project site. However, under this alternative, development would be limited to approximately 14 acres of the site, with increased development setbacks from the steep and visually prominent slopes overlooking Winter Canyon and PCH. Under this alternative, development would also be set back from existing hillside coastal sage scrub habitats and high fire hazard area, with approximately 14 acres of the site retained as...
6.0 ALTERNATIVES

hillside open space (see Figure 6-2). Parking would generally front Malibu Canyon Road with structures located primarily in the central and southern portions of the site. Such visibility and open road fronting parking is often a key element of such commercial centers. The central development would include internal pedestrian circulation improvements and an open space area, as well as perimeter landscaping and parking lot planters with trees.

Structures: The proposed Commercial Use Alternative has been designed to function as a typical mid-sized regional shopping center. While a retail center with many small stores scattered about a more garden or pedestrian setting may be more consistent with the City’s character, market demand and financial feasibility would limit the potential to develop this large of a site under with such a use. This alternative would instead reflect a more typical mid-sized regional center. This alternative would include approximately 92,500 square feet of new retail space within six separate retail buildings, including one primary anchor and a secondary anchor, which could be subdivided into a large support store on the first floor with smaller mixed uses on the second floor. Surrounding these commercial anchors would be additional retail outlet buildings and parking facilities. Each structure could be leased as a whole to larger tenants or subdivided to accommodate smaller retailers. Such proposed retail commercial centers typically include a major anchor retailer, such as a larger full-service market (e.g., Von’s Pavilion) typically accommodated in a 50,000 +/- sf building, with a supporting medium-sized retail outlet such as a drug store, hardware store or home improvement outlet in the 20,000 sf building. Additional buildings and gross leasable space could host a range or retail uses and restaurants.

However, constructing a regional shopping center in the City faces both market demand and zoning challenges. For example, other supermarkets are already present in the City and a Whole Foods Market is pending on a nearby site. Under this alternative, the anchor may have to be an alternative type of tenant, such as a Sports Authority, downsized regional hardware chain (e.g., Lowes), or a home furnishing store (e.g., Ikea). However, such stores are often much larger than could be accommodated on this site, without major site alterations similar to or greater than the proposed Project. For example, Lowes stores often range from 100,000 sf to 150,000 sf in size and Ikea retail stores are typically larger. It is unclear if the City would have market demand for such a commercial center.
This page reserved for back of 11 X 17” figure.
Finally, in order to be consistent with the provisions of the CV-2 zoning district, at least 50% of this center would have to be dedicated to visitor-serving uses as opposed to meeting local retail demand.

Circulation and Parking: Under this alternative, access to the Project site would continue to be from Malibu Canyon Road, with separate delivery truck access and egress points. Access would be restricted to right turns only, substantially increasing the traffic congestion experienced on Civic Center Way. A surface parking lot with approximately 463 parking spaces would be provided to serve the uses onsite. This lot would cover approximately 6.6 acres with circulation features covering an additional 2.4 acres, a substantial increase in paved surfaces relative to the proposed Project.

Grading: Similar to the Reduced Development/Garden Hotel Alternative, under this alternative, mesa-top grading would be substantially reduced. Increased development setbacks from surrounding steep hillsides overlooking Winter Canyon and avoidance of excavation for subterranean structures would also substantially reduce site alteration and grading.

Landscaping: As with the Reduced Development/Garden Hotel Alternative, the northern and eastern slopes would be enhanced with selective native tree and shrub plantings, including species such as southern California black walnut, coast live oak, bay, Fremont’s cottonwood, and sycamore. Such plantings would create native hillside woodlands on these hillside open space areas, potentially helping to soften the large increases in paved area and night lighting included in this alternative. In addition, trees and ornamental landscaping would be scattered in planters throughout the parking areas and adjacent to buildings. A small overlook would be located in the eastern portion of the mesa-top, which would include views of the Civic Center and the surrounding vicinity.
6.0 ALTERNATIVES

Impact Analysis

Aesthetics and Visual Resources:
Similar to the proposed Project, under this alternative, development would be limited to the mesa-top. However, the use would be changed to commercial retail and overall structural square footage would be reduced by more than 50%. In addition, surface parking with attendant lighting and large areas of exposed paving would replace the mix of gardens and structural development with many detached buildings spread across the site. While this alternative includes increased structural setbacks of 40 to 153 feet from the top of the slopes along the northern and western site hillsides and far fewer structures, it also requires a substantial increase in open exposed paved areas and visible large bulky structures setback from Malibu Canyon Road to permit parking along that frontage. Thus, while increased setbacks from steep slopes would decrease required grading and use of use of manufactured slopes and retaining walls, large open paved areas and building locations would tend to increase structural visibility from surrounding scenic roads.

The proposed changes would substantially increase overall visual impacts. Impacts to views from Malibu Canyon Road would be substantially altered as travelers would view large open, and, at night, brightly lit, parking areas, with the major anchor buildings clearly visible through perimeter landscape screening and parking lot trees. Daytime views from eastbound PCH would remain similar to those under the proposed Project and would be subject to feasible mitigation, although night lighting would substantially increase. Under this alternative, incrementally fewer impacts would occur to views of the Santa Monica Mountains due to increased building setbacks from slopes; however, impacts to nighttime views from the Santa Monica Mountains and surrounding neighborhoods would increase. This alternative would increase the severity of the proposed Project’s considerable contribution to cumulatively significant impacts to views from scenic westbound PCH due to the location of the large anchor store along the edge of the hillside overlooking PCH. Redesigning this alternative to relocate this anchor
could reduce the severity of this impact, but this may increase impacts to other view
corridors, such as from Malibu Canyon Road. Overall, the large areas of surface parking,
substantial parking lot lighting and other night lighting combined with the need for large
visible anchor buildings would substantially increase impacts to aesthetics and visual
resources under this alternative.

Air Quality: Under this alternative, short-term construction related impacts to air quality
would be reduced due to decreases in grading, export of fill and overall structural
development. Elimination of most subterranean development and increased setback from
and avoidance of grading on some of the site’s steepest slopes would reduce the duration
of site grading activities and the number of heavy haul truck trips required for export of
excess material. These changes would result in a substantial reduction in short-term
emissions, which would remain less than significant. Implementation of standard
conditions of approval in MM AQ-1a and MM AQ-2a would continue to apply to the
project.

Generation of long-term air pollutant emissions and associated potential air quality
impacts would be incrementally increased due to an increase in new trips associated with
the change in use to a shopping center. However, long-term impacts to air quality under
this alternative would remain less than significant. Generation of GHG emissions would
also be less than significant and recommended measure MM AQ-4 should still be
considered to further reduce impacts.

Biological Resources: Under this alternative, impacts to biological resources would be
similar to, but incrementally reduced from those associated with the proposed Project.
Increased setbacks of 40 to 153 feet from steeper hillsides on the site’s northern and
western boundaries would incrementally reduce the amount of intact coastal sage scrub
habitat removed, potential loss of sensitive plant species and disruption of wildlife
corridors. However, most or all native vegetation would still be removed the mesa-top
either directly for construction of the parking lots and retail structures or due to fire
clearance standards. Further, although reductions in effluent generation may reduce need
for wastewater disposal/irrigation areas, much of the intact coastal sage scrub habitat on
hillsides overlooking Winter Canyon would likely continue to be removed from or
seriously modified under this alternative as more limited mesa-top landscaping would be
available to accommodate disposal of wastewater effluent. Planting of native woodland,
shrubs and understory on the site’s hillsides would also incrementally reduce Project
impacts to biological resources; current Project landscape plans call for planting a mix of native and non-native species, limiting the value of proposed Project replacement plantings when compared to this alternative. Impacts under this alternative would remain potentially significant, but subject to feasible mitigation with application of MM BIO-2a, MM BIO-2b, MM BIO-2c, MM BIO-3a, MM BIO-3b, MM BIO-3c, MM BIO-3d, MM BIO-4a, MM BIO-5a, MM BIO-5b and MM BIO-5c.

Cultural Resources: Impacts to cultural resources would be somewhat reduced under this Alternative when compared to the proposed Project. Under this alternative, impacts to the most sensitive archaeological resources onsite would be minimized through use of sterile fill and placement of parking over archaeologically sensitive areas. The archaeological resources would not be excavated from the site and subject to data recovery, but would be preserved in place and protected from disturbance through capping and covering. Specifically, sensitive areas would be capped with sterile fill while less sensitive areas would be capped with parking lots. This approach is similar to that taken for the approved 1998 hotel project and reflects direction set forth in Goal 2 and Policies 2.1, 2.1.1 and 2.12 of the City’s General Plan Conservation Element, which require preservation and protection of such resources. However, while this alternative would reduce cultural resource impact, it would not entirely avoid impacts to cultural resources, as developing paved parking areas over sensitive resources may create potentially significant impacts even with use of sterile fill. MM CR-1a, MM CR-1b, MM CR-1c, MM CR1d and MM CR-2a would continue to apply to this alternative. Application of these measures would reduce impacts to less than significant, but would also have substantial effects on site design through required changes to parking lot layout and potential building location.

Fire Protection and Hazardous Materials: Under this alternative, fire and material hazard impacts would be less severe than under the proposed Project. Impacts related to potential soil or groundwater contamination from past nursery operations, possible spills of hazardous materials during construction and heightened risk of wildfire ignition from increased population would remain similar to the proposed Project and MM FPHN-1a, MM FPHN-2a, MM FPHN-2b, MM FPHN-3a, and MM FPHN-3b would continue to apply. Project impacts associated with construction of a major shopping center in a very high fire hazard zone and those related to evacuation hazards would differ from the proposed Project. In particular, large parking areas may reduce the vulnerability of structures to wildfire and there would be no overnight or special event guests, which
would reduce peak population of the site; however, a subterranean parking structure that
would provide area to shelter in place would also not be included. Impacts would remain
potentially significant and MM FPHN-4a, MM FPHN-4b, MM FPHN-4c, MM FPHN-4d
and MM FPHN-5a would continue to apply, although requiring adjustment to match a
shopping center rather than hotel. Under this alternative, development of this site would
continue to contribute to wildfire evacuation risks associated with patrons fleeing the site
and adding incrementally to evacuation congestion and hazards. However, these impacts
would be less severe as peak population onsite would likely be reduced, late night
evacuation of hotel guest and event patrons would be eliminated, and the majority of
those being evacuated would be local residents familiar with wildfire hazards and
evacuation issues. Application of MM FPHN-4a, MM FPHN-4b, MM FPHN-4c, MM
FPHN-4d and MM FPHN-5a would reduce this impact to less than significant.

Geology and Soils: Under this alternative, geologic impacts would be similar to but
somewhat less severe than under the proposed Project. Impacts related to seismic
hazards, slope stability and landslides and soil liquefaction or expansion would remain
the similar to those for the proposed Project and MM GEO-1a, MM GEO-2a and MM
GEO-3a would continue to apply under this alternative. Impacts of potential erosion and
slope collapse associated with hillside disposal of wastewater effluent would remain
similar, but potentially be somewhat reduced under this alternative as development
setbacks from the edge of steep slopes may reduce exposure to landslides. However, MM
GEO-4a, MM GEO-4b, MM GEO-4c, and MM GEO-4d would continue to apply. Impacts associated with site grading and alteration and associated potential for erosion
and downstream sedimentation would be substantially reduced under this alternative as
the majority of the mesa-top would not be graded down five feet and increased setbacks
from and less development on steep slopes would reduce hillside grading and associated
potential for soil erosion and downstream sedimentation. However, impacts would
remain potentially significant and MM GEO-5a and MM GEO-5b would continue to
apply. Application of relevant mitigation measures would assure that impacts associated
with geology and soils would remain less than significant.

Hydrology and Water Quality: Under this alternative, hydrologic impacts would be
similar to but somewhat less severe than under the proposed Project. Erosion and
downstream sedimentation impacts related to Project construction and grading would be
incrementally reduced due to reductions in hillside alteration and overall site grading.
However, most Project site vegetation would still be removed and substantial grading
would be required. MM HYD-1a, MM HYD-1b, MM HYD-1c and MM HYD-1d would still apply to this impact. Impacts to downstream water quality at Amarillo Beach from pesticides and fertilizers would somewhat less than the proposed Project, but runoff contaminated by oil and grease would increase; MM HYD-2a would continue to apply. Changes in uses and development proposed under this Alternative would reduce wastewater flows and resultant potential for effluent to percolate into the Winter Canyon Aquifer; however, the amount of reduction may be contingent on final uses; for example, an increase in the number of restaurants could lead to increases in wastewater generation compared to retail stores. Project specific impacts to groundwater quality would remain potentially significant and MM HYD-3a would continue to apply. Under this alternative, the proposed Project’s potential contribution to groundwater effects would remain cumulatively considerable and would potentially create unavoidable and significant impacts. Effluent generation and landscape irrigation water percolation, while reduced, would still have potential for contact with and raising of groundwater levels if the proposed zero emissions system fails to provide 100% landscape absorption and evapotranspiration of effluent.

Land Use: Under this alternative, land use impacts would be different in a number of areas than under the proposed Project. Impact LU-1 related to LUP Policies 3.45, 3.95, and 6.9 and proposed Project grading and alteration of site topography would be reduced to less than significant due to substantial reductions in onsite grading associated limiting grading of the mesa-top, increased setbacks from slopes and reductions in excavation for the parking structure. However, Project impacts to views from City-designated scenic roads and potential conflicts with LUP Policy 6.5 would potentially be more severe as changes to views from Malibu Canyon Road would be substantially more apparent. Increased setbacks of new structures of up to 153 feet along the site’s southern slopes would help to limit visibility of proposed development and reduce hillside alteration and retaining walls. However, large anchor stores are likely to leave this alternative’s contribution to cumulative aesthetic impacts considerable, leaving LU-2 as significant. Additionally, impacts associated with increased light and glare and associated potential conflicts with adopted policy would be more severe, given the site’s visually prominent location, resulting in potentially unavoidable and significant impacts. Further, it is unclear if such a center could be designed to be consistent with the requirements of the CV-2 designation (i.e., 50% visitor-serving uses), potentially causing this Alternative to be inconsistent with the purpose and intent its land use and zoning designations.
6.0 ALTERNATIVES

Noise: Under this alternative, noise impacts would be less severe than under the proposed Project. Impacts related to Project construction would be lessened as grading and the export of fill material via heavy haul trucks transiting Civic Center Way proximate to homes and schools would be reduced. However, vegetation clearing and grading would continue along the site’s hillsides overlooking Civic Center Way, so construction noise impacts would remain potentially significant and MM NO-1a and MM NO-1b would continue to apply. Impacts of the long-term increase in noise levels generated by increased Project vehicular traffic along Civic Center Way would remain adverse, but not significant. Under this alternative, evening noise would be substantially less severe and impacts may be reduced to less than significant. However, restaurants with outdoor seating could still create noise in excess of acceptable levels leaving the potential that this impact may not be fully mitigated. Restrictions on outdoor use and locations of patios may be able to eliminate this impact.

Paleontological Resources: Impacts to paleontological resources would be reduced under this alternative when compared to the proposed Project. By limiting grading of the mesa-top and not removing the top five feet of earth and rock, eliminating subterranean parking and development (e.g., the spa), and reducing hillside grading, this alternative would incrementally reduce potential for damage to such resources. However, impacts would remain potentially significant and MM PR-1a would continue to apply.

Public Services: Under this alternative, impacts to public services would be similar to but somewhat less severe than under the proposed Project. Impacts related to increased demand for police protection due to special events would be less than the proposed Project and MM PS-1a and MM PS-1b would continue to apply. Impacts to fire protection services would remain similar to the proposed Project and the standard regulatory requirements set forth in MM PS-2a would continue to apply. Impacts to public schools and landfill services would be less than significant, similar to the proposed Project, although standard solid waste regulatory conditions set forth in MM PS-4a and MM PS-4b would continue to apply.

Transportation and Traffic: Under this alternative, impacts to transportation and traffic would be similar to but more severe than under the proposed Project. Impacts related to Project construction would be less severe as grading and the export of fill material via heavy haul trucks transiting Civic Center Way proximate to homes and schools would be reduced. However, construction related transportation impacts would remain potentially
6.0 ALTERNATIVES

significant and MM TT-1a and MM TT-1b would continue to apply. Parking demand would also be less than significant as this alternative would meet applicable parking standards. Although pedestrian trip generation is anticipated to be lower under this alternative, impacts to pedestrian safety along Malibu Canyon Road and the Civic Center Way would be similar to the proposed Project as pedestrian facilities would be lacking and pedestrians exposed to potential hazards. Application of MM TT-4a, MM TT-4b and MM TT-5a, including installation of pedestrian frontage improvements along Malibu Canyon Road between PCH and Civic Center Way and along the Project’s Civic Center Way frontage, as well as payment of fees to the City would mitigate these impacts. Cumulative construction and operational impacts would be similar to the proposed Project as potentially significant but subject to feasible mitigation through application of MM TT-6a, MM TT-7a, MM TT-7b, MM TT-7c, MM TT-7d, MM TT-7e and MM TT-7f.

Under this alternative, trip generation would be substantially higher than under the proposed Project. Project trip generation estimates were calculated based on the shopping center land use rates presented in the Institute of Transportation Engineers (ITE) 2003 Trip Generation Report (7th edition). The retail trip generation also accounts for pass-by trips (i.e., trips to the site made by vehicles already traveling by the site on the adjacent street, vehicles that would make an interim stop between their primary origin and destination). Pass-by trips are not considered “new” trips added to the street system by the project, per se, but are included in the analysis of traffic that enters and exits the site. For this traffic analysis, a 15% pass-by trip reduction was applied to both new average daily trips and peak hour trips. Although pass-by trips for such centers can be higher, a conservative 15% reduction was selected as the final end users are not known. This Alternative would result in an increase in 4,245 weekday vehicle trips with 462 of these in the PM Peak Hour. Thus, weekday vehicle trip generation under this Alternative could be more than two times that for the proposed Project (4,245 vs. 2,058) with PM Peak Hour Trip generation more than three times greater (462 vs. 152). Increases in AM and weekend peak trips would be substantial, although less so for weekend peak trips given the proposed Project’s higher trip generation on weekend days. This increase in both weekday and PM Peak Hour vehicle trips would substantially increase this alternative’s contribution to both existing traffic and future year congestion at nearby intersections. Impacts would be anticipated at the intersections of PCH with Malibu Canyon Road, Webb Way and Cross Creek Road, and to Webb Way/Civic Center Way and would all be potentially significant. Specifically, Impacts TT-2, TT-7 and TT-9 would be substantially
more severe than under the proposed Project. In addition, under this Alternative, impacts at the intersection of PCH with Las Flores Canyon and the Malibu Pier would likely be potentially significant. However, application of MM TT-7a, MM TT-7b, MM TT-7c, MM TT-7d, MM TT-7e and MM TT- would mitigate impacts to the intersections of PCH with Malibu Canyon Road, Web Way and Cross Creek Road. Impacts at the intersection of PCH and Las Flores Canyon and the Malibu Pier and would also require intersection improvements (e.g., restriping, turn lane modifications) to reduce these impacts to less than significant levels. Other area intersections would also experience substantially increased congestion, but impacts would likely remain less than significant at the Project level.

Utilities: Under this alternative, impacts to utilities would be similar to but somewhat less severe than under the proposed Project. Impacts related to onsite reuse of wastewater would be reduced due to reductions in development and the change in use and impacts of onsite disposal would be further reduced to less than significant through the application of MM UT-1a and MM UT-1b. Alternatively, connecting individual onsite wastewater facilities to the City’s proposed CCWTF would provide adequate wastewater disposal service. However, potential cumulative impacts to hydrology and water quality related to impacts to groundwater resources would remain significant. Impacts to water supply and service would remain less than significant with the measures outline in MM UT-2a, MM UT-2b, MM UT-2c, MM UT-2d and MM UT-2e. Impacts to energy demand would also remain less than significant and MM UT-3a, MM UT-3b, MM UT-3c and MM UT-3d would continue to apply.

6.4.4 No Project Alternatives

Section 15126(e)(1) of the state CEQA Guidelines requires consideration of a No Project Alternative to allow decision-makers to compare the impacts of approving the proposed Project with the impacts of not approving the proposed Project. This is particularly important where Project implementation would result in unavoidable and significant impacts, as would be the case with the proposed Project.

Section 15126.6(c) of the CEQA Guidelines explains the No Project Alternative as:

“...the circumstance under which the project does not proceed. Here the discussion would compare the environmental effects of the property remaining in its existing state against environmental effects which would occur if the project is approved.”
6.0 ALTERNATIVES

Section 15126.6(e) further states that:

“the ‘no project’ alternative shall discuss the existing conditions at the time the notice of preparation is published..., as well as what would be reasonably expected to occur in the foreseeable future if the project were not approved, based on current plans and consistence with available infrastructure and community services.”

From a regulatory perspective, “existing conditions” and “existing state” of the site may be interpreted to include the continuation of past approval of a modified version of the 1998 EIR (project plans finalized in 2001) for a hotel on the Project site, or the continuation of existing physical conditions (vacant site). Each of these is considered as a No Project “Scenario” in this EIR.

6.4.4.1 No Project/Approved Hotel Alternative

Under this No Project/Approved Hotel Alternative, the Project site would be developed with the approved version of a luxury hotel assessed as Alternative F in the 1998 EIR, as modified to reflect conditions of approval imposed by the City in 2001. This alternative would entail development of the site with an 181,793 sf hotel and associated uses with a 0.15 F.A.R. The luxury hotel developed under this alternative would include up to 146 guest rooms developed in two phases with 106 guest rooms in Phase I and up to an additional 40 guest rooms in Phase 2. As was set forth in City Council Resolution No. 98-001, which certified the 1998 EIR, Phase 2 would be subject to approval by the City only if all impacts are demonstrated to have been mitigated upon completion and operation of the 106-room hotel. Development would comprise the majority of the level portions of the site, with archaeologically sensitive areas of the level mesa-top left undeveloped. This alternative would also include a small shop, limited retail uses, restaurant, ballroom and a cultural center. In addition, five tennis courts would be located in the northern portion of the site, near the intersection of Civic Center Way and Malibu Canyon Road. This alternative was determined by the City to have less impact on the environment as compared to the hotel project originally proposed and reviewed under the 1998 EIR.³

³ The 1998 EIR assessed the impacts of construction of a 242,391 sf hotel with 250 rooms located within 11 villas along with supporting fitness center and spa, meeting rooms, restaurant and cultural heritage center with 492 surface parking spaces.
Similar to the proposed Project, the No Project/Approved Hotel Alternative would include development of a full service hotel, spa, and supporting facilities on portions of the Project site’s level mesa (see Figure 6-3). Approximately nine acres of the 27.8-acre site would be developed as with hotel uses while the remaining 18 acres would provide landscaped grounds and open natural hillside areas, which could be used for reuse of treated wastewater. Key differences between the No Project/Approved Hotel Alternative when compared to the proposed Project include:

- Approximately 34% less structural development, with 181,390 sf compared to approximately 274,775 sf under the proposed Project;
- Similar F.A.R. under City ordinances, with a 0.15 F.A.R. for the approved hotel and a 0.149 F.A.R. for the proposed Project, with approximately 100,000 sf of subsurface development not counted as part of the proposed Project’s F.A.R.;
- Ten fewer detached buildings containing hotel rooms with 11 “villa complexes” compared to 21 ”secondary hotel buildings” under the proposed Project;
- A 30 percent reduction of approximately 41,000 sf for detached buildings from 133,873 sf under the proposed Project to approximately 92,000 sf under this Alternative;
- An 68% decrease in the size of the fitness center and spa, 10,000 sf proposed under this Alternative compared to 31,425 sf under the proposed Project;
- A 77% decrease in retail uses from 20,000 sf to 6,650 sf;
- A 11% increase in natural landscape and gardens from 16 acres to 18 acres;
- A 51% decrease in the amount of grading proposed under this Alternative from approximately 118,000 cy compared to 240,000 cy under the proposed Project, with all grading balanced onsite and no export;
- A 22% decrease in the number of parking spaces from 543 to 423 with a change from a subterranean parking structure to a surface parking lot; and
- Inclusion of a tennis center with five courts at the site’s northwest corner adjacent to Malibu Canyon Road and Civic Center Way.

These changes and the details of the No Project/Approved Hotel Alternative are outlined below.

Main Hotel Structures. The 66,311 sf main hotel building would include a restaurant, café, lobby, ballroom, a 9,000 sf cultural resources institute and some hotel rooms. The majority of hotel rooms would be located within 11 one- and two-story villa complexes located around the perimeter of the developed area. The villa complexes would total...
92,702 sf, with each structure not exceeding 6,000 sf. A 10,000 sf fitness center and spa would be housed in a separate 10,000 sf single story structure near the proposed pool. The entrance driveway and motor court would remain in the eastern portion of the site along with the hotel lobby. The main hotel building would be two stories and rise to approximately 28 feet in height, while many of the detached villas and the fitness center and spa would be limited to one-story and up to 18 feet in height.

Circulation and Parking. Under the No Project/Approved Hotel Alternative, access to the site would continue to be off Malibu Canyon Road. Similar to the proposed Project, separate dual access entrance/exit driveways for hotel guest would provide primary access and a service entrance for delivery trucks and other service/employee vehicles would be located north of the main driveway. Access would allow left-turns into the site, but restrict exit to right-turn only. Two surface parking lots with a total of 431 spaces would be provided along the site’s Malibu Canyon Road frontage; including a 367-space valet parking lot and a 64-space valet overflow parking lot.

Grading: Under the No Project/Approved Hotel Alternative, grading would be substantially reduced and all material would be balanced onsite, eliminating the need for 9,500 to 19,000 one-way heavy haul truck trips associated with the proposed Project. Grading is estimated to total 118,000 cy of cut and fill compared to approximately 269,000 cy for the proposed Project. The No Project/Approved Hotel Alternative includes greater setbacks for development from surrounding steep hillsides overlooking the Civic Center Way and PCH, and avoidance of excavation for subterranean structures that would both substantially reduce site alteration and grading.

Landscaping. Total natural landscaped area and formal garden space are projected to occupy 18 acres of the site under the No Project/Approved Hotel Alternative, an increase of approximately two acres when compared to the proposed Project.

Wastewater Disposal: Similar to the proposed Project, under the No Project/Approved Hotel Alternative, all wastewater would be reused onsite for landscape irrigation and other purposes. An OWTS would generate reclaimed water for irrigation use with excess solids trucked from the site twice monthly. An onsite 5.14 million gallon storage tank would be available to store approximately 110 days of wastewater generated by the hotel. Similar to the proposed Project, this system is portrayed as a “zero emissions” system, in
part based on use of evapotranspiration by 18 acres of formal and natural landscaping as well as ability to retain over 110 days of wastewater output in the 5.14 million gallon underground storage tank.

Impact Analysis

Aesthetics and Visual Resources: The 1998 EIR found that impacts to aesthetic and visual resources would be less than significant with incorporation of key mitigation measures; these mitigations included increased setbacks of villas from surrounding slopes, limiting many of the villas to a single story in height and restricting the upper story of two-story villas to two-thirds the size of the first story. Reductions in detached villa building height, increased setbacks from steep slopes and decreased grading and use of manufactured slopes and retaining walls that would tend to increase structural visibility from surrounding scenic roads, particularly PCH.

However, impacts to views from Malibu Canyon Road may be incrementally more severe as travelers would view large open, and at night, lighted, parking areas, as well as the tennis court complex. In particular, the 1998 EIR did not appear to address light and glare impacts of the surface parking areas and tennis court complex and nighttime views of these brightly lighted areas from the Santa Monica Mountains and surrounding neighborhoods would increase. Such impacts would be reduced to insignificance by including dense plantings of perimeter trees around the tennis court and parking lots, limiting tennis court night light to no later than 8:00 p.m. and appropriate hooding and directing all exterior night lighting.

Air Quality: The 1998 EIR found that both construction and operational air quality impacts would be less than significant. Under this alternative, short-term construction related impacts to air quality would be substantially reduced due to decreases in grading, elimination of major export of fill and reduced overall structural development. Elimination of most subterranean development and increased setback from and avoidance of grading on some of the site’s steepest slopes would reduce the duration of site grading activities and substantially reduce or eliminate the 9,500 to 19,000 one way heavy haul truck trips required for export of excess material under the proposed Project. These changes would result in a substantial reduction in short-term emissions, which would remain less than significant. Implementation of standard conditions of approval from the 1998 EIR would continue to apply.
Generation of long-term air pollutant emissions and associated potential air quality impacts would also be incrementally lower due to decreases in new trips associated with this Alternative, particularly decreases in the size of the fitness center and spa and retail uses. However, long-term impacts to air quality under this Alternative would remain less than significant. Although not addressed in the 1998 EIR, generation of GHG emissions would also be less than significant due to decreases in new vehicle trips associated with this Alternative.

Biological Resources: Under this alternative, impacts to biological resources would be similar to, but incrementally reduced from those associated with the proposed Project. The 1998 EIR found that impacts to biological resources would be potentially significant, but subject to feasible mitigation largely through offsite habitat protection. Increased setbacks from steeper hillsides and increased landscaped open space would incrementally reduce the amount of intact coastal sage scrub habitat removed, potential loss of sensitive plant species and disruption of wildlife corridors. However, most or all native vegetation would still be removed the mesa-top either directly for construction of the parking lots and retail structures or due to fuel modification standards. Further, although reductions in effluent generation may reduce the need for wastewater disposal/irrigation areas, much of the intact coastal sage scrub habitat on hillsides overlooking Winter Canyon would likely continue to be removed or seriously modified under this alternative.

Cultural Resources: The 1998 EIR found that impacts to cultural resources would be potentially significant, but subject to feasible mitigation through avoidance and protection of sensitive resources and inclusion of the construction of a cultural resource institute onsite. Impacts to cultural resources would be substantially less severe under this alternative when compared to the proposed Project, as the most sensitive archaeological resources onsite would be protected, rather than removed, and the area graded as part of the proposed Project would be reduced. This approach reflects direction in Goal 2 and Policies 2.1, 2.1.1 and 2.12 of the City’s General Plan Conservation Element, which require preservation and protection of such resources.

Fire Protection and Hazardous Materials: The 1998 EIR did not directly address Fire Protection and Hazardous Materials, although fuel modification was addressed in the Biological Resources Section. Subsequent to preparation of that EIR, two major wildfires burned the Project site and the 2013 Spring Fire approached and threatened areas of the City. Under this alternative, project impacts would similar to the proposed Project.
Impacts related to potential soil or groundwater contamination from past nursery operations, possible spills of hazardous materials during construction and heightened risk of wildfire ignition from increased population would remain similar to the proposed Project.

Project impacts associated with construction of a major hotel in a very high fire hazard zone and those related to evacuation hazards would differ from the proposed Project. Peak event population would likely be lower under this alternative due to more limited development; however, lack of subterranean parking and structures would prevent or reduce ability to shelter in place. Under this alternative, development of this site would continue to contribute to wildfire evacuation risks associated with patrons fleeing the site and adding incrementally to evacuation congestion and hazards.

Geology and Soils: The 1998 EIR found that impacts to geology and soils would be potentially significant, but subject to feasible mitigation through avoidance of fault hazards and additional mitigation measures. Under this alternative, geologic impacts would be similar to but somewhat less severe than under the proposed Project. Impacts related to seismic hazards, slope stability and landslides and soil liquefaction or expansion would remain the similar to those for the proposed Project; however, the previous EIR required that no habitable structures occur within areas overlying the Malibu Bowl Fault. Impacts of potential erosion and slope collapse associated with hillside drip dispersal of wastewater effluent would remain similar, but would potentially be somewhat reduced under this alternative, due to development setbacks from the edge of steep slopes that may reduce exposure to landslides. Impacts associated with site grading and alteration and associated potential for erosion and downstream sedimentation would be substantially reduced under this alternative as grading would be less than 50% of that included under the proposed Project.

Hydrology and Water Quality: The 1998 EIR found that impacts to surface and groundwater hydrology and water quality were potentially significant, but subject to feasible mitigation. Under this alternative, hydrologic impacts would appear to be similar to but less severe than under the proposed Project. Impacts related to Project construction and grading, erosion and downstream sedimentation would be substantially reduced due to reductions in hillside alteration and overall site grading. However, most site vegetation would still be removed and substantial grading required. Impacts to downstream water quality at Amarillo Beach from pesticides and fertilizers would similar to the proposed
Project. Reductions in development under this alternative would reduce wastewater flows and resultant potential for effluent to percolate into the Winter Canyon Aquifer. However, substantial changes have occurred since certification of the 1998 EIR, particularly with regard to concerns over groundwater quality, impacts to surface water, adoption of the Prohibition Area by the RWQCB and pending construction of the CCWTF. Because of these substantial changes in circumstances, Project-specific impacts to groundwater quality would remain potentially significant, particularly due to the inclusion of the 5.14 million gallon storage tank, which would provide substantial storage capacity. However, this alternative’s potential contribution to groundwater effects would appear to remain cumulatively considerable in spite of greatly enhanced storage capacity due to the significant changes in circumstances since this issue was evaluated in 1998 (see above). While the 5.14 million gallon storage tank would greatly increase system storage and flexibility, the relatively experimental nature of zero emissions systems may still create the potential for effluent contact and rising of groundwater levels if the proposed zero emissions system fails to provide 100% landscape adsorption and evapotranspiration of effluent, particularly during extended wet periods.

Land Use: The 1998 EIR found land use impacts to be less than significant; however, the City’s LCP was not yet in effect at that time. Impacts associated with increased light and glare and associated potential conflicts with adopted LCP policy would be more severe, given large areas of lighted surface parking and the lighted tennis court complex. As discussed under the Hydrology and Water Quality section above, although less severe than under the proposed Project, this alternative would have the potential for a considerable contribution to cumulative impacts to groundwater quality and resultant conflicts with adopted policies regarding wastewater, leaving impact LU-3 similar to but less severe than under the proposed Project.

Noise: The 1998 EIR did not address noise impacts; however, City Council Resolution No. 98-001, Section 12b contained a condition of approval which prohibited outdoor amplified music (Council Agenda Report, 1/10/02; Attachment B). Under this Alternative, noise impacts would be less severe than under the proposed Project. Impacts related to Project construction would be less severe as grading and the export of fill material via heavy haul trucks transiting Civic Center Way would be substantially reduced, with the need for trucks hauling export of fill eliminated. However, vegetation clearing and grading would continue along the site’s hillsides overlooking Civic Center Way, so construction noise impacts would remain potentially significant. Impacts of
long-term rise in noise levels generated by increased vehicular traffic along Civic Center Way would remain adverse, but not significant. Under this alternative, assuming a prohibition on outdoor amplified music, evening noise would be substantially less severe than the proposed Project; however, given the findings of the noise analysis in this 2013 EIR, impacts of large outdoor gatherings with acoustic music could still exceed City noise restriction standards, particularly after 7:00 p.m.

Paleontological Resources: The 1998 EIR did not address impacts to paleontological resources; however, impacts to paleontological resources would be reduced under this Alternative when compared to the proposed Project. By limiting grading to 118,000 cy and largely eliminating subterranean parking and development (e.g., spa) and reducing hillside grading, this alternative would incrementally reduce potential for damage to such resources.

Public Services: The 1998 EIR did not address Public Services. Under this alternative, impacts to Public Services would be similar to but somewhat less severe than under the proposed Project. Impacts related to increased demand for police protection due to special events would be less than the proposed Project due to the smaller overall Project size. Impacts to fire protection services would remain similar to the proposed Project due to increased demand for fire protection services. Impacts to public schools and landfill services would be less than significant, similar to the proposed Project.

Transportation and Traffic: The 1998 EIR found that impacts to traffic and circulation were potentially significant, but subject to feasible mitigation; however, impacts of increased congestion at area intersections were forecast to be more severe for the initially proposed 250-room hotel project. Additional intersections projected to be significantly impacted beyond those affected by the proposed Project included Civic Way and Malibu Canyon Road, Malibu Canyon Road/Las Virgenes Road/Mulholland Drive and the intersections of PCH with Las Flores Road. While the 1998 EIR found that the 146 room Alternative F Project may not create significant impacts, the conditions of approval and the Mitigation Monitoring and Reporting Plan required payment of a fair share of fees to make improvements at impacted area intersections. The 1998 EIR did not address impacts to pedestrian circulation in the Project area.

Under this alternative, impacts related to construction would be less severe than the proposed Project, as grading and the export of fill material via heavy haul trucks
transiting Civic Center Way proximate to homes and schools would be reduced or largely eliminated. However, construction related transportation impacts would remain potentially significant. Parking demand would be less than significant. Although pedestrian trip generation is anticipated to be lower under this Alternative, impacts to pedestrian safety along Malibu Canyon Road and the Civic Center Way would be similar to the proposed Project, as pedestrian facilities would be lacking and pedestrians exposed to potential hazards. Cumulative construction and operational impacts would be similar to the proposed Project and the mitigation measures discussed above would apply.

Utilities: The 1998 EIR addressed wastewater treatment impacts, but not other utilities. Under this alternative, impacts to utilities would be similar to but less severe than under the proposed Project. Impacts related to onsite reuse of wastewater would be reduced due to reductions in development and the inclusion of a wastewater effluent storage tank five times larger than under the proposed Project. Private onsite wastewater facility connections to the City’s proposed CCWTF would provide adequate wastewater disposal service. However, potential cumulative impacts to hydrology and water quality related to impacts to groundwater resources would remain significant. Impacts to water supply and service would remain less than significant.

6.4.4.2 No-Project/No-Build Alternative

The No-Project/No-Build Alternative assumes continuation of the existing setting. Under this Alternative, no development would occur and the Project site would continue to be vacant. Therefore, the Project site would not generate additional car trips, disturb cultural resources, or adversely affect the visual character of the site. Additionally, hazardous materials and public utilities and service systems would remain as described under the existing setting. Therefore, no impacts would occur with regard to air quality, biological resources, energy and mineral resources, geologic resources, noise, utilities and public services, or transportation and traffic. With regard to land use, the No-Project/No-Build Alternative would delay achievement of the site construction for visitor-serving commercial uses, in particular development of a hotel and associated expansion of the number of full-service hotel rooms in the City. The City’s CV-2 zoning is intended for the provision of hotel and other visitor accommodating uses. As discussed in Section 6.4, no other CV-2 designated parcels in the City could be feasibly developed for larger-scale hotel uses; therefore, under the No-Project/No-Build Alternative, the City would forgo a significant source of transient occupancy tax, since development would not occur.
Additionally, the goals of the City’s LCP and the California Coastal Act for providing lower-cost/cost-accessible visitor-serving uses within the coastal zone would not be met. Further, spa, gym, retail, restaurant and special events facilities that would be available for public use would not be constructed, which would require visitors and residents to continue use of existing facilities located throughout the City.

6.5 IDENTIFICATION OF ENVIRONMENTALLY SUPERIOR ALTERNATIVE

Table 6-1 summarizes the environmental advantages and disadvantages associated with the proposed Project and the four alternatives analyzed above. CEQA Guidelines Section 15126.6(e)(2) states that if the environmentally superior alternative is the No-Project Alternative, the EIR shall also identify an environmentally superior alternative from among the other alternatives.

Table 6-1. Impact Comparison of Alternatives to the Proposed Project

<table>
<thead>
<tr>
<th>Environmental Topic</th>
<th>Reduced Project</th>
<th>Commercial Center</th>
<th>No-Project / Approved Hotel</th>
<th>No-Project / No-Build</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aesthetics and Visual Resources</td>
<td>Less</td>
<td>Greater</td>
<td>Less</td>
<td>Less</td>
</tr>
<tr>
<td>Air Quality</td>
<td>Less</td>
<td>Less</td>
<td>Similar</td>
<td>Less</td>
</tr>
<tr>
<td>Cultural Resources</td>
<td>Less</td>
<td>Similar</td>
<td>Less</td>
<td>Less</td>
</tr>
<tr>
<td>Geology and Soils</td>
<td>Similar</td>
<td>Similar</td>
<td>Similar</td>
<td>Less</td>
</tr>
<tr>
<td>Fire Hazards and Hazardous Materials</td>
<td>Similar</td>
<td>Similar</td>
<td>Similar</td>
<td>Less</td>
</tr>
<tr>
<td>Hydrology and Water Quality</td>
<td>Similar</td>
<td>Similar</td>
<td>Less</td>
<td>Less</td>
</tr>
<tr>
<td>Land Use</td>
<td>Less</td>
<td>Similar</td>
<td>Less</td>
<td>Greater</td>
</tr>
<tr>
<td>Noise</td>
<td>Similar</td>
<td>Similar</td>
<td>Less</td>
<td>Less</td>
</tr>
<tr>
<td>Paleontological Resources</td>
<td>Less</td>
<td>Less</td>
<td>Less</td>
<td>Less</td>
</tr>
<tr>
<td>Public Services</td>
<td>Less</td>
<td>Less</td>
<td>Similar</td>
<td>Less</td>
</tr>
<tr>
<td>Transportation and Traffic</td>
<td>Less</td>
<td>Less</td>
<td>Similar</td>
<td>Less</td>
</tr>
<tr>
<td>Utilities</td>
<td>Less</td>
<td>Less</td>
<td>Less</td>
<td>Less</td>
</tr>
<tr>
<td>Project Objectives Met</td>
<td>All</td>
<td>Most</td>
<td>All</td>
<td>None</td>
</tr>
</tbody>
</table>

The No-Project/No-Build Alternative is considered to be the environmentally superior alternative since potential impacts would be reduced for most environmental topic areas, including Noise and Traffic and Transportation. However, the No-Project/No-Build Alternative would not meet major Project objectives. Therefore, the
No-Project/Approved Hotel Alternative would be considered the Environmentally Superior Alternative, as it would most substantially reduce project specific and cumulative impacts, while also meeting key Project objectives.
7.0 LIST OF PREPARERS

City of Malibu

Joyce Parker-Bozylinksi Planning Director
Stephanie Danner Supervising Planner
Ha Ly Supervising Planner

AMEC Environment & Infrastructure, Inc.

Dan Gira EIR Program Manager
Ben Botkin Deputy Project Manager
Erika Leachman Senior Quality Control Reviewer
Hubert Switalski Senior Archaeologist
Andrea Bardsley, RPA Archaeologist
Steve Ochs Senior Air Quality Analyst
Darin Miller, PE Utilities Engineer
Nick Meisinger Environmental Analyst
Bronwyn Green Environmental Analyst
Shannon Moy Environmental Analyst
Janice Depew Word Processor

Cogstone

Sherri Gust Qualified Principal Paleontologist
Courtney Richards Paleontologist
Mally Valasik GIS Mapping

Graphics Consultant

Deirdre Stites Graphics Specialist
REFERENCES AND PERSONS OR ORGANIZATIONS CONTACTED

SECTION 2.0 PROJECT DESCRIPTION

SECTION 3.1 AESTHETICS AND VISUAL RESOURCES

City of Malibu 1996. Malibu Civic Center Specific Plan, Background Information, Existing Conditions. May.

SECTION 3.2 AIR QUALITY

SECTION 3.3 CULTURAL RESOURCES

City of Malibu 1996. Malibu Civic Center Specific Plan, Background Information, Existing Conditions. May.

King. 1994. *Archaeological Reconnaissance at NW Corner Civic Center Way and Stuart Ranch Road Malibu, California*.

SECTION 3.4 BIOLOGICAL RESOURCES

CDFW. 2011. Special Animals (898 taxa). Available at:

CDFW. 2012. California Natural Diversity Database. Available at:

City of Malibu. 1995. City of Malibu General Plan. Malibu, California. Available at:

City of Malibu. 2012. Malibu Local Coastal Program. Available at:

Griffith, G.E. et al. 2011. Ecoregions of California. Available at:

Rincon Consultants, Inc. 2007. Biological inventory Report for Malibu Canyon Road at Pacific Coast Highway Parcels 1-3, Malibu, Los Angeles County, California.

Rincon Consultants, Inc. 2012. Native Tree Assessment and Tree Protection Plan Rancho Malibu Resort 4000 Malibu Canyon Road, Malibu, CA. February.
REFERENCES AND PERSONS OR ORGANIZATIONS CONTACTED

Rincon Consultants, Inc. 2011. Revised Biological Inventory Report for the Rancho Malibu Resort Project, 4000 Malibu Canyon Road, City of Malibu California.

SECTION 3.5 GEOLOGY AND SOILS

Caltrans. 2001. Landslides in the Highway 1 Corridor, Geology and Slope Stability Along the Big Sur Coast.

Department of Conservation, Division of Mines and Geology.

Rincon Consultants, Inc. 2007. *Biological inventory Report for Malibu Canyon Road at pacific Coast Highway Parcels 1-3, Malibu, Los Angeles County, California.*

SECTION 3.6 FIRE PROTECTION AND HAZARDOUS MATERIALS

All Environmental, Inc. 1999. Phase II - Preliminary Contamination Assessment Malibu 30-acre Parcel. Malibu, CA.

County of Los Angeles. 2011. *Final Environmental Impact Report for the Pepperdine University Campus Life Project*. Pepperdine University, Malibu, CA.

LADWP. 2012. Personal Communication with Mr. Ramy Gindi, Civil Engineer.

LACFD. 2011b. Incorporated Fire Hazard Severity Zone City of Malibu.

LACFD. 2012d. Personal Communication with Mr. Jose Padilla, Land Development.

LACFD. 2012e. Personal Communication with Ms. Loretta Bagwell, Planning Analyst.

REFERENCES AND PERSONS OR ORGANIZATIONS CONTACTED

Rincon Consultants, Inc. 2011. Revised Biological Inventory Report for the Rancho Malibu Resort Project, 4000 Malibu Canyon Road, City of Malibu California.

SECTION 3.7 HYDROLOGY AND WATER QUALITY

AMEC. 2012. Site visit/personal observation by Dan Gira, AMEC Program Manager. 19 September 2012.

City of Malibu 1996. *Malibu Civic Center Specific Plan, Background Information, Existing Conditions*. May.

City of Malibu. 2002. *Commission Agenda Report: Negative Declaration No. 01-012 / Zone Text Amendment No. 01-005 / Conditional Use Permit No. 01-005 / Site Plan Review No. 02.035: An application for the construction of a new, 1,900 square foot wastewater treatment facility in the Community Commercial Zone*. 20 November.

Earth Forensics Inc. 2012. *Hydrogeologic Assessment of the Proposed Rancho Malibu Resort Tentative Tract Map 69653, 4000 Malibu Canyon Road, Malibu, California April 13, 2012*.

Earth Forensics, Inc. 2013. Updated Hydrogeologic Assessment of the Proposed Rancho Malibu Resort Tentative Tract Map 69653, 4000 Malibu Canyon Road, Malibu, California. 7 August.

Ensitu Engineering, Inc. 2012. *Advanced Onsite Wastewater Treatment System, 4000 Malibu Canyon Road, Malibu, CA*. October.

SECTION 3.8 UTILITIES

County of Los Angeles Fire Department. 2012. *Personal Communication with Ms. Loretta Bagwell, Planning Analyst*.

Earth Forensics, Inc. 2012. *Hydrogeologic Assessment of the Proposed Rancho Malibu Resort Tentative Tract map 69653, 4000 Malibu Canyon Road, Malibu California*.

Ensitu Engineering, Inc. 2012. *Advanced Onsite Wastewater Treatment System 4000 Malibu Canyon Road Malibu, CA*.

GeoSoils Consultants, Inc. 2012. *Response to the City of Malibu Geotechnical and Hydrogeologic Review Sheet dated December 14, 2012, Regarding Onsite Wastewater Treatment System (OWTS), Rancho Malibu Resort, Tentative Tract Map 69653, 4000 Malibu Canyon Road, Malibu California*.

Los Angeles Department of Public Works. 2012. *Personal Communication with Mr. Ramy Gindi, Civil Engineer.*

PSOMAS. 2012. *ALTA/ACSM Land Title Survey For: Rancho Malibu LLC Malibu Triangle C1.4,1.5.*

Regional Water Quality Control Board (RWQCB). 2009a. *Final Environmental Staff Report Containing Substitute Environmental Documentation in Accordance with the California Environmental Quality Act in support of an Amendment to the Water Quality Control Plan for the Coastal Watershed of Los Angeles and Ventura Counties to Prohibit Onsite Wastewater Disposal Systems in the Malibu Civic Center Area.*

REFERENCES AND PERSONS OR ORGANIZATIONS CONTACTED

Southern California Gas Company (SoCalGas). 2010. Line Extension - Step-by-Step Process. Available at:

SECTION 3.9 PUBLIC SERVICES

CalFire. 2012. Los Angeles County FHSZ Map. Available at:

California Department of Education. 2012. Critically Overcrowded Schools. Available at:

Calrecycle. 2012b. Facility/Site Listing: Sites in Los Angeles County. Available at:

CHP. 2012. California Highway Patrol Coastal Division. Available at:

Pepperdine University. 2010. Draft Environmental Impact Report for the Pepperdine University Campus Life Project. 5 November.

Rampulla, Victor. Division Director Administrative Service Division. *Full-time Sheriff Employee Count.* Personal communication 8 August 2012.

SECTION 3.10 LAND USE

SECTION 3.11 LAND USE

SECTION 3.12 NOISE

California Code of Regulations. Title 24 and 25.

SECTION 3.13 PALEONTOLOGICAL RESOURCES

Cogstone. 2012. *Paleontological Resources Technical Study for the Malibu Hotel Project in the City of Malibu, Los Angeles County, California*. October.

McLeod. 2012. *Vertebrate Paleontology Records Check for Paleontological Resources for the proposed Malibu Hotel Project, Cogstone Project #2390, in Malibu, Los Angeles County, Project Area*.

SECTION 5.0 CUMULATIVE IMPACTS

City of Malibu. 2012. *City of Malibu Cumulative Projects Listing*. Updated 1 May 2012. Provided by the City of Malibu Planning Department.

SECTION 6.0 ALTERNATIVES
